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Abstract 
Miller’s (1956) review of a series of absolute identification 
(AI) experiments, as well as a multitude of subsequent 
absolute identification research, suggests a fundamental limit 
to human information processing capacity. This limit is 
thought to be highly resistant to practice, independent of 
stimulus modality, and has been universally accepted as a 
fundamental constraint on human information processing 
capacity. Generally it is expected that people improve their 
performance slightly in absolute identification tasks, but 
quickly reach an asymptote after which they fail to improve 
any more. Recently however, we have replicated an 
experiment that demonstrates significant improvement in AI 
performance with only moderate practice. We conclude that 
there are several factors that are essential to the ability to learn 
unidimensional AI stimuli. Motivation is essential for 
improvement in performance, as is an initial performance 
level that greatly exceeds what would be expected by chance 
– this also constrains the type of stimuli that can be learned. 
In addition, in contrast to Miller’s conclusion that the 
asymptote in performance is independent of set size, we 
suggest that indeed set size does affect the asymptote in 
performance, namely that a larger set size (around n=30), 
allows a higher asymptote in performance.  
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In a typical AI task, stimuli vary on just one dimension, 

for example, line length or tone intensity. These stimuli 
(called unidimensional stimuli) are first presented to the 
participant labelled with a unique marker. The smallest is 
labelled # 1, the next # 2, and so on. In the test phase, the 
participant is presented with one item at a time, and asked to 
label it with its unique referent. An incorrect response is 
followed by the display of the correct stimulus label. Using 
this seemingly simple task, researchers have examined the 
capacity of human information processing by calculating the 
amount of information transferred from stimuli to responses, 
where an increase in information transfer is analogous to an 
increase in memory for stimulus items. Information transfer 
is measured in units of bits, taken from information theory 

(Attneave, 1959).  
AI tasks provide a test of recognition for a set of 

unidimensional stimuli. Given the apparent simplicity of the 
task and the generally unlimited capacity of long term 
memory for stimuli such as faces, one would expect that a 
participant in an AI task would be able to reach perfect 
performance (in the least, if given enough practice). 
Unidimensional stimuli however, are an exception to the 
usually unlimited capacity of long term memory. 
Performance in tasks using unidimensional stimuli is 
generally very poor, and fifty years of research have 
consistently shown that even extensive practice does not 
significantly increase this limit in memory (Garner, 1953; 
Weber, Green & Luce, 1977; Shiffrin & Nosofsky, 1994).  

This limitation in performance has become a truism of AI 
research: people cannot learn to improve their performance. 
Even significant practice has little effect on performance in 
AI tasks. For example, Pollack (1952) used absolute 
identification of tones varying in pitch, and found that after 
several days of practice, information transfer remained at 
only 2.3 bits, equivalent to perfect identification of only 
approximately 5 tones. In a similar experiment, Hartman 
(1954) found that during an eight week testing period, 
performance increased very slowly and never approached 
perfect levels. Garner (1953) concentrated on absolute 
identification of tones varying in loudness rather than pitch, 
and found even when using 12,000 trials, information 
transmission was still low (1.62 bits).  Similar to Garner and 
Weber, Green and Luce (1977), also used 12,000 trials, and 
compared the performance on the initial and last 2,000 trials 
to calculate change in accuracy.  Even with monetary 
incentives and significant practice, performance was only 
shown to improve 8.5%. Weber et al. only used six stimuli, 
which is fewer than the generally accepted short-term 
memory limit of 7±2. Even so, practice failed to 
significantly improve performance, and no ceiling effects 
were found.  

More recently, Rouder, Morey, Cowan and Pfaltz (2004) 
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demonstrated that learning is possible in a unidimensional 
AI task. Rouder et al. used an experiment with 30 lines 
varying in length, and found that accuracy improved 
significantly with only moderate practice. In stark contrast 
to Garner (1952) and Weber et al.'s (1977) large number of 
trials, Rouder et al.'s (2004) participants had, at most, only 
15 hours of practice over a period of 10 days, or a maximum 
of only 7,200 trials. Two participants (including two authors 
of the research) performed three absolute identification 
experiments of different set sizes (13, 20 and 30 lines of 
increasing length), with an additional naïve participant in 
the third experiment only. Rouder et al. showed that not 
only were participants able to improve with practice, but 
performance showed no indication of reaching an 
asymptote. One participant even reached near-perfect 
performance within only five sessions in the 13 stimuli set, 
and within four sessions in the 20 stimuli set. Participants in 
the 30 line stimulus set also showed significant 
improvement over time: the average probability of correct 
responses increased by .28 over six sessions.  

