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Abstract 

At the core of every decision-making task are two 
simple features; outcome values and probabilities. Over 
the past few decades, many models have developed 
from von Neumann’ and Morgenstern’s (1945) 
Expected Utility Theory to provide a thorough account 
of people’s subjective value and probability weighting 
functions. In particular, one such model that has been 
largely successful in both Psychology and Economics is 
Cumulative Prospect Theory (CPT; Tversky & 
Kahneman, 1992). While these models do fit people’s 
choice behavior well, few models have attempted to 
provide a psychological account for subjective value, 
probability weighting, and resulting choice behavior. In 
this paper, we focus on a memory confusion process as 
described in Hawkins et al.’s (2014) exemplar-based 
model for decisions from experience, the Exemplar 
Confusion (ExCon) model, and adapt it to account for 
biased probability estimates in decisions from 
description. Using Bayesian model selection 
techniques, we demonstrate that it is able to account for 
real choice data from a Rieskamp (2008) study using 
gains, losses, and mixed description-based gambles, 
and performs at least as well as CPT. 
Keywords: Decisions from Description; Exemplar 
Model; Probability Estimation; Cumulative Prospect 
Theory; Bayesian Model Selection 

Introduction 
In a standard ‘Decision from description’ task, participants 
are asked to choose between two gambles, A and B. For 
example, gamble A may involve winning $4 with 
probability of 0.80, or receiving nothing otherwise. Gamble 
B may involve winning $3 with certainty. Expected utility 
theory (von Neumann & Morgenstern, 1947) suggests that a 
decision-maker combines probabilities of outcomes with 
subjective values to formulate a decision over which gamble 
they prefer, according to a set of axioms.  In this scenario, 
an expected utility maximizer with a linear utility function 
would prefer gamble A, since  

𝑈 𝑊 =   𝑐𝑊 
𝑈! = 0.8×𝑐×4 + 0.2×𝑐×0 = 3.2𝑐  and  𝑈! = 3𝑐   

𝑈! > 𝑈! 
where W is the value of the outcome and c is a constant. 
However, violations of the axioms underlying this process 

have been observed, and thus the notion of a subjective non-
linear weighting of probabilities was introduced by Savage 
(1954) and eventually incorporated into Kahneman and 
Tversky’s (1979) well-known Prospect Theory.   

One caveat of these mathematical, expected-utility 
models is that they are merely descriptive formulations of 

decision-making, and largely neglect the underlying 
cognitive processes and reasons for the phenomena (e.g. 
why people exhibit diminishing sensitivity to increases in 
value). While it may be argued that people do deliberately 
participate in complex mathematical processing when 
making a decision, several studies in which information 
search is tracked have shown that this is not the likely case 
even for people of higher cognitive ability (Payne & 
Braunstein, 1978; Cokely & Kelley, 2009; Glöckner & 
Herbold, 2011).  

Apart from these more descriptive and mathematical 
models, there are some models that attempt to provide an 
explanatory, psychological account of decision-making. For 
example, the Priority Heuristic (Brandstätter, Gigerenzer, & 
Hertwig, 2006) provides a search-and-stop account of the 
way in which people evaluate aspects of a gamble, and the 
Primed Sampler Model (Erev, Glozman, & Hertwig, 2008) 
proposes that the mere presentation of outcomes and context 
impacts mental representations of gamble outcomes and 
probabilities. However, these psychological accounts remain 
few in number as the traditional focus of decision-making 
studies has been to develop models which fit more and more 
data, resulting in models such as Cumulative Prospect 
Theory (CPT; Tversky & Kahneman, 1992) and, on an 
extreme end, the Ensemble model (Erev et al., 2010) that 
tend to have many free parameters and potentially over-fit 
the data.  

A secondary limitation of these mathematical theories lies 
in the fact that they are unable to account for decisions from 
experience, where participants sequentially sample 
outcomes from an unknown distribution to form an estimate 
of the outcome probabilities in a gamble. This is due to two 
main reasons. Firstly, the mathematical models developed in 
the description paradigm tend to utilize the explicit 
knowledge of the probabilities and outcomes in the gamble, 
which are not explicitly provided in the experience 
paradigm. Secondly, the rigidity of the formulae prohibit 
them from accounting for the inverse probability weighting 
function observed in decisions from experience (i.e., where 
people underweight instead of overweight small 
probabilities), without adding additional parameters and 
running the risk of over-fitting data.  

