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1. Introduction

As a fundamental part of our daily lives, visual word processing
has received much attention in the psychological literature. However,
the interest in visual word perception extends beyond its value in
communication. The written word is a complex stimulus with which
most adults have a large amount of experience. Unlike faces, there is
no reason to believe we have any innate ability to perceive words.
Thus, word perception may represent the limit of perceptual learning
in the absence of innate ability.

Due to the relative ease with which most adults read, it is reasonable
to assume that word perception is an efficient process. This is further
supported by the intuition that with more experience with a process
we become more efficient and we are quite experienced with the writ-
ten word. Often, the efficiency is measured using single letter percep-
tion as a base line. When word context offers an advantage in the
accuracy or processing time of perceiving a letter, this supports the
claim that word perception is efficient.

From the early days of experimental psychology, researchers have
been interested in the value of a word context for perceiving letters. In
one study, letters were displayed sequentially to participants at faster
and faster rates until they could no longer correctly identify the letters.
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They found that participants maintained accuracy with shorter dura-
tions when the letters were presented as part of a word compared
with random letter sequences (Cattell, 1886).

One problem with studies of this nature is that they do not control
for the fact that forcing a string to be a word constrains the number of
possible letters in the string. Hence, it is not clear from those early re-
sults whether the advantage is a perceptual advantage or a decisional
advantage. For example, if the last letter of a four letter word is “h”,
then the second to last is most likely an “s”, “t” or “c.” Thus, there is
redundant information about the identity of the second to last letter:
both the perceptual information about the shape of that letter and the
decisional information about the letter conditioned on the last letter
being an “h.” If random letter strings are used, there is no longer the
same constraint on the likely identity of the second to last letter: “x” is
just as likely as “s” so the only information is the perceptual information
about the second to last letter.

In the late 1960's an alternative task was designed to eliminate the
decisional advantage of word context so as to examine the perceptual
effects. In this task a letter or word was tachistoscopically displayed to
a participant. Participants then chose from two possible choices, one
of which was correct. In the letter condition, the choices were letters.
In the word condition, both choices were words that differed in only a
single letter. This design is depicted in Fig. 1. Since both alternatives
were words, the word context was no longer informative as to the iden-
tity of the letter. Participants were still more accurate at perceiving
letters in the word condition than the letter condition (Reicher,
1969). Furthermore, they found that participants are also more accurate
when identifying letters in words than random letter sequences. This is
known as the word superiority effect.
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Fig. 1. An example trial in the Reicher's (1969) task. The participant initiated stimulus
onset and the presentation time was calibrated such that participants had 90% accuracy.

In a follow-up paper, Wheeler (1970) falsified a number of alterna-
tive explanations for the word superiority effect. One possible explana-
tion that Wheeler tested was that the fact that response choices in
the Reicher task were letters, the choices may interfere more with
letter stimuli than word stimuli. That interference could lead to worse
performance when the stimuli were letters, and hence result in a
word superiority effect. Although Wheeler found evidence for interfer-
ence from the response choices, when the responses were delayed
long enough such that there was no longer an effect of increased delay
there was still a word superiority effect. In the task described below,
we use a different method to eliminate this alternative: We use word re-
sponses to word stimuli and letter response to letter stimuli. A second
possible explanation Wheeler tested, which also foreshadows our
experimental design, is that people may focus their attention on only
the positions within a word that disambiguate that word with its ortho-
graphic neighbors. For example, the word “wren” can be morphed into
“when” by changing the second letter, but cannot be changed into
another word by changing the last letter. Like Wheeler, we use words
that can be morphed into another word by a single letter change in
any position within the word.

An efficiency gain of context over letters alone is not unique to
words. If a sequence of letters conformed to the pronunciation rules of
English (pseudoword), then participants were again more accurate
than letters alone (e.g., Carr, Davidson, & Hawkins, 1978; McClelland &
Johnston, 1977). This is the pseudoword superiority effect. Researchers
have even found a superiority effect for familiar acronyms and initial-
isms such as DVD (Laszlo & Federmeier, 2007), however unfamiliar se-
quences of letters tend to be as bad or perhaps worse than letters alone
(e.g., Reicher, 1969).

Despite the robustness of the word and pseudoword superiority
effects, a comparable effect using response times (and controlling for de-
cisional information due to context) has been elusive. In many studies,
response times were not recorded or at least not reported (e.g., Allport,
2009; Estes & Brunn, 1987; Ferraro & Chastain, 1997).2Wheeler (1970),
for example, found that response times to words were slower than re-
sponse times to letters, regardless of whether responses were correct
or incorrect. The absence of a response time word superiority effect
may be in part explained by the possibility that people will read an entire
word even if the task does not require it. Indeed, the concept that words
are always fully read has been put forth as further evidence that word
perception is special (LaBerge & Samuels, 1974). One of the goals of
this paper is to demonstrate a response time based word superiority ef-
fect, and possibly a pseudoword superiority effect as well.

The word superiority effect has another limitation, it has only been
found with stimulus masking. When the stimulus screen is followed

2 Krueger (1970) found that participants were faster at searching for target letters in
words than letters; however, the search task in which participants are focused on a partic-
ular letter differs significantly from the Reicher-Wheeler discrimination tasks.

by a blank screen, letters can be identified with the same accuracy
whether the letters were alone or in a word context (Johnston &
McClelland, 1973; Massaro & Klitzke, 1979).