These results suggest that, contrary to previous literature, 
practice in Rouder et al.’s (2004) unidimensional AI task 
resulted in improved performance. It remains unclear which 
of the atypical features of Rouder et al.’s design were 
responsible for these results. AI tasks typically employ tones 
varying in intensity (e.g. Garner, 1953) or pitch (e.g. 
Hartman, 1954; Pollack, 1952) as stimuli, however Rouder 
et al. used lines of varying length. While some have used 
lines as stimuli (e.g. Lacouture, 1997; Baird, Romer and 
Stein, 1970), the use of tones is more standard. Rouder et al. 
also gave participants two response attempts for each trial. 
Traditional AI tasks give feedback after each trial, where 
participants are only given one response attempt. If this 
response is incorrect, the correct answer is displayed. In 
Rouder et al.’s experiment, however, if the first response 
was incorrect, the participant was given another response 
opportunity. If the second response was incorrect, the 
correct answer was displayed.  

In order to begin the investigation into Rouder et al.’s 
atypical findings, we first replicated their third experiment 
to determine whether results are reproducible with naïve 
participants. Further to this, we investigated whether the 
feedback technique or stimulus modality influences any 
learning effect found. 

Experiment 1: Lines Varying In Length 

Participants 
Twelve participants took part in Experiment 1, with six 

participants in each condition. Participants were reimbursed 
for their time and effort at $15 per session. 

Stimuli 
In both conditions, we used 30 lines of increasing length 

shown on a 21-inch CRT monitor, using 1152x864 
resolution. See Table 1 for line lengths in pixels. Lines were 

displayed with 22x22 pixel jitter, to avoid the use of any 
visual cues.  

Procedure 
Each participant was first shown the stimuli in ascending 

order, labelled with a number from 1 through to 30. The 
text, “This is line number n”, was also displayed, and the 
participant was required to select the correct response to 
continue. Responses were made using a mouse and 30 
buttons on the left hand side of the screen. The buttons were 
arranged in 3 columns of 10 buttons, with labels from 1 to 
30 filled by row.  

Participants completed ten sessions over ten, mostly 
consecutive, days. In the first three sessions, participants 
completed six blocks of 90 trials. On the following seven 
sessions, participants completed seven blocks of 90 trials, 
resulting in 201 presentations per stimulus.  

The two conditions in Experiment 1 differed in their 
feedback technique. Experiment 1a used a feedback 
technique similar to Rouder et al. (2004), where participants 
were given two opportunities to respond. If the first 
response was incorrect, the participant was given another 
response opportunity. If the second response was again 
incorrect, the correct response was displayed. Experiment 
1b used a more traditional feedback technique, where 
participants were only allowed one response opportunity. If 
the first response was incorrect, the correct response was 
displayed. In all cases where the response was correct, a 
pleasant 500ms tone was played.  

 
Table 1: Line lengths used In Experiment 1 

 
Length of lines in Experiment 1 in Pixels 

9 12 14 17 20 23 27 31 36 41 
47 53 60 67 76 84 94 104 115 127 
140 153 168 183 199 217 235 255 276 298 

Analysis 
Performance was measured in two ways: using accuracy 

and information transfer measures. In order to avoid over-
estimation of performance, information transfer was 
analysed in ‘runs’, or pairs of sessions. For ease of 
comparison, we also report accuracy in the same ‘runs’.  

Results were analysed using the lme4 package (Bates, 
2005) available for the statistical program, R. Maximum 
likelihood linear mixed effect binomial-probit regressions 
were estimated for accuracy data. Linear mixed effect 
models with random subject intercepts were also used for 
analysis of information data, assuming constant variance 
Gaussian error and restricted maximum likelihood 
estimation. Bayesian Markov Chain Monte Carlo Methods 
(see Baayen, Davidson & Bates, in press) were used to 
perform inference. 