Thus, instead of extending a mathematical model of 
decisions from description to account for decisions from 
experience, we aim to do the opposite with a process model. 
In this paper, we apply the underlying mechanism of how 
people form probability estimates of outcomes in an 
exemplar-based process model for decisions from 



experience – the Exemplar Confusion Model (ExCon; 
Hawkins et al., 2014) – to decisions from description. Our 
choice of model was largely based on convenience, and we 
view this work as something of a proof-of-concept.   

We show that the model can reproduce the complex 
pattern of over-estimation and under-estimation of 
probabilities in decisions from description and experience 
respectively. Finally, we use Bayesian model selection to 
show that ExCon performs well when compared to a widely 
accepted benchmark model in the description paradigm – 
CPT. We begin by defining the models more formally.  

Cumulative Prospect Theory 
In Cumulative Prospect Theory (Tversky & Kahneman, 
1992), people prefer the gamble with the highest weighted 
utility, U, which is calculated using subjective values and 
probabilities.  

𝑈 ∙ = 𝑣 𝑥 𝜋(𝑝) 

The value function in CPT, v(x), exhibits diminishing 
sensitivity to increases in absolute values in the gain and 
loss domain.  

𝑣 𝑥 = −𝜆(−𝑥)! ,      𝑥 < 0
𝑥! ,      𝑥 ≥ 0

 

The probability weighting function, π(p), is such that small 
probabilities are over-weighted and large probabilities are 
under-weighted.  

𝜋 𝑝 =

𝑝!

(𝑝! − (1 − 𝑝)!)
!
!
,      𝑥 < 0

𝑝!

(𝑝! − (1 − 𝑝)!)
!
!
,      𝑥 ≥ 0

 

Finally, the probability that gamble A is chosen over gamble 
B is a softmax transformation of the utilities of the two 
gambles 

𝑃 𝐴,𝐵 =
1

1 + 𝑒![! ! !! ! ] 

While CPT has generally been hailed to be a successful, 
benchmark theory in both psychology and economics 
(Abdellaoui, 2000; Erev et al., 2010; Camerer, 1998), it is 
not without problems. Aside from the afore-mentioned issue 
of being a largely descriptive rather than an explanatory 
model, more in-depth analysis of CPT parameters reveal 
that its parameter space is not well-constrained. In a 
parameter recovery study, Nilsson, Rieskamp, and 
Wagenmakers (2011) found that the effect of loss aversion 
could be created even without the loss aversion parameter 
(λ) by allowing the value function parameters (α and β) to 
take on different values. Similarly, Scheibehenne & Pachur 
(2014) found that the choice sensitivity parameter (θ) 
appeared to tradeoff with the value function parameter (α). 
With such potential trade-offs between parameter values, it 
is evident that the CPT cannot reliably provide 
psychological insight into decision-making behavior.  

Regardless, the flexibility of the parameter space does 
allow the CPT to fit data relatively well and it will serve the 
purpose of model comparison in this paper.  

Exemplar Confusion Model 
The Exemplar Confusion (ExCon) model developed by 
Hawkins et al. (2014) provides a process explanation for 
biased probability estimates in decisions from experience. In 
the ‘Decisions from experience’ paradigm, participants are 
not given a description of the outcomes and probabilities for 
gambles A and B, but rather must learn about them through 
experience. Participants are thus presented with outcomes 
from gambles, and must infer the probability of those 
outcomes. Finally, after a suitable number of samples from 
each gamble have been experienced, the participant chooses 
between gambles A and B.  

In the ExCon model for experience, people store a 
memory trace for each outcome they encounter. However, 
like other models of risky-choice (Erev, Glozman, & 
Hertwig, 2008), participants are assumed to have an 
imperfect memory. In ExCon, there is an assumed limit on 
the accuracy with which memory traces are stored. With 
probability, pI, the participant commits a confusion error, 
and fails to store the outcome that should be associated with 
the current sample, and instead stores something else.  

Other models have included process-based mechanisms 
to produce sub-optimal performance. For example, Bhatia’s 
(2014) added a distraction process to the evidence 
accumulation process of Decision Field Theory (DFT; 
Busemeyer & Townsend, 1993). Machiori, Guida and 
Erev’s (2015) Noisy Retrieval Model (NRM) posits that 
biased probability estimates arise from both a reliance on 
small samples and confusion with previously encountered 
outcome distributions in the retrieval process. However, 
unlike Bhatia’s (2014) extension of DFT and the NRM, we 
posit that the error occurs in memory storage and not in the 
attentional or retrieval processes, respectively.  

