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The ability to trade accuracy for speed is fundamental to human decision making. The speed–accuracy
trade-off (SAT) effect has received decades of study, and is well understood in relatively simple
decisions: collecting more evidence before making a decision allows one to be more accurate but also
slower. The SAT in more complex paradigms has been given less attention, largely due to limits in the
models and statistics that can be applied to such tasks. Here, we have conducted the first analysis of the
SAT in multiple signal processing, using recently developed technologies for measuring capacity that
take into account both response time and choice probability. We show that the primary influence of
caution in our redundant-target experiments is on the threshold amount of evidence required to trigger a
response. However, in a departure from the usual SAT effect, we found that participants strategically
ignored redundant information when they were forced to respond quickly, but only when the additional
stimulus was reliably redundant. Interestingly, because the capacity of the system was severely limited
on redundant-target trials, ignoring additional targets meant that processing was more efficient when
making fast decisions than when making slow and accurate decisions, where participants’ limited
resources had to be divided between the 2 stimuli.
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The speed–accuracy trade-off (SAT) is one of the oldest and
most pervasive effects in human perception and performance
(Forstmann et al., 2008; Garret, 1922; Hick, 1952; Ollman, 1966;
Pachella, 1974; Ratcliff & Rouder, 1998; Schouten & Bekker,
1967; Wickelgren, 1977; Woodworth, 1899). Slower responses
tend to be more accurate than faster responses. Further, people
seem capable of making the choice to forgo responding accurately
in order to make quicker decisions. As such, differences in one
variable cannot be interpreted without ensuring that the other is not
also changing. For example, when accuracy appears to improve,
we must also ensure that participants did not simply slow down.

In the laboratory, we have studied the SAT by having partici-
pants make decisions with an emphasis on making either fast or
accurate responses. This manipulation of response caution in sim-

ple decision tasks has a long history, and is well understood (e.g.,
Brown & Heathcote, 2005, 2008; Forstmann et al., 2008; Forst-
mann et al., 2010; Forstmann et al., 2011; Ollman, 1966; Ratcliff,
Thapar, & McKoon, 2004; Ratcliff & Rouder, 1998; Wickelgren,
1977). All good models of decision making account for the SAT
effect, and though they differ on many key assumptions, most
share an evidence accumulation framework (e.g., Brown & Heath-
cote, 2008; Ratcliff, 1978; Usher & McClelland, 2001).

According to evidence-accumulation models, information is re-
peatedly sampled from a stimulus and used as evidence for one of
the alternative responses. When there is enough evidence for one
particular response, a choice is made and the time taken to accu-
mulate evidence is the decision time. In such models, it is com-
monly assumed that changes in caution are due only to changes in
the amount of evidence required to make a decision (Brown &
Heathcote, 2008; Forstmann et al., 2008; Ratcliff & Rouder, 1998;
Ratcliff & Smith, 2004; Voss, Rothermund, & Voss, 2004). In
other words, the SAT is a result of changes in how much evidence
is required before a decision is made, but is not influenced by the
rate at which evidence is accumulated or the quality of the evi-
dence being accumulated.

Though much is known about the SAT effect in simple tasks
(e.g., detection or discrimination of a single item, lexical decision
tasks, recognition memory), the influence of caution on perfor-
mance in more complex tasks has proved more challenging, par-
ticularly from a modeling or statistical perspective. We have
focused on complex tasks in which multiple inputs must be pro-
cessed (e.g., multiple item detection, discrimination). We were
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interested in how the processing of multiple signals is influenced
by the SAT. Such an analysis has historically been impossible, but
we have taken advantage of two recently developed techniques for
assessing the processing capacity that permit the explicit study of
caution (Eidels, Donkin, Brown, & Heathcote, 2010; Townsend &
Altieri, 2012). Thus, we have provided the first principled inves-
tigation into the influence of the SAT on the capacity for human
multiple-item processing.

Capacity

Humans possess an impressive means of processing multiple
sensory inputs. The ability to deal with multiple sources of infor-
mation can be thought of in terms of the workload capacity of that
processing system. In this context, workload refers to the number
of to-be-processed sources, and workload capacity reflects the
change in the speed of information processing of individual
sources as a result of a change in workload. Workload capacity is
often assessed using the redundant-target paradigm. For example,
in a redundant-target detection task, participants are presented with
either zero, one, or two targets, and asked to respond to the
presence of at least one target. Consequently, whenever there are
two targets present, the second target is redundant.