Even in the accuracy domain, some researchers continue to question
whether there is a perceptual advantage due to word context. For exam-
ple, Pelli, Farell, & Moore (2003) demonstrated evidence for a model
of word perception in which letters are perceived independently and
with separate detection decisions on each letter. Their evidence comes
from comparing the efficiency of word perception as the number of
letters in the word increases. Depictions of longer words have more in-
formation about their identity, since the more letters that are known,
the fewer possibilities there are for the others. Hence, if a person is
able to take advantage of this global information, they should need
less per letter information as the number of letters increases. However,
a model of word perception based on independent, separate decisions
on the letters predicts that as the word length increases, the reader
will still need the same amount of information per letter to maintain
accuracy. In fact participants did need roughly the same amount of
per letter information as the number of letters increased, supporting
the latter model.

Pelli et al. (2003) were not the first to propose an independent par-
allel processing model for word perception. Massaro (1973) and Estes
(1975), for example, proposed models in which letters are indepen-
dently recognized during an initial stage, then word level information
is used in a second stage. The second stage of processing accounts for
the word superiority effect without appealing to dependence among
the perception of the letters in the early stage and without any word
to letter level feedback.

In the next section we describe the capacity coefficient, a response
time based measure of efficiency. We propose that this measure, along
with a task that controls for both the available information and possibly
mandatory word reading, provides evidence of word processing as a
particularly efficient process to complement and extend those results
from the accuracy domain.

1.1. The capacity coefficient

The capacity coefficient, C(t), is a response time based measure of
the effect of increased load on processing efficiency (Houpt &
Townsend, 2012; Townsend & Nozawa, 1995; Townsend & Wenger,
2004). Specifically, C(t) is a measure of the change in processing rates
as the task requires attention to more targets, or possibly more dimen-
sions of a single target. The basic idea of the measure is to compare re-
sponse times when performing a task with all parts of the stimulus
present to the times that would be predicted if each part is processed
in parallel, with no difference in speed whether they are alone or with
other parts. In terms of word perception, the baseline model for com-
parison assumes that letters are identified equally as fast when alone
or in a word context and, when the letters are in words, they are per-
ceived in parallel. We will refer to this baseline model as the standard
parallel model.

The capacity function for an exhaustive task is defined using the
cumulative reverse hazard function, K(t) = InF(¢t);F(t) = P{RT < t},
and is similar to the cumulative hazard function used in survival analy-
sis (cf. Chechile, 2011). If K is the cumulative reverse hazard for the
first character response times, K, is the cumulative reverse hazard for
the second character, etc., and K; is the cumulative reverse hazard for
the string condition, the capacity coefficient is given as,

(1)

More details on the motivation for this particular form and its con-
nection to the baseline model are given in Appendix A.
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Table 1
Full set of stimuli used for capacity analysis.
Target Distractors Single Character
Word care bare cure cave card [¢ bla u|r vi]e d
Pseudoword | lerb nerb larb  lemb lerf Il nje alr m|b f
Non-Word rlkf vikf rtkf rlhf ik |r v|1 t|k h|f k
Upside-down| Pl Pa P i A |1 I3y ujpy 3
Katakana YA0F  ANOF HFoA HATF Hau/ | B AN A4 F | v T | F s

Interpretation of the capacity coefficient is based on the participant's
performance relative to the standard parallel model baseline. If a person
performs better than the standard parallel model, C(t) > 1, their perfor-
mance is referred to as super-capacity. This may happen if there is facil-
itation of perception between characters. Performance worse than the
standard parallel model, C(t) > 1, is limited capacity. Inhibition between
characters or serial processing of each character individually would lead
to limited capacity. When performance is about the same as the stan-
dard parallel model, C(t) ~ 1, then we refer to it as unlimited capacity.

Houpt and Townsend (2012) developed a null-hypothesis-significance
test for workload capacity analysis. If the null hypothesis that the capac-
ity coefficient is equal to one (unlimited capacity) is true then the test
statistic will have a standard normal distribution. Conclusions about
the capacity coefficient for each individual can be made using a z-test
and group level hypothesis can be tested by appropriately combining
individuals' statistics. Despite the fact that the capacity coefficient and
thus the Houpt-Townsend statistic are nonparametric, the statistic is
quite powerful. Furthermore, because the measure is not based on
particular distribution of the underlying processes, the conclusions are
quite general. Further details of the capacity coefficient are included in
Appendix A.

2. Experiment 1
2.1. Method

To properly compare perceptual efficiency across words, pseudowords,
nonwords, upside-down nonwords and unfamiliar characters, our task
must eliminate the extra information available given a word context.
Furthermore, the possibility that words are exhaustively processed
automatically may lead to a disadvantage for words on response time
measures. To address these issues, we adapted a task from Blaha
(2010) which forces exhaustive processing of the characters in a string
using an approach similar to Baron and Thurston (1973). This experi-
ment consists of two components. First, we measure the participants'
response times to correctly identifying the target string. To ensure
exhaustive processing, i.e., that participants base their identification
on the entire string and not any subset, we include a distractor of a
string with a single character different in each position in the string.
For example if the target is “care” then “bare,” “cure,” “cave” and
“card” are used as distractors (see Table 1). Second, the participants dis-
tinguish between letters in isolation. Whereas in the exhaustive case
the participant needed to distinguish between “bare” and “care,” we
now only require them to distinguish between “b” and “c.” The response
times on these tasks are used for computing the predicted performance
of the standard parallel model.

” o«

2.1.1. Participants

Participants were recruited from the Indiana University population.
Eight females and two males participated in this study, all of whom
were native English speakers and reported that they did not read
or speak Japanese. Their ages ranged from 19 to 34. All participants
reported having normal or corrected to normal vision, no difficulty
reading English, and no prior diagnoses of a reading disorder.