Results 
Participants in Experiment 1a (two response condition), 

improved their accuracy by 22% and information transfer by 
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.84 bits over the length of the experiment.  Participants in 
Experiment 1b increased their performance in a similar 
manner, where accuracy improved 19% and information 
transfer increased .76 bits (See Figure 1).  

Polynomial contrasts were conducted on runs, accounting 
for differences in the number of trials in each. Reliable 
linear and quadratic effects were revealed for information 
transfer (p<.001 and p=.007) and probit accuracy (both 
p<.001) suggesting improvement across sessions. No 
reliable difference was found between average performance 
on the two response and one response conditions for either 
probit-accuracy (p=.86) or information transfer (p=.51). A 
significant interaction with the linear contrast for probit-
accuracy however, showed that participants in the one 
response condition improved at a slower rate compared to 
participants in the two response condition (by 14%, p= 
002). The same effect was not evident for information 
transfer (p=.30), but this could be a result of the power of 
information analysis.  

 

 
A)   B) 

Figure 1. Population average estimates from linear mixed 
models for Experiment 1. A) Improvement in accuracy 
across five runs (where each run is equivalent to two 

sessions). B) Improvement in information transfer across the 
5 runs. 

 
The rate of improvement of information transfer was 9% 

slower in the one response condition, compared to the two 
response condition. This is equivalent to an increase across 
runs of .156 and .172 bits per 1000 trials respectively. When 
accounting for the increase in number of responses made to 
stimuli in the two response condition however, almost 
identical learning rates were found (an increase of .151 bits 
per 1000 for the two response condition, 3% smaller 
compared to the one response condition), suggesting that the 
increase is largely the result of an increase in the responses 
made for the two response condition.  

Discussion 
Experiments 1a and 1b confirmed the findings of Rouder 

et al. (2004), that learning is possible in a unidimensional AI 
task. Furthermore, we have confirmed that Rouder et al.’s 
results were not simply the product of exceptional 
participants. Experiments 1a and 1b demonstrate that the 
two response feedback system was not responsible for the 
learning effect, as when results are analysed based on 

responses, as opposed to trials, there is little difference in 
the rate of learning between the two.  

Experiment 2: Removing External Cues 
While the results of Experiment 1 suggest that learning is 

possible in AI if given sufficient opportunity to practice, it is 
possible that participants were using external cues to base 
their judgments of line length. For example, participants 
may judge line lengths relative to the edges of the computer 
monitor or some other physical cue. Such judgements were 
presumably less available in traditional experiments using 
auditory stimuli, which may explain the discrepancy 
between our experiment (and Rouder et al.’s 2004) and the 
traditional absence of learning observed in AI tasks. In 
Experiment 2, we remove these external cues by conducting 
the experiment in a dark room, as well as covering the edges 
of the monitor, masking the stimuli, and removing the 
response buttons when the stimulus is in view. It is believed 
that hiding the edges of the monitor and the response 
buttons would remove the potential of using these as relative 
size cues. In addition, the stimuli masks meant that no visual 
after image could be left on the screen that would allow 
participants to make comparative judgments. 

Participants 
Six participants took part in this experiment, and were 

reimbursed in a similar fashion to the participants in 
Experiment 1.  

Stimuli 
30 pairs of dots varying in separation were used in 

Experiment 2. Each set consisted of two dots, spaced apart 
at increasing intervals. Dots were used instead of lines with 
the intention of removing any effect of luminance. The 
separation of these dots was equivalent to the length of the 
lines used in Experiment 1 (see Table 1). Dots were white 
on a black background. The room was dark except for the 
illumination due to the computer monitor. 

Procedure 
Participants engaged in an AI task similar to that of 

Experiment 1, with the exception that participants in this 
experiment took part in the task in a dark room, where the 
only light provided was that which was given by the 
computer monitor In order to reduce the light given by the 
monitor, the background of the experiment was black, and 
the stimuli and other associated items were white. A cue (+) 
was shown before the presentation of a stimulus. A mouse 
click on the cue began the next trial. Stimuli were displayed 
on the black background for 1000ms, after which the 
response buttons appeared on the left hand side of the 
screen, and a mask of about 75 randomly scattered white 
dots covered the stimulus. Participants took part in six 
blocks per session, resulting in the presentation of each 
stimulus 180 times. 