ExCon Model for Experience 

 
Figure 1. The ExCon Model Process for Decisions from 
Experience 



In decisions from experience, when a confusion error 
occurs, the new exemplar (i.e. outcome) is confused with a 
previously stored exemplar. As illustrated by Figure 1, at 
the 10th draw of an outcome from a gamble, the new 
exemplar (in this case, the rare outcome ‘Y’) will be 
confused with probability, pI. If there is no confusion, then 
the outcome will be accurately stored in memory. However, 
if there is confusion, then one of the previously encountered 
outcomes is stored instead. The probability that a previously 
encountered outcome is stored is equal for all previously 
encountered items in memory. So in the case of the example 
in Figure 1, the probability that the participant will encode 
the outcome ‘Y’ if a confusion occurs, pM, is 0.5. 

ExCon Model for Description 

 
Figure 2. The ExCon model process for Decisions from 
Description 
 

In this paper, we adapt the ExCon model for the 
description paradigm. The ExCon for description assumes 
that people mentally simulate a set of sample gamble 
outcomes. The number of mental simulations for each 
gamble, K, varies across individuals. The confusion process 
occurs with probability pI. As shown in Figure 2, when a 
confusion error occurs, the outcome for a given mental 
simulation is a random choice of one of the possible 
outcomes.  

Note that this is different than in the ExCon for 
Experience, where outcomes can only be confused with 
memory traces (i.e., outcomes already sampled). In ExCon 
for Description, because participants have been presented 
with all possible outcomes when the gambles are described, 
we assume that confusions can occur for all possible 
outcomes regardless of whether they have been previously 
mentally simulated.  

Description-Experience Gap 
The “Description-Experience (DE) Gap” is a phenomenon 

that has been widely observed across decision-making 
studies, whereby people choose as if they underweight small 
probabilities in decisions from experience, while choosing 
as if they overweight them in decisions from description 
(Hertwig et al., 2004; Hau et al., 2008; Camilleri & Newell, 
2013). 

The ExCon model for Description naturally predicts an 
overestimation of small probabilities. However, the ExCon 
for Experience, as described thus far, also predicts an 
overestimation of small probabilities (for all but the smallest 
of probabilities and number of samples). However, it is 
possible to adapt the ExCon model for Experience to 
produce an underestimation of small probabilities. The 
overestimation of small probabilities occurs because 
confusion errors lead to the sampled outcome being 
replaced by either outcome with equal probability, once 
both outcomes have been observed. That is, the confusion 
error leads to the storage of previously observed outcomes 
with a probability of 0.5 when there are 2 stored outcomes. 
As such, ExCon will overestimate the probability of an 
outcome whenever its true probability is smaller than 0.5.  

A simple change to the confusion error process in ExCon 
for Experience allows the model to underestimate small 
probabilities. We assume that whenever a confusion error 
occurs, the participant stores a random sample from the set 
of outcomes already in memory. So, instead of storing 
previously observed outcomes with equal probability (e.g., 
0.5 when there are two outcomes), the previously observed 
outcomes are stored with probability equal to the rate at 
which the outcomes have been observed up until this point. 
Returning to Figure 1, the probability that the outcome ‘Y’ 
is stored is no longer 0.5, but is now 1/6, as the participant 
had stored 5 ‘X’ outcomes and 1 ‘Y’ outcome.  

 

Figure 3. Simulation of the ExCon model produces biased 
probability estimates in decisions from experience and 
description. The confusion probability was 0.1 for these 
simulations.  
 

The left panel of Figure 3 shows that this adapted version 
of the ExCon for Experience underestimates small 
probabilities, especially for small samples. In larger 
samples, however, the probability estimates become less 



biased, as the memory store of exemplars necessarily have a 
sample probability, pM, which is closer to the true 
probability, on average (Figure 3). In this scenario, even if 
the exemplar is confused, the probability of a rare outcome 
being stored as itself is approximately the true probability of 
the rare outcome occurring, pM≈p. 

On the other hand, the ExCon model for Description 
generates probability estimates that over-estimate small 
probabilities. Small probabilities are over-estimated because 
a confusion error leads to a rare events having an inflated 
probability of being stored. As a result, the probability 
estimates for both rare and likely outcomes tend towards 
0.5, overestimating small probabilities and underestimating 
large probabilities (right column of Figure 3). With a larger 
number of mental simulations, this effect becomes more 
pronounced because there is a relatively larger proportion of 
exemplar confusions in the set. 