Workload capacity is measured by comparing performance with
two (redundant) targets relative to a single target. Limited capacity
implies that the presence of the second, redundant signal slows
down the processing of both stimuli together. Unlimited capacity
occurs when the presence of additional signals results in no change
in processing efficiency. Finally, super capacity refers to an in-
crease in processing efficiency when stimuli are presented together
rather than alone.

It is now well understood that comparing mean reaction time
(RT) between single- and redundant-target conditions is not suf-
ficient to understand capacity. The problem is that even when
individual targets are processed at the same rate, the mean RT for
two targets may still be faster than for one target due to statistical
facilitation (Egeth & Dagenbach, 1991; Miller, 1982; Townsend &
Nozawa, 1995). To overcome this issue, Townsend and colleagues
(Townsend & Nozawa, 1995; Townsend & Wenger, 2004) devel-
oped the capacity coefficient, which compares the entire distribu-
tion of correct RTs in single- and redundant-target conditions. The
capacity coefficient uses the RTs in the single-target conditions to
produce predictions for what should happen on redundant-target
trials, under the assumption that the second target had no influence
on the processing of the first target (i.e., an unlimited-capacity,
independent parallel [UCIP], race model). The observed RT dis-
tributions in the redundant-target condition are compared with the
predictions of the baseline UCIP model to determine whether the
additional targets help or hurt performance (i.e., are better or worse
than unlimited capacity, respectively).

Although the capacity coefficient is a powerful diagnostic tool,
one disadvantage is that it assumes responses are always correct.
This is rarely an issue in detection tasks, where the presence of a
target is enough to elicit a response and so accuracy is typically at
ceiling for above-threshold target contrasts. However, if one is
forced to sacrifice accuracy to respond quickly (i.e., when there is
a SAT), then the capacity coefficient is no longer an appropriate
tool for measuring capacity. For this reason, there has been no

study of the influence of the SAT on how multiple signals are
processed.

Two recent major advances in methodology have made it pos-
sible to now measure capacity when performance is not at ceiling.
Eidels et al.’s (2010) parametric capacity measure and Townsend
and Altieri’s (2012) nonparametric capacity assessment function
both give a measure of capacity that takes into account accuracy
and RT. With these new tools, which we now briefly introduce, we
can investigate the influence of the SAT on workload capacity.

Linear Ballistic Accumulator�Based Capacity

Recall that Townsend and Nozawa’s (1995) capacity coefficient
derives its form from the predictions of an UCIP race model.
Though the original capacity coefficient does not assume a partic-
ular parametric form, Eidels et al. (2010) showed that it was
possible to extract a capacity measure using a particular model—
the linear ballistic accumulator (LBA) model (Brown & Heathcote,
2008). The LBA is an evidence-accumulation model designed to
account for accuracy and RT distributions in simple, two-choice
tasks. Eidels et al. (2010) extended the LBA model to account for
accuracy and RT in the more complex, redundant-target experi-
ment. A capacity measure is calculated by using a parameterization
of the model specifically chosen to assess the impact of adding
additional targets on processing speed. As such, the model uses
both accuracy and RT to determine whether additional signals help
or hinder processing, and is therefore capable of determining the
influence of the SAT effect on workload capacity.

Assessment Function

Townsend and Altieri (2012) provided an update to the capacity
coefficient by incorporating choice probabilities and incorrect RT
distributions along with the correct RT distributions. Their new
assessment function, A(t), also uses the UCIP race model as a
baseline model with which to compare observed data, but now
considers both the speed and the accuracy of observed responses.
The A(t) functions are more nuanced than the standard capacity
coefficient, but this additional complexity brings more information
about how redundant signals are processed, as well as an ability to
take into account the influence of the SAT.