2.1.2. Stimuli

Table 1 gives the complete list the stimuli used for both the single
character and exhaustive trials for each type.? There were five types of
stimuli used: words, pronounceable nonwords (pseudowords), unpro-
nounceable nonwords, upside-down unpronounceable nonwords, and
strings of Katakana characters. All strings used were four characters
long. Word frequency counts (based on Kucera & Francis, 1967) are
listed in Appendix B. Pseudowords were taken from the ARC Nonword
Database (Rastle, Harrington, & Coltheart, 2002). The neighborhood size
and summed frequency of the neighbors for each of the pseudowords
are also included in Appendix B.

Strings and characters were presented in black Courier font on a gray
background. Each character subtended roughly 0.33° of visual angle
horizontally and between 0.3° and 0.45° vertically. Strings subtended
1.5° horizontally.

2.2. Procedure

All experimental conditions were run using DMDX version 2.9.06
developed at Monash University and at the University of Arizona by
K.I.Forster and ].C.Forster. Stimuli were presented on a 17” Dell Trinitron
CRT monitor running in 1024 x 720 mode. Participants used a two-
button mouse for their responses.

Participants were paid $8 per session, and received a $20 bonus
upon completion of all 10 sessions. Each session lasted between
45 and 60 min and was dedicated to one of the five types of stimuli
(e.g., word, pseudoword, ...), so there were two sessions of each type.
At the beginning of each session, we read the general instructions for
the task to the participants while those instructions were presented
on the screen. The instructions encouraged participants to respond as
quickly as possible while maintaining a high level of accuracy. Each ses-
sion was divided into five blocks, one block of string stimuli and a block
for each of the corresponding single character stimuli.

Each block began with a screen depicting the button corresponding
to each of the categories. An example instruction screen is shown in
Fig. 3. Participants had 40 practice trials, 20 of each category. Next,
participants were given 240 trials divided evenly between the two cat-
egories, the first 40 of which were not used in the analysis. The trial
structure is show in Fig. 2. Each trial began with a 300 ms presentation
of a fixation cross. After a random delay (300-600 ms), the stimulus
was presented for 80 ms. Participants had a maximum of 2500 ms to re-
spond. If the participant responded correctly, the next trial started after
a 400 ms delay. If the participant responded incorrectly, a tone was
played during the 400 ms delay. The session order was counterbalanced
among the participants so that participants completed the different
types on different days and in different orders.

2.2.1. Analysis

All data were analyzed using R statistical software (R Development
Core Team, 2011). We computed a repeated measures ANOVA of the
correct target response times in each condition using the ez package
(Lawrence, 2012) and capacity analyses were completed using the sft
package (Houpt, Blaha, McIntire, Havig, & Townsend, 2013).

A repeated measures ANOVA on the string response times (top
left of Fig. 4) indicated a crossover interaction between version and
target/distractor (F(4,36) = 20.5, p < 0.05, 2 = 0.044) and a signifi-
cant effect of version on response time (F(4,36) = 22.6, p < 0.05,
1z = 0.49) but not a main effect of target/distractor (F(1,9) = 0.685,
p = 043). Post-hoc analysis on target response times was done
with repeated measures ANOVA on each pair of versions of the task.
Using Bonferroni correction (a = 0.05/20 = 0.0025), the following
comparisons were significant: Word versus upside-down (F(1,9) =
50.85, p <0.0025, 12 = 0.529); word versus Katakana (F(1,9) =

3 The use of only one target stimulus per version facilitated the modeling, but in future it
will be important to test these effects with a variety of target strings.
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Fig. 2. Trial structure for Experiment 1. Trials began with a fixation cross, followed by a blank screen. After a brief, random delay the probe appeared for 80 ms. The probe was followed by a
blank screen. Instructions indicating the probe and distractors were given at the beginning of each block.

57.56, p <0.0025, 1% = 0.697); pseudoword versus upside-down
(F(1,9) = 34.8, p < 0.0025, ¢ = 0.438); pseudoword versus Katakana
(F(1,9) = 53.9, p < 0.0025, 7% = 0.643); and random versus Katakana
(F(1,9) = 22.1, p < 0.0025, % = 0.398).

The ANOVA on the string condition accuracy (bottom left side of
Fig. 4) indicated that there was an interaction between version and
target/distractor (F(4,36) = 3.69, p < 0.05, 7z = 0.079) and main ef-
fects of both version (F(4,36) = 3.64, p < 0.05, 7% = 0.11) and target/
distractor F(1,9) = 17.6, p < 0.05, 1z = 0.081. Both the interaction
(W = 0.072, p <0.05) and the main effect of version (W = 0.033,
p < 0.05) failed Mauchly's test of sphericity and only the interac-
tion effect was significant after a Greenhouse-Geisser correction
(GGe = 0.518, p < 0.05), not version (GGe = 0.376, p < 0.065). The ef-
fects may be driven entirely by the accuracy on the distractors because
there is no significant effect of version when the analysis is limited to
the hit rate (F(4,36) = 0.411,p = 0.31).