Comparing ExCon and CPT 
In addition to producing the characteristic overestimates of 
low probability events, the ExCon for Description is able to 
account for real data. To show that ExCon predicts 
participants’ choices, we compare to a well-established 
benchmark model, the CPT. We use the data from Study 2 
in Rieskamp (2008) to compare the ExCon and CPT. 
Nilsson et al. (2011) showed that a hierarchical extension of 
CPT was capable of fitting well the data from Rieskamp’s 
(2008) study, thus ensuring that the CPT model provides a 
good yardstick for the ExCon model. Also, since the 
gambles in this data set were generated so as to span a wide 
range of outcomes and probabilities, they should provide a 
good basis for comparison of the two models. The data set 
consists of 30 participants, who each contribute 180 pairs of 
gambles; of which, 60 had only positive outcomes, 60 had 
only negative outcomes, and 60 had both positive and 
negative outcomes.  

We use Bayes factors to compare the two models. The 
Bayes factor tells us how much more likely the observed 
data is under Model A than Model B. Formally, the Bayes 
factor is the ratio of the marginal likelihood of the observed 
data, D, for each model, Mi, such that 𝐵𝐹!" =

!(!|!!)
!(!|!!)

. The 
marginal likelihood for each model is given by 𝑃 𝐷 𝑀 =
𝑃 𝐷 𝜃,𝑀 𝑃 𝜃,𝑀 𝑑𝜃, where 𝑃 𝐷 𝜃,𝑀  is the likelihood 

of a set of parameters 𝜃, and 𝑃 𝜃,𝑀  is the prior probability 
of those parameters. The marginal likelihood can be 
interpreted as the likelihood of the model for all parameter 
values of the model, weighted by the prior probability of 
those parameter values.  

The Bayes factor requires that we specify the prior 
probability of the parameters of each model. We now define 
the prior distributions we placed on the parameters of each 
model. We chose to use moderately informative priors, 
based on values that are commonly observed in the literature 
(e.g., Nilsson et al., 2008). Figure 4 contains a plot of the 
prior distributions we used for each of the model 
parameters.  

The CPT model we fit had 6 parameters. The top row of 
Figure 4 contains a plot of the prior distributions for the 
parameters of the CPT model. For the value function 
parameters, α and β, we used N(0.5,0.15) distributions1. For 
the loss aversion parameter, λ, we used an F(5,20) 
distribution that was shifted to begin at 0.35 and scaled by 
1/2. For the probability weighting function parameters, γ 
and δ, we used N(0.55,0.05). For the choice sensitivity 
parameter, φ, we used an F(3,5) distribution shifted to start 
at 0.05 and scaled by 1/3.  

We used an ExCon model with 4 parameters. The model 
as described thus far has just two parameters – the 
probability of a confusion, pI, and the number of mental 
simulations that the participant undertakes before making 
their decision, K. For the pI parameter we used a Beta 
distribution with shape parameters of 3 and 20. For the K 
parameter we used an F(5,20) distribution whose output was 
multiplied by 30. We also found it necessary to include a 
value function in ExCon, and so assumed that 

𝑣(𝑥) = −(−𝑥)! , 𝑥 < 0
𝑥! , 𝑥 ≥ 0  

Finally, we assumed that the output of ExCon, the average 
utility of each gamble based on the mental simulations, was 
transformed into a choice probability via the same softmax 
function as used in CPT. The prior distributions for the α 
and ψ parameters are the same in ExCon as they are in CPT.  

 
Figure 4. Prior distributions for the CPT and ExCon 
models. The left column contains the parameters that are 
only in the CPT model. The center column contains the 
parameters found in both models. The right column contains 
the parameters found in only the ExCon model.  

                                                             
1 Note that parameters with bounds were truncated at those 

bounds. For example, the α and β parameters were truncated to be 
between 0 and 1. 



We estimate the Bayes factors for each model by 
evaluating the likelihood of the model across a wide range 
of parameter values. In particular, for each parameter in 
each model, we took the 0.05, 0.15,…,0.95 quantiles of the 
relative prior distribution. We then evaluated the likelihood 
of each of the 30 participants’ data for each model at all 
combinations of these parameter values. Each of the 
resultant likelihood values was then multiplied by the prior 
probability of the parameter values. Finally, the average 
across all of these weighted likelihoods was taken to give 
the marginal likelihood for each model. The ratio of these 
marginal likelihoods gives us the Bayes factor for each of 
the 30 individuals. 