Our aim was to use the parametric (LBA-based) and nonpara-
metric (assessment function) measures of workload capacity to
investigate the influence of the SAT on multiple signal processing.
We present the results of two redundant-target experiments in
which we asked participants to make discrimination decisions with
an emphasis on either being accurate or responding quickly. Based
on the many previous results demonstrating the influence of the
SAT in simple tasks, we expected that our manipulation of re-
sponse caution would only affect the amount of evidence required
to respond, but not the rate at which items were processed (i.e., we
did not expect the capacity of the processing system to be influ-
enced by speed or accuracy emphasis).

Experiment 1

Our original aim was to manipulate caution in a redundant-
target detection task, as detection is the standard redundant-target
task that is used to assess capacity (Townsend & Altieri, 2012).
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However, pilot testing revealed a number of issues with manipu-
lating response emphasis in a detection task. The major problem is
that detection is easy, and so responses tend to be both fast and
almost perfect. It is therefore difficult for participants to respond
more quickly and make errors, as required under speed emphasis.
A second issue arises due to the nature of the detection task, in
which a target is either present or absent. The format of trials is
generally such that a fixation cross begins a trial, followed by a
short pause, and then the target either appears or remains absent.
During pilot testing, we found that error responses occurred as a
result of misjudging when the target would appear. That is, errors
were so fast that they usually preempted the presentation of the
target.

Although it may be possible to adapt the design of the detection
task to make it more amenable to a response caution manipulation,
we instead decided to use a discrimination version of the
redundant-target task. In our discrimination task, participants were
asked to classify targets as either light or dark (depending on
the proportion of black and white pixels). On single-target trials,
we presented just one target to be classified, while in redundant-
target trials we presented the same target in two on-screen loca-
tions. As in the detection version of the redundant-target task, a
measure of workload capacity comes from the difference in RT
and accuracy between redundant- and single-target trials.

Method

Participants. Eight participants each completed three identi-
cal experimental sessions. Participants were recruited using noti-
ceboards posted around the University of New South Wales, and
were reimbursed $15 for each session. Our plan was to test eight
participants, but one participant did not return after completing just
one session, and so a ninth individual was recruited to ensure we
had eight full data sets.

Stimuli and design. Each target was a 30 � 30 pixel square
containing a random arrangement of white and black pixels. Tar-
gets were either light, containing 45% black pixels, or dark,
containing 55% black pixels. Targets were presented on a 24-in.
monitor with resolution 1680 � 1050. A target could be presented
in one of two locations—upper and lower. In the upper location,
the center of the target was 17 pixels above the center of the
screen, and in the lower location, the center of the target was 17
pixels below the center of the screen. The distance between the two
targets when both targets were present was 4 pixels. We also used
a circle with a 7-pixel diameter presented in the center of the
screen as a fixation point.

The experiment was a 2 � 3 � 2 (Emphasis [accuracy, speed] �
Location [upper, lower, or both] � Brightness [light, dark])
within-subjects design. At the start of each block of trials, partic-
ipants were told whether they should be as accurate as possible, or
if they should respond as quickly as possible, without resorting to
guessing. Either a single target was presented in either of the upper
or lower locations, or two targets were presented simultaneously in
both locations. The target (or targets) was either light or dark
(depending on whether the proportion of black pixels was 45% or
55%, respectively). If two targets were presented, then they were
identical. Participants were told explicitly that when two targets
were presented that they would be the same.

Procedure. Each trial began with a fixation cross presented
for 500 ms. Either one target or two targets were then presented
until a response was made. Participants were instructed to press the
“F” key on the keyboard if the target (or targets) was light, and to
press the “J” key if the target (or targets) was dark. An on-screen
reminder of the button mappings was displayed at the bottom of
the screen on every trial. The feedback participants received de-
pended on the emphasis condition for that block. In accuracy-
emphasis blocks, participants received feedback on the accuracy of
their response. If correct, then the word CORRECT was displayed
in the center of the screen for 500 ms. If incorrect, the word
INCORRECT was shown for 1,500 ms. In speed-emphasis blocks,
participants received feedback on both the accuracy and the speed
of their response. If the RT was faster than 500 ms, the phrase
GOOD TIME was displayed in the center of the screen for 500 ms.
If the RT was slower than 500 ms, the phrase TOO SLOW was
shown for 1,500 ms. In addition to the feedback on RT, partici-
pants were told whether their responses were Correct or Incorrect
underneath the RT feedback. The screen then remained blank for
500 ms, and the next trial began. At the end of each block of trials,
participants were given their percent correct and mean RT for that
block.