2910



Results 
Participants in Experiment 2 increased their accuracy by 

15% and information transmission by .55 bits across the 5 
runs (See Figure 2).  

There was no reliable difference in either accuracy 
(p=.66), or information transfer (p=.39), between 
Experiment 1a (30 lines with two response opportunities) 
and 2. There was a reliable interaction however, between 
Experiments 1a and 2 and the linear run contrast (p<.001), 
due to a decrease in the rate of learning. Participants in 
Experiment 2 learnt at a slower rate compared to 
participants in Experiment 1a (slower by 38% and 32% for 
bits and accuracy respectively).  

Linear regression analyses conducted on information and 
probit accuracy separately for each individual’s data, 
produced slopes that were reliably greater than zero, 
showing that all individuals improved their performance 
across the sessions. The rate of increase in information 
transmission for each individual ranged from .08 to .17 bits 
per 1000 trials, suggesting a slower learning effect 
compared to Experiment 1a.  As with Experiments 1a and 
1b, there was still no evidence of participants reaching an 
asymptote in their performance levels during practice. 

Discussion 
While the removal of cues appeared to slightly slow the 

learning effect, the effect observed was still much larger 
than found in previous research (e.g. Weber, Green & Luce, 
1977). The rate of learning was slower for Experiment 2, 
but a substantial learning effect was still evident, suggesting 
that visual cues alone cannot account for the learning effect. 

 

 
 A)   B) 

Figure 2. Population average estimates from linear mixed 
models for Experiment 2 and Experiment 1a. A) 

Improvement in accuracy across five runs B) Improvement 
in information transfer across the 5 runs. 

Summary of Results 
The level of performance in our absolute identification 

tasks varied slightly, however all experiments showed 
evidence of significant learning. This is contrary to a vast 
amount of previous research that has shown little 
improvement in performance, even when given significant 
practice (e.g. Garner, 1953; Weber, Green & Luce, 1977). 
Weber, Green and Luce (1977) for example, used 12,000 

trials and showed very little improvement in performance. 
In contrast, we used on average only 5820 trials and found 
evidence for significant improvement in performance for 
both lines varying in length and dots varying in separation.  

A comparison with data from Dodds, Donkin, Brown and 
Heathcote (2008) also allow some insight into the role of set 
size on learning in AI. Dodds et al. (2008) describe an 
experiment using two conditions, where participants 
practiced with either 16 tones varying in intensity or 16 
lines varying in length. They observed improvement with 
practice in both cases, but, unlike the current research, also 
demonstrated evidence of an asymptote well before the end 
of practice. In conjunction with the current research that 
uses larger set sizes, these results suggest that a large set 
size is important for supporting practice effects in AI, as 
while those in the 16 stimuli condition demonstrated 
improvement, they did not continue to improve across 
practice, and instead showed performance similar to that of 
which has been previously reported (e.g. Pollack,1952) This 
may be another reason why traditional experiments have not 
found learning effects. 

Dodds et al. (2008) also found faster learning rates and 
greater asymptotic performance levels for participants who 
practiced with 16 lines of different length than those who 
practiced with 16 tones of different loudness. This suggests 
that stimulus modality or perhaps pairwise discriminability 
(the ability to distinguish between adjacent stimuli in the 
set), affects learning. A comparison between the 
performance of those in the 16 lines condition from Dodds 
et al. and those in the 30 line condition in the current 
experiment however, show that those in the 16 lines 
condition improved at a faster rate compared to those in the 
30 lines condition.  This suggests that while set size may 
affect the limitation in performance, it cannot be the only 
factor influencing the learning rate. 

While all efforts were made to encourage consistency 
between experiments, during the course of the research, it 
was clear that motivation severely fluctuated between 
participants. It is therefore possible that motivation may 
constitute the high variability between subjects, and be 
responsible for the lower rate of learning found with smaller 
set sizes. Despite this seemingly plausible explanation 
however, the popular anecdote from Shiffrin and Nosofsky 
(1994) shows us that even the most highly dedicated 
participant may still have trouble in increasing their 
performance in a unidimensional AI task.  Nosofsky, 
himself a dedicated AI researcher, locked himself in a 
soundproof booth for days, and yet still failed to achieve 
perfect, or even considerably improved, performance when 
practicing with tones.  