We found a similar pattern with the single character conditions
(right side of Fig. 4). There was a significant effect of version on response
time (F(4,36) = 4.64, p <.05, 2 = 0.089), but the main effect of
target/distractor (F(1,9) = 0424, p = 0.53) and the interaction
(F(4,36) = 0.335, p = 0.85) were not significant. Post-hoc analysis
on target response times was done using repeated measures ANOVA
on each pair of versions. Using Bonferroni correction (a = 0.05/
20 = 0.0025), the only significant differences in response times
were between the letters in the pseudoword and upside-down ver-
sions (F(1,9) = 20.27, p <0.0025, nZ2 = 0.098) and pseudoword
and Katakana versions (F(1,9) = 20.0, p < 0.0025, 1% = 0.092). The
other test results were as follows: Word versus pseudoword (F(1,9) =
0.104, p = 0.754); word versus random (F(1,9) = 3.29, p = 0.103);

bare
cure
cave
card

CEEE

Fig. 3. Example instruction screen indicating that the participant should click left if they
see care and right if they see bare, cure, cave, or card.

word versus upside-down (F(1,9) = 7.55, p = 0.023); word versus
Katakana (F(1,9) = 840, p = 0.018); pseudoword versus random
(F(1,9) = 7.07, p = 0.026); random versus upside-down (F(1,9) =
0.0045, p = 0.948); and random versus Katakana (F(1,9) = 0.592,
p = 0.461). There were not significant effects on accuracy of version
(F(4,36) = 0433, p = 0.784) and target/distractor (F(1,9) = 4.55,
p = 0.062) and there was no significant interaction (F(4,36) = 1.28,
p = 0.295).

Individual capacity coefficients are shown in Fig. 5. z-Scores for indi-
vidual and group data, using the statistic in Houpt and Townsend
(2012) are shown in Table 2. Each z-score indicates a test of the null-
hypothesis that a participant performs equally to a standard parallel
model. Significance values are based on a two-sided test. Nearly all par-
ticipants are significantly different from standard parallel, usually better
in the word and pseudoword versions and worse in the random, upside-
down and Katakana versions.

Using repeated measures ANOVA, we found a significant effect of
version on capacity (F(4,36) = 22.64, p < 0.05, ¢ = 0.58). For post-
hoc analyses, we used the z-scores resulting from the mean difference
between subjects' capacity z-scores in each pair of version of the task.
Word capacity was significantly higher than pseudoword capacity
(z =17.27, p < 0.0025), random letter capacity (z = 22.9, p < 0.0025),
upside-down capacity (z = 36.7, p < 0.0025), and Katakana capacity
(z =459, p < 0.0025). Pseudoword capacity was significantly higher
than random letter capacity (z = 15.6, p < 0.0025), upside-down
capacity (z = 294, p <0.0025), and Katakana capacity (z = 38.6,
p < 0.0025). Random letter capacity was higher than upside-down
capacity (z = 13.8, p <0.0025), and Katakana capacity (z = 22.9,
p < 0.0025). Upside-down capacity was significantly higher than Kata-
kana capacity (z = 9.19, p < 0.0025).

3. Discussion

Participants responded faster to words and pseudowords than to
upside-down nonwords and Katakana strings, following a word and
pseudoword superiority effect respectively. However, the comparisons
between response times to words and response times to nonwords
and pseudowords were not significant, and thus do not indicate superi-
ority effects.

One possible explanation of the basic string response time results is
that the individual characters were more difficult to process when they
were unfamiliar or upside-down. Even the trend toward faster perfor-
mance on words compared to nonwords could be due to differences
in the speed with which the particular letters are processed: Words
tend to contain more common letters and include vowels, compared
to unpronounceable random letter sequences and more common letters
are perceived faster than less common letters (Appelman & Mayzner,
1981).
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Fig. 4. Response times and accuracy from Experiment 1. Error bars indicate the standard error of the mean across trials and participants. The top two graphs show mean response times; the
bottom two show accuracy. The left graphs are data from the string tasks; the right graphs are from the corresponding single character tasks. To highlight variation across task version, the
character response times are shown on a smaller scale than the string response times. Both accuracy plots are on the same scale.

Herein lies the advantage of the capacity coefficient. By design, the
measure accounts for the processing time of each character in measur-
ing the performance of the string. Despite accounting for faster process-
ing with letters than unfamiliar or upside-down characters, the capacity
results still indicate word and pseudoword superiority over Katakana
and upside-down strings. Furthermore, unlike the raw response time
data, the capacity coefficient indicates word and pseudoword superior-
ity over random letter sequences.

Fig. 5 and Table 2 show that there are also superiority effects for
words and pseudowords over individual letters, i.e., assuming parallel
processing of characters, participants were slower when the characters
were presented in isolation rather than in a string. In contrast, capacity
for upside-down and Katakana was limited.

Finding word and pseudoword superiority effects with response
times, by using workload capacity analysis, is notable because the
superiority effects have only been reported in accuracy in the past.
Furthermore, the accuracy superiority effects are dependent on
post stimulus masking. We have demonstrated a clear superiority
of words and pseudowords over single characters, random letter
strings, upside-down strings and unfamiliar characters without any
masking.

Results from Experiment 1 demonstrate that the capacity coefficient
can be used to find a more robust word and pseudoword superiority ef-
fects than the traditional Reicher-Wheeler paradigm. With Experiment
2, we verify that the response time superiority effects will hold up in
this design when there is post-stimulus masking, as in the original

paradigm. Additionally, in Experiment 1, the participants were only
shown the instruction screen once, at the beginning of a block.
Thus, differences in performance may be due to differences in the
ability to remember the target-response mapping across string type.
In Experiment 2, we display the instruction screen on every trial. A
final potential issue with Experiment 1 is the use of lower case letters.
Words with lower case letters can vary more in their global shape
than those with only upper case letters (e.g., “BARD” and “CARE” versus
“bard” and “care”). This can bias a participant to use global shape infor-
mation in distinguishing between letter strings. In Experiment 2, we use
the same letter strings, but in upper case.