Participants completed four blocks of 180 trials. In each block,
half of the targets were light and half were dark. For each target
type, one third of trials were presented in the upper location, one
third were presented in the lower location, and one third were
presented in both locations. The order of trials within a block were
randomized. The response-emphasis condition alternated from
speed to accuracy from block to block, continuing across sessions.
The emphasis in the first block of trials was such that half of the
participants began with speed emphasis and half with accuracy
emphasis. During the first session only, participants first com-
pleted two practice blocks of 90 trials, one with accuracy emphasis
and another with speed emphasis (always in that order). Practice
trials were identical to standard trials, but were removed from
analysis.

Results

We first excluded all trials on which RT was greater than 3 s or
was less than 280 ms. The lower cutoff of 280 ms was chosen
because it marked the point at which all participants’ responses
were at chance performance. For each participant, and for each
emphasis condition, any trial for which RT was greater than 2.5 SD
above the mean was excluded. Overall, 5.2% of the data was
removed based on this censoring.

Summary measures. The mean proportion of correct re-
sponses for dark and light stimuli were almost identical (Pdark �
0.85 and Plight � 0.86, p � 0.79), as was mean RT (RTdark � 619
ms and RTlight � 599 ms, p � 0.20), and so, in what follows, we
collapsed over light and dark stimulus conditions. We submitted
proportion correct responses and mean RT for correct responses to
a 2 � 2 (Emphasis [speed or accuracy] � Targets [redundant or
single]) within-subjects analysis of variance (ANOVA). The em-
phasis manipulation had the expected effect on proportion correct,
with a higher proportion of correct responses under accuracy
emphasis (Paccuracy � 0.93) than under speed emphasis (Pspeed �
0.78), F(1, 7) � 41, p � .001. The mean RT for correct responses
was also faster under speed emphasis (RTspeed � 462 ms) than
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under accuracy emphasis (RTaccuracy � 752 ms), F(1, 7) � 22.48,
p � .002.

The main effect of targets failed to reach significance for either
dependent variable, but this was because the difference between
redundant-target and single-target conditions depended on whether
speed or accuracy was emphasized, that is, the interaction was
significant for proportion correct, F(1, 7) � 6.4, p � .04, and for
mean correct RT, F(1, 7) � 18.3, p � .004. Under accuracy
emphasis, responses were 28 ms slower and 1.5% less accurate
when there were two targets (Predundant � 0.92 and RTredundant �
771 ms) than when there was just one target (Psingle � 0.93 and
RTsingle � 743 ms). However, when speed was emphasized, re-
sponses were 8 ms faster and 2% more accurate when there were
two targets (Predundant � 0.79 and RTredundant � 465 ms) than
when there was one target (Psingle � 0.78 and RTsingle � 460 ms).
As mentioned earlier, these results tell us relatively little about the
capacity of the processing system, and so we turn to our parametric
and nonparametric measures of capacity for further analysis.

LBA-based capacity. We first briefly outline the standard
LBA, and then describe its extension to the redundant-target task.
We then show how the parameters of the model can be used to
assess the influence of redundant targets.

Consider first an LBA model for the classification of a single
target as either light or dark (i.e., having less or more black pixels).
Each response, light or dark, receives its own accumulator, and
these accumulators are assumed to be independent of one another.
The starting evidence in accumulator i begins at a random value
between 0 and A. Evidence then accumulates linearly and without
noise at a rate drawn from a normal distribution with mean vi and
SD s. The mean accumulation rate, vi, for the correct response will
be larger than for the incorrect response. For example, if a target
has more black than white pixels, then there should be more
evidence for the dark response, and hence vdark should be larger
than vlight. One of the two responses is made when the evidence for
the corresponding accumulator reaches threshold b. The decision
time is equal to the time taken for evidence to first reach threshold,
and the predicted RT is decision time plus the time taken for
nondecision aspects of RT (such as the motor response or stimulus
encoding), t0.