Discussion 
Our experiments suggest that thereare differences in the 

ability to learn unidimensional stimuli that could be due to 
modality (lines vs. tones) and individual motivation. In 
addition, when considering results from Dodds, Donkin, 
Brown and Heathcote (2008), a large set size also appears 
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essential for participants to demonstrate learning of these 
unidimensional stimuli. Here, we propose an integrative 
hypothesis that draws these effects together, and reconciles 
our findings with previous research. 

Figure 3 demonstrates the relationship between initial 
performance and overall improvement. Higher initial 
performance is associated with greater improvement in 
information transfer (r(16)= 0.57, p=0.013) across all 
experiments. This pattern also appears in Rouder et al.’s 
(2004) Experiment 3, where participants demonstrated 
significant learning with 30 lines of varying length when 
given moderate practice. Rouder et al. noted that learning 
varied as a function of initial accuracy (p. 939). They 
suggested that this was evident in Experiment 3 where all 
three participant’s started with moderate accuracy 
(mean=.42) and increased to .70.  

This correlation is even more surprising given that the 
naïve expectation would be for the opposite (a negative 
correlation), since those participants who begin with greater 
accuracy presumably have less headroom for improvement. 
This striking relationship thus forms a simple working 
hypothesis – that learning in AI will occur whenever a 
participant with a high initial performance level practices 
with a sufficiently large stimulus set. This hypothesis 
naturally explains the difference between stimulus 
modalities, such as Nosofsky’s famous null finding. 
Learning cannot occur for tones of varying loudness 
because the perceptual variability observed for this 
dimension is such that a sufficiently large number of stimuli 
cannot be generated that are perfectly pairwise 
discriminable (without having tones that are both 
uncomfortably loud and impossibly quiet). Similarly, our 
hypothesis explains why early experiments using just a few 
stimuli (such as Weber et al.’s, 1977) did not observe 
learning – large set sizes are required. Explicit experimental 
tests of this theory are possible, and underway in our 
laboratory. For example, one could conduct an AI 
experiment similar to those above, and manipulate the 
spacing between stimuli. Using lines varying in length, one 
could manipulate the distance between stimuli between 
subjects, where one group practices with lines that are 
spaced more closely together than used in the current 
research, and another with lines that are spaced further 
apart.  Our hypothesis would predict that more closely 
spaced stimuli would lead to poor pairwise discriminability 
and hence poor initial performance. This would lead to a 
failure to demonstrate learning.  

The mechanism underlying our hypothesis however, is 
uncertain. Perhaps early positive reinforcement of stimuli 
and response allows greater consolidation of the information 
they acquire. Therefore while motivation cannot be the sole 
explanation of the differences in learning between 
experiments, perhaps greater motivation could lead to 
higher initial accuracy, simply by being more engaged and 
determined in the task early in the task, and hence allow 
greater improvement overall through early consolidation of 
information. 

 

 
Figure 3. The relationship between initial performance 

and improvement in performance. Data shown is from each 
individual from all experiments. First Session data is from 
the first 540 trials. Improvement is the difference between 
the initial performance and final information transfer value 

(calculated based on last full 540 trials completed). 

General Discussion 
It appears that learning is possible in unidimensional AI 

tasks, and it is not the result of exceptional participants, or 
an abnormal feedback technique. These results are in stark 
contrast to a large amount of previous research that has 
suggested we are not able to improve our performance. 

We suggest that while learning is possible in 
unidimensional absolute identification tasks, it is dependent 
on several factors. Participants must be given adequate 
opportunity to practice (taking into account the number of 
presentations of each stimuli, and not only the number of 
trials), and they must have moderate/high initial 
performance levels. The likelihood of initial accuracy being 
high may be enhanced if participants are sufficiently 
motivated. In addition, participants also need a large set 
size, and stimuli must be pairwise discriminable. Therefore 
it appears that learning is possible in unidimensional AI, but 
only under certain circumstances.  
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