4. Experiment 2
4.1. Method

4.1.1. Participants

As in Experiment 1, participants were recruited from the Indiana
University population. Ten females and 2 males participated in this
study, all of whom were native English speakers and reported that
they did not read or speak Japanese. Their ages ranged from 19 to 34.
All participants reported having normal or corrected to normal vision,
no difficulty reading English, and no prior diagnoses of a reading disor-
der. None of the participants from Experiment 1 participated in Experi-
ment 2.

Pseudoword Random Upside-Down Katakana
B _&
T T T 1 T T T T 1 T T T T 1
300 500 700 300 500 700 300 500 700 300 500 700 300 500 700
Time Time Time Time Time

Fig. 5. Capacity coefficients for words, pseudowords, random letters, upside-down random letters and Katakana in Experiment 1. Gray lines indicate individual participants' capacity co-
efficients and the thick line indicates the average function across participants. The capacity coefficients for each participant are only plotted in regions where reasonable estimates are pos-

sible based on individual response time distributions.
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Table 2
Workload capacity statistics for each participant in each version of the task in Experiment
1. Under the null hypothesis the limit distribution of the statistic has a standard normal

distribution. Significance levels of z-tests are indicated by: ok p < 0.001, > p <001,
and ™ p < 0.05.
Word Pseudoword Random Upside-down Katakana
1 9.97"" 392" 719" —262" —443"
2 192" 444™ 073" 595" —10.02"*
3 819" —620" -688"™"  —1088™" —1234™*
4 013" —338™" -734™ 660" —10.58™*
5 079" 1070"* -236" 627" —6.86""
6 734" 519" 10617 —258™ —-11.99™*
7 934™* 325" —227"% 249" —5.78™*
8 717" 7.84"* 468" 286" -1.79
9 5717 13347 —-843"™"  —g52™ -737"
10 388" 245" —246" 744" —9.40™*
Group 2038 1311" —252" —1628"" —2547""

4.1.2. Stimuli

The stimuli were essentially the same as those used in the word,
pseudoword and random versions in Experiment 1, except with capital
letters. Because the main effects of interest are the word, pseudoword,
and random versions, we did not run the upside-down and Katakana
versions in Experiment 2.

4.1.3. Procedure

Unlike Experiment 1, the stimuli were immediately followed by a
mask made of Xs and Os overlayed in each position that a letter was
shown (following Reicher, 1969). To allow participants to maintain
high accuracy despite the mask, we increased the stimulus presentation
time to 100 ms, which we chose based on pilot data. The trial structure
is shown in Fig. 6.

4.2. Results

Response times in the string condition (top left of Fig. 7), showed
was a significant effect of version (F(2,22) = 12.6, p < 0.05, 1z =
0.25) and a significant interaction between version and target/distractor
(F(2,22) = 6.36,p < 0.05, 1% = 0.0046), both of which failed Mauchly's
test for sphericity (version: W = 0.194, p < 0.05; interaction: W =
0.532, p <0.05) but both remained significant after a Greenhouse-
Geisser correction (version: GGe = 0.554, p < 0.05; interaction GGe =
0.532, p < 0.05). There was not a significant main effect of target/
distractor (F(1,11) = 0.177, p = 0.68).

There were also significant effects on accuracy in the string condition
(bottom left of Fig. 7). Both main effects were significant (version:
(F(2,22) = 1442, p < 0.05, n# = 0.41); target/distractor: (F(1,11) =
12,6, p < 0.05, 11z = 0.072) as was the interaction (F(2,22) = 5.33,
p < 0.05, 72 = 0.033)). Again, both version and the interaction failed
test for sphericity (version: W = 0.132, p < 0.05; interaction: W =
0.531, p < 0.05) but remained significant after correction (version:
GGe = 0.536, p < 0.05; interaction: GGe = 0.536, p < 0.05).

After Bonferroni correction (a = 0.05/3 = 0.0167), all but one of
the pairwise comparisons on the target data were significant, the com-
parison of response times in the word and pseudoword versions
(F(1,11) = 6.49, p = 0.027). Accuracy comparisons: Word versus
pseudoword (F(1,11) = 20.0, p < 0.0167, 12 = 0.374); word versus
random (F(1,11) = 20.12, p < 0.0167, jz = 0.475); pseudoword ver-
sus random (F(1,11) = 13.23, p <0.0167, 1% = 0.293). Response
time comparisons: Word versus random (F(1,11) = 19.5, p < 0.0167,
1% = 0.302), pseudoword versus random (F(1,11) = 13.0, p < 0.0167,
e = 0.202).

In the single character condition (right side of Fig. 7), there were no
significant response effects of target/distractor (F(1,11) = 0.413,
p = 0.53) version (F(2,22) = 1.59, p = 0.23) nor any significant inter-
action (F(2,22) = 1.15, p = 0.33). There was a significant effect of

version on response time (F(2,22) = 3.48, p = 0.33) but neither tar-
get/distractor (F(1,11) = 0.187, p = 0.67) nor the interaction was sig-
nificant (F(2,22) = 0.0731,p = 0.93).