In the LBA model for the redundant-target paradigm, we as-
sumed that when two targets were presented, they would be
processed in four independent, parallel accumulators—one accu-
mulator for each response, for each target. The LBA-based capac-
ity measure, hereafter referred to as vcap, was calculated by taking
the difference between the accumulation rate for the correct re-
sponse when two targets were present (the same accumulation rate
was used for each of the two targets) and the accumulation rate for
the correct response when just one target was present (vcap � vrt �
vst, where vst is the rate for the single-target conditions and vrt is
the accumulation rate for each target in redundant-target condi-
tions). If the accumulation rate for two targets is the same as the
rate for just one target (i.e., vrt � vst or vcap � 0), then capacity is
said to be unlimited, reflecting the fact that there is no change in
the rate of processing across the double- and single-target condi-
tions. When evidence accumulation rate is slower when there are
two targets compared with when there is just one target, then
capacity is said to be limited (vrt � vst or vcap � 0). Finally, if
accumulation rate is faster when there are two targets, then we
have super capacity (vrt � vst or vcap � 0). Eidels et al. (2010)

showed that vcap was largely consistent with the nonparametric
estimates of capacity using the standard capacity coefficient. One
goal of the present article was to examine how vcap corresponds to
Townsend and Altieri’s (2012) assessment function.

As mentioned earlier, we collapsed over light and dark re-
sponses and stimuli, and therefore talk about only correct and
incorrect responses. We fit a model that held the majority of
parameters constant across correct and incorrect responses, single-
and redundant-target displays, and response-emphasis conditions.
The parameters held constant were (a) the maximum of the
between-trial start-point distribution, A, (b) the SD of the between-
trial drift rate distribution, s, and (c) the nondecision time param-
eter, t0. We allowed only accumulation rate parameters to vary
across single- and redundant-target conditions. We estimated a
mean accumulation rate in the correct accumulator separately for
single-target displays, vst, and redundant-target displays, vrt. The
mean accumulation rate for the incorrect response was fixed at 1 �
vst and 1 � vrt, as a means of solving the scaling property of RT
models (see Donkin, Brown, & Heathcote, 2009, for more infor-
mation).

We varied the remaining parameters in two different model
parameterizations, which assumed different effects of the
response-emphasis conditions. The first parameterization assumed
that only response threshold, b, varied across speed- and accuracy-
emphasis conditions. This selective influence model is consistent
with the standard effect of response caution in two-choice tasks in
that only response thresholds are influenced. This first model had
seven free parameters: A, t0, s, vst, vrt, bacc, and bspd. The second
parameterization allowed both response thresholds and the accu-
mulation rate parameters to vary with response emphasis. This
second model allowed for the possibility that caution influences
both response thresholds and capacity. The second model had an
additional two parameters, for a total of nine free parameters: A, t0,
s, bacc, bspd, vstacc

, vrtacc
, vstspd

, and vrtspd
.

The two models were fit to each of the eight individual partic-
ipant’s full RT distributions for correct and incorrect responses, in
each of the single- and redundant-target conditions under both
speed and accuracy emphasis using maximum likelihood estima-
tion. Brown and Heathcote (2008) have provided equations for the
probability density, ƒ(t | �), and cumulative density, F(t | �), of an
LBA accumulator with parameters �. When there is just one target
present, the likelihood that the correct accumulator C has reached
threshold by time t before the incorrect accumulator I has reached
threshold by the same time is:

fC(t��C)[1 � FI(t��I)] (1)

When there are two targets present, the likelihood that the
correct response is given by time t can happen when the accumu-
lator associated with the correct response for either target A or
target B is the first to reach threshold. Therefore, the likelihood of
a correct response at time t is:

fCA
(t��CA

)[1 � FCB
(t��CB

)] · [1 � FIA
(t��IA

)] · [1 � FIB
(t��IB

)]

�fCB
(t��CB

)[1 � FCA
(t��CA

)] · [1 � FIA
(t��IA

)]

· [1 � FIB
(t��IB

)] (2)

The likelihood of incorrect responses can be obtained by simply
switching all of the C and I subscripts. Best-fitting parameters
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were found using a combination of SIMPLEX and particle swarm
optimization.

We assessed model parsimony using the Bayesian information
criterion (BIC). The value of BIC decreases as the quality of the fit
of a model to data, l, increases. However, BIC becomes larger as
the number of free parameters, k, in the model increases. More
formally, BIC � k log N � 2l. The model with the smallest BIC
value is said to provide the most parsimonious account of the data.