The likelihood of a set of parameters in the CPT model 
can be calculated analytically. However, in the ExCon 
model, the probability that a gamble is chosen depends on 
the particular sequence generated via mental simulation, 
with stochasticity in both the simulated gambles and the 
confusion process. We know of no analytical solution for 
such a doubly-stochastic process. Therefore, we use 
simulation to generate likelihoods from the model, using 
5000 simulations per parameter set.  

Figure 5 plots the log Bayes factors for each of the 30 
participants from Rieskamp (2008). For 19 of the 30 
participants, the ExCon model provides an unequivocally 
better account of the data than the CPT model. Two 
participants had Bayes factors for whom the evidence for 
both models were ‘equivalent’ (i.e., between 1/3 and 3). The 
remaining 9 participants were clearly better fit by the CPT 
model. 

 

Figure 5. Log Bayes factors for each of the 30 participants 
from Rieskamp (2008). Values greater than 0 correspond to 
Bayes factors suggesting that the ExCon model was more 
likely to have generated the observed data than the CPT 
model. The dotted lines indicate Bayes factors of 3 and 10 
(and 𝟏 𝟑 and 𝟏 𝟏𝟎). 

 

Discussion 
We have shown that a relatively simple model of decision-
making, originally developed to account for decisions from 
experience, is also able to account for data in decisions from 
description. The model naturally produces an overestimation 
of small probabilities, and is shown to predict empirical data 
at least as well as the CPT model – a common benchmark 
model of decision-making. 

Bayesian model selection is dependent on priors. Most 
concerning is our prior on the number of mental 
simulations. More work must be done to investigate the 
nature of the mental simulations, since the number of 
simulations will depend critically on the mental simulation 
process.  

We must also work to provide further justification for 
why the confusion processes operate differently under 
decisions from description and experience. In the 
description condition, when memory confusion occurs, 
outcomes are replaced with equal probability. One potential 
explanation is that observers are influenced by the outcomes 
that remain onscreen, placing equal attention to both 
outcomes. In decisions from experience, participants must 
rely on their memories of sampled outcomes, and so 
outcomes are replaced based on the contents of memory. 

When fitting the ExCon to the decisions from description 
data, we found it necessary to transform raw outcome values 
into utilities, and to include a softmax decision rule. 
Without these extra assumptions, the ExCon model was far 
too deterministic in its predictions, when compared with the 
more ‘random’ behavior of participants.  

By including the decision rule and the utility function into 
ExCon, the model becomes very similar to CPT. The 
distinguishing feature of ExCon is that it places a process-
based account of the under- and over-estimation of 
probabilities. By constraining the probability-weighting 
function to follow a particular process, the ExCon model is 
also constrained in the range of predictions that it makes. 
Since the observed data are relatively consistent with those 
predictions, the Bayes factor prefers the ExCon model over 
the CPT model.  

A promising avenue for future work would be to attempt 
to develop process-based accounts for the value function 
and decision rule components of CPT (and ExCon). The 
decision-rule, for example, could be replaced with process 
models for decisions. Though less explored than the 
decision rule, it seems possible that the value function may 
come about through sequential effects. For example, the 
assimilation effect says that stimuli and responses on the 
current trial are more like those from the previous trial. As 
such, the discount in utility of rare, large outcomes may 
come about because their utility is assimilated towards the 
more common, smaller outcomes.   

In decisions from experience, another potential avenue of 
study would be to develop a psychological account for 
exploration-exploitation strategies. In a repeated choice 
paradigm where each choice is consequential, the switch 
from exploration to exploitation strategies is gradual, while 



exploitation only occurs with the single choice made only at 
the end in a sampling paradigm. As each choice is 
consequential, participants have to decide when to stop 
exploring the gambles’ outcome distributions and start 
exploiting the preferred gamble for the best total reward. 
One model that attempts to capture this switch is the 
Instance-Based Learning model (IBL; Gonzalez & Dutt, 
2011), which tracks the rate of alternation between choices 
instead of the rate of choosing a choice. The IBL also 
utilizes an inertia parameter at the start of each trial and 
suggests that the probability of exhibiting inertia in choice, 
pInertia, is selected from a uniform distribution between 0 
and 1 each time. However, in reality, it is likely that the 
inertia increases over time as people become more confident 
in their preference, thus resulting in a gradual transition 
from exploration to exploitation in the repeated choice 
paradigm. Finally, the performance of the ExCon with more 
specific choice paradoxes and potential manipulation of the 
confusion process (for example, changing the presentation 
of outcomes to make confusion less likely) could be 
explored. If support for methods that lessened memory 
confusion in decision-making were found it would lend 
weight to the processing assumptions made in the ExCon 
framework. 
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