Individual capacity coefficients are shown in Fig. 8 and z-scores for
individual and group data are shown in Table 3. Nearly all participants
are significantly better than the standard parallel model in the word
and pseudoword versions. In the random letter condition, half of the
participants did not have high enough accuracy to apply the capacity co-
efficient. The accuracy results for these participants indicate limited ca-
pacity because the pseudoword string condition had particularly low
accuracy at the group level while the letter level accuracy was not signif-
icantly different from the other letter conditions. In fact, all participants
except 10 and 11 had worse performance on the random letter strings
than would be predicted by independent identification of each letter.*
However, of those participants that had high enough accuracy, four
had significantly super-capacity performance at the a = 0.05 level.”

Due to the missing capacity values, we performed a series of paired
t-tests, in lieu of an ANOVA. With Bonferroni correction (a = .05/
3 = .0167), word capacity was significantly higher than nonword ca-
pacity (t(5) = 5.92, p < 0.0167) and pseudoword capacity was higher
than nonword capacity (t(5) = 5.92, p <0.0167), but word and
pseudoword capacity were not significantly different (t(10) = 0.773,
p = 0458).

4.3. Discussion

In Experiment 2, all of the single characters were letters, so the lack
of any significant effect of version on letter response time and accuracy
is not surprising. The random letter version differs from the other two in
that all of the characters are consonants, which may be processed
slower or less accurate than vowels (Appelman & Mayzner, 1981), but
there was no evidence of that difference here. Instead, the capacity dif-
ferences among the versions are due to the differences in response
times in the string conditions. Words and pseudowords were processed
faster than random letters and had higher capacity values, consistent
with Experiment 1 and the word and pseudoword effects. Also in keep-
ing with Experiment 1, words and pseudowords were super-capacity,
indicating superior performance of the letters in those contexts over let-
ter in isolation. Thus, even using masking and upper case letters and
minimizing the reliance on memory, there is still a clear indication of
the standard superiority effects.

One unexpected result was that the random letter sequences were
also super-capacity for many participants, despite being significantly
lower capacity than the word and pseudoword version. This may be
due to the extensive practice participants had with the target string.
Even consonant sequences can show superiority effects if they are
highly familiar (Laszlo & Federmeier, 2007). Alternatively, the generally
lower accuracy in random version may explain the super-capacity, as
the traditional capacity coefficient assumes high accuracy (this is why
a half of the participants have NA listed in the Random column of
Table 3: their accuracy was too low). Hence, participants may have
weighed the relative importance of speed and accuracy differently in
each version, despite receiving the same instructions for each.

4 This was measured using an accuracy analog to the capacity coefficient: To be correct on
the string, one must correctly identify each character. Independent (and unlimited capacity)
processing would lead to P {Corrects} x P {Correct.,} x P{Correct.3} x P {Correcte} where S
is the string and c; is the ith character.

5 An alternative, parametric approach for measuring capacity is given in Eidels, Donkin,
Brown, and Heathcote (2010) that accounts for both response time and accuracy differ-
ences. We attempted to fit their model for analyzing these data but there were too few
conditions across which we could constrain parameters, leading to unreliable parameter
estimates. Townsend and Altieri (2012) provide a generalized capacity coefficient ac-
counting for both accuracy and response time, although we chose not to include it here be-
cause it currently lacks methods for statistical hypothesis testing.
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Fig. 6. Trial structure for Experiment 2. Trials began with a fixation cross, followed by a blank screen. After a brief, random delay the probe appeared for 100 ms. A mask was presented
immediately following the probe. Instructions indicating the target and distractors were given before each trial.

5. General discussion

We demonstrated clear word and pseudoword superiority effects in
response times using the capacity coefficient. This includes a superiority
of letter perception in word and pseudoword contexts over letters alone
and over letters embedded in random consonant sequences. Further-
more, unlike the standard accuracy based effect, these superiority effects
are not dependent on the presence of a mask. By using response times, we
can also draw conclusions about the structure of the perceptual processes
that were not possible to determine based on the accuracy effect.
Foremost, we have clearly rejected an unlimited capacity, independent,
parallel processing (standard parallel) model of word and pseudoword
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perception; the models presented in Massaro (1973) and Pelli et al.
(2003) are not consistent with the results reported herein.

To further explore the implications of the capacity coefficient results,
we examine each of the multiple plausible explanations for those results.
When the Houpt and Townsend (2012) z-test is significant, then at least
one of the assumptions of the standard parallel model must have been vi-
olated. Note that each of these violations has been considered previously
for explanations of the accuracy based superiority effects.

One assumption that may have been violated is that of indepen-
dence. If there is any type of facilitation between the letter processes,
each letter would be processed faster within a word or pseudoword
context which would explain the capacity coefficient values above one.
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Fig. 7. Response times and accuracy from Experiment 2. Error bars indicate the standard error of the mean. The top two graphs show mean response times; the bottom two show accuracy.
The left graphs are data from the string tasks; the right graphs are from the corresponding single character tasks. To highlight variation across task version, the character response times are
shown on a smaller scale than the string response times. Both accuracy plots are on the same scale.
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Fig. 8. Capacity coefficients for words, pseudowords, and random letters in Experiment 2.
Gray lines indicate individual participants' capacity coefficients and the thick line indicates
the average function across participants. The capacity coefficients for each participant are
only plotted in regions where reasonable estimates are possible based on individual
response time distributions.

There could be many explanations of this facilitation. For example, word
processing mechanisms may in fact take advantage of the considerable
amount of co-occurrence between letters in English. As is often observed,
there are only a fraction of possible four letter combinations used for
words and it would be surprising if we did not take some advantage of
this reduction in uncertainty. This correlation between letters is an im-
portant part of how connectionist models explain the word superiority
effect (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; McClelland &
Rumelhart, 1981; Plaut, McClelland, Seidenberg, & Patterson, 1996).
When the characters are less familiar, such as upside-down letters or Ka-
takana characters, then their confusability may lead to inhibition among
the perceptual processes and thus limited capacity.