We found the more complex parameterization of the LBA
model, which allowed both accumulation rate and response thresh-
olds to vary as a function of the response-emphasis manipulation,
had the smallest BIC for all eight participants. The difference in
BIC between the two models across individuals ranged from
7.56�73.48 points. These BIC values can be turned into BIC
weights (Wagenmakers & Farrell, 2004). Once transformed, the
smallest probability for the accumulation rate and response-
threshold model, relative to the response-threshold-only model,
was 0.98. As such, we will now focus our discussion on the model
in which accumulation rate and response threshold both change
across emphasis conditions.

The best-fitting parameters for each individual are reported in
Table 1. As expected, response thresholds were larger, t(7) � 5.7,
p � .001, under accuracy emphasis (b � 0.48) than under speed
emphasis (b � 0.29). Figure 1 contains the accumulation rates for
redundant-target trials and single-target trials under both accuracy
and speed emphasis. Rates for redundant-target trials were smaller
than for single-target trials (i.e., vcap � 0), suggesting that capacity
was limited in this task, F(1, 7) � 42, p � .001. Further, accu-
mulation rates were higher under accuracy emphasis than under
speed emphasis, F(1, 7) � 37, p � .001. Also, the difference
between redundant- and single-target accumulation rates was
larger under accuracy emphasis than under speed emphasis, sug-
gesting that capacity was more limited under accuracy emphasis,
F(1, 7) � 52, p � .001.1

Assessment function. Townsend and Altieri (2012) derived
their assessment function to account for behavior in detection
tasks, with particular decision rules (e.g., respond when at least
one target is present). Our experiment used a different decision
rule, and thus required us to derive our own assessment function
for Experiment 1. In our experiment, participants were instructed
to indicate whether the target (or targets) was light or dark, but
were told that whenever two targets were presented, the brightness
of each target would be identical (hence, if one target was light,
then the other would necessarily also be light). Therefore, the
baseline model used to derive the assessment function assumed
that participants responded as soon as one of the targets was
finished being processed (cf. the LBA model above).

Our assessment function takes the same form as Townsend and
Altieri’s (2012) A(t), in that it partitions RTs into four categories:
(a) the probability that a correct response is made by time t, (b) the
probability that an incorrect response is made by time t, (c) the
probability that a correct response will be made but has not
happened by time t, and (d) the probability that an incorrect
response will be made but has not happened by time t. Following
Townsend and Altieri (2012), we called these circumstances, re-
spectively, (a) correct and fast, (b) incorrect and fast, (c) correct
and slow, and (d) incorrect and slow. The influence of additional
targets was measured for each of these four types of responses by

comparing performance on redundant-targets trials with that pre-
dicted based on the UCIP race model.

The equations for calculating A(t) in Experiment 1 are given in
Table 2. The full details of the derivation of these equations are
given in Appendix A, but the following two examples may help
readers understand how we derived the assessment functions. A
correct and fast response on a redundant-target trial occurred in our
Experiment 1 when a participant correctly identified a stimulus in
channel A before channel B has finished processing or when the
stimulus in channel B is correctly identified before channel A
finished processing (the first equation in Table 2). On the other
hand, an incorrect and slow response occurred when the stimulus
in channel A was incorrectly identified before channel B finished
being processed, or when the stimulus in channel B was incorrectly
processed before channel A finished (the final equation in Table 2).
It is important to note that although their calculations differed, the
interpretation of our alternative capacity measure was the same as
that for the standard A(t).

This interpretation is more nuanced than the standard capac-
ity coefficient. Those familiar with the standard capacity coef-
ficient of Townsend and Nozawa (1995) will recall that values
greater, equal, and less than 1 simply implied super, unlimited,
or limited capacity, respectively. However, when interpreting
the A(t) function, one has to consider the type of response being
made. For example, the interpretation of A(t) for correct and
fast responses bears the closest resemblance to the standard
capacity coefficient. When A(t) � 1 for correct and fast re-
sponses, this implies that the observed responses made before
time t were as probable as expected by the UCIP race model
(i.e., as if the addition of the second, redundant target had no
influence on the processing of the first target). A correct and