A related component of many visual word processing models is the
phonological pathway (e.g., Coltheart et al., 2001). If a phoneme is acti-
vated as a possible interpretation of some letter combination, then it
may in turn send positive feedback to those letters, speeding up their
processing. Hence, a phonological component of visual word processing
could also lead to capacity coefficient values above one. Both the
correlation between letters and the lack of a regular pronunciation of
the nonwords imply that these predictions are consistent with lack of
evidence against the standard parallel model of nonword processing.
The phonological explanation is also supported by the evidence of a
pseudoword superiority effect.

Another assumption of the standard parallel model is that the letters
are processed in parallel, with a separate detection of each letter. An
alternative architecture that does predict capacity coefficient values
above one is the coactive architecture (Colonius & Townsend, 1997;
Houpt & Townsend, 2012; Townsend & Nozawa, 1995; Townsend &
Wenger, 2004) which pools information from multiple parallel sources
for single decision. By pooling activation from each of the letters when
processing a word, the word is processed much faster than if each letter
is processed separately. A coactive architecture in this sense can be
thought of as an extreme version of a facilitatory parallel model, in
which all activation in each of the letters is shared (Eidels, Houpt, Pei,
Altieri, & Townsend, 2011). Many connectionist models of visual word
perception assume a type of coactive architecture. In these models the
activation accumulated in favor of a letter is immediately passed on to
the word level. In this framework the type of parallel model assumed
in the standard parallel would not pass on any activation until the
letter process is complete. Similarly, a holistic model of word perception
(e.g., Drewnowski & Healy, 1977) has a coactive form: information
pooled for a single identification. There is some middle ground between
these two extremes. One example is that of squelching suggested by
Pelli et al. (2003). In this case, the activation from the letter process
would only be passed on once it is above a certain threshold.

The particularly low capacity for the upside-down and Katakana ver-
sions could be due to serial processing of the individual characters. With
unfamiliar characters, participants may be forced to check each position
in the string, one at a time. All else being equal, serial processing is much
less efficient than parallel processing, so it leads to limited capacity. It
is important to note that the word and pseudoword results are not

necessarily inconsistent with serial processing, but for a serial model
to predict capacity-values above one it would need to include large
amounts of facilitation and/or require faster processing of individual
characters as the number of characters increases (cf. Whitney, 2001).

A coactive architecture could also lead to violations of the assump-
tion of unlimited capacity, so that seemingly more resources are avail-
able to each component when more components are present. Capacity
values above one imply that the participant dedicated more than four
times the resources in the word task compared to the letter task: Each
individual letter process in the word has at least the resources available
that were available when that letter was presented in isolation. In this
sense the advantage is similar to chunking; when groups of letters are
recognized as a single unit, the resources that would have been divided
across two individual letter units can be dedicated to a single chunked
unit. Participants probably do not have truly unlimited resources to ded-
icate to the task, there is no doubt an upper limit on the number of let-
ters a person can perceive at once, but having enough resources
available to act super-capacity with four letters is not so unreasonable.

In addition to the group level findings, there intriguing individual
differences indicted in these data, particularly in word and pseudoword
processing capacity. This finding mirrors results reported in accuracy
based studies (e.g., Reicher, 1969) and it will be an interesting extension
of this work to compare the capacity measure to established measures
of individual differences in reading. In fact, research is currently under-
way using the capacity coefficient to study dyslexia (Sussman, Houpt,
Townsend, & Newman, 2011).

Another important finding in this paper is that the word superiority
effect, as measured by the capacity coefficient, is not eliminated in the ab-
sence of a post-stimulus mask. This raises the question as to why the ac-
curacy based word superiority effect is less robust. One possibility, raised
in the introduction, is that words may be fully processed, even if the task
only requires a decision on a part. Thus, the accuracy advantages of a
word context might be mitigated by the fact that more is processed in a
word context than in a nonword context. This is a special case of the
more general issue that response time is more sensitive to certain aspects
of perception, such as distinguishing exhaustive and self-terminating
strategies and distinguishing coactive and parallel processing, than accu-
racy (cf, Townsend & Ashby, 1983; Townsend & Nozawa, 1995). In future
research, it will be important to determine if capacity coefficient measure
of word superiority is robust against other manipulations that may dis-
rupt the accuracy based effect, such as attentional allocation and fixation
location (e.g,, Johnston & McClelland, 1974; Purcell, Stanovich, & Spector,
1978) or the size of the word (Purcell et al., 1978).

We can also examine these results in the context of other configural
superiority effects measured by the capacity coefficient. For example,
Eidels, Townsend, and Pomerantz (2008) demonstrated super-capacity

Table 3

Workload capacity statistics for each participant in each version of the task in Experiment
2. Capacity coefficients for participants with lower than 80% accuracy on any of the single
character conditions or the string condition in a particular version were not calculated.
Under the null hypothesis the limit distribution of the statistic has a standard normal
distribution. Significance levels of z-tests are indicated by: s p < 0.001, . p <001,
and *: p < 0.05.

Word Pseudoword Random
1 601" 4447 NA
2 9.64™** 260" —0.07"*
5 431" 703" NA
6 135" 906" 0.79
7 523" 72 NA
3 966" 11.0"* 196"
9 17.7°%* 15.3™%* 576"
10 145" 113" 3.95"**
11 10.8™* NA
12 —131™* —2.66™* NA
Group 305" 59" 728"
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performance when participants could distinguish targets based on global
topological properties of the stimulus. In contrast, they found limited or
unlimited capacity when the stimuli were made of the same parts as
the super-capacity task, but the parts were organized in such a way that
the targets were not distinguishable based on their topology. If the
same perceptual mechanisms underly the super-capacity in the Eidels
et al. (2008) and the current study, this would suggest that the super-
capacity performance is driven by global shape of the word, including
both the outline as well as the shapes defined by neighboring letters.
Without additional assumptions, the global shape explanation would
imply super-capacity performance even in the nonwords. It may be that
through many years of experience we are specially attuned to the differ-
ences between shapes generated by words but not so well attuned for
nonword sequences. The shape as the lone explanation of the superiority
effect may be a bit of a stretch, but global shape may still play a role in
word perception, particularly if there is some sort of unitized representa-
tion of the words that is used for recognition (cf,, Healy, 1994).

Whether or not learning specific global shapes contributes to
word superiority, it is likely that perceptual learning is an important
part of many configural superiority effects. Blaha (2010) examined
the effects of perceptual learning on the capacity coefficient. Using
stimuli that Goldstone (2000) had demonstrated could lead to per-
ceptual unitization, Blaha measured the capacity coefficient for tar-
gets over the course of multiple days of learning. When the stimuli
were novel, participants were extremely limited capacity. Over the
course of about a week of training (relatively few trials compared
to the number of times we see common words), most participants
reached high levels of super-capacity. The parts used in those stimuli
were randomly generated “squiggly” lines, for which, like letters,
there is no reason to believe people have any innate ability to form
unitized representations. Given that Blaha used the same task struc-
ture (with squiggly lines in place of letters) and found similar levels
of super-capacity at the end of training, we believe that perceptual
learning plays an important part in the capacity coefficient word su-
periority effect. In future work, we hope to explore this connection
by using the capacity coefficient to measure word superiority at dif-
ferent stages of the development of reading ability.

Finally, we reiterate the importance of going beyond the simple
ANOVA analysis of these data. Merely finding an ordering of the means
in the string conditions says nothing about the relative processing effi-
ciencies. For example, faster word processing than nonword processing
could be due to the letters in “care” being relatively faster to process
than the letters “rlkf’. Workload capacity analysis, however, takes the
processing of the components into account in estimating efficiency.

5.1. Summary

We have demonstrated response time based evidence for visual
word perception as a particularly efficient process using the capacity co-
efficient. This includes evidence that words are more efficiently per-
ceived than predicted by the individual letter reading times, and
evidence from comparing word perception efficiency to nonword stim-
uli. Based on the workload capacity analysis, there is also evidence for a
pseudoword superiority effect in the response time domain although
not as strong as for word superiority. The evidence we present negates
models of word processing that assume parallel, independent process-
ing of letters with separate decision thresholds on each channel. This
deeper level of understanding of visual word perception required a
shift from statistics based on comparing means toward a more theoret-
ically rich, modeling-based approach.

Appendix A. Derivation of standard parallel capacity
The mathematical formulation of this construct can be derived as

follows. Suppose, as in our tasks, the participant can only respond
when they have identified all of the letters (c;) in the word (S). Then

the probability that she has responded to the word is the probability
that she has already identified each of the letters,

P{RTs<t} = P{RTC] <t,RT, <t,RT, <t,RT,, sr}. (A1)

If we assume that the letters are perceived independently and in
parallel, then Eq. (A. 1) can be simplified to,

P{RTs<t} = P{RTCI st}P{RT : st}P{RTC3 sr}P{RTQ sr}. (A2)

The capacity function for an exhaustive task is defined using the
cumulative reverse hazard function, K(t) = 1 nF(t);F(t) = P{RT < t},
and is similar to the cumulative hazard function used in survival analy-
sis (cf. Chechile, 2011). If K, is the cumulative reverse hazard for the
first character response times, K, is the cumulative reverse hazard for
the second character, etc., and K; is the cumulative reverse hazard for
the string condition, the capacity coefficient is given as,

(A3)

By taking the logarithm of both sides of Eq. (A. 2), we see that the
baseline model predicts capacity to be equal to 1,

log[P{RT <t}] =
log|P{RT,, <t }P{RT,, <t |P{RT,, <t |P{RT,, <t}]

log[P{RT <t}] = ilog {P{RTQ sr}]
i=1

4
Ks=>K;
i=1

) =1.

To measure a participant's performance against the baseline model,
performance must be measured when each of the single characters are
presented in isolation and when all characters are used together.
Response times from each of the single character conditions are used
to estimate the cumulative reverse hazard for each term in the sum in
the numerator of Eq. (A. 3). The times to respond to all of the characters
together are used to estimate the cumulative reverse hazard function in
the denominator.

Following Houpt and Townsend (2012), we use the Nelson-Aalen
type estimator for the cumulative reverse hazard function. We use
G(t) for the number of responses that have occurred in a given condition
up to and including time t and Tj to indicate the jth response time in the
ordered list of all of the correct response times for that condition. Using
that notation, the estimate is,

Appendix B. Word and pseudoword details

Word  Kucera & Francis  Pseudoword  Neighborhood = Summed frequency
frequency size of neighbors

CARE 162 LERB 2 12

BARE 29 NERB 2 12

CURE 28 LARB 5 27

CAVE 9 LEMB 2 26

CARD 26 LERF 2 15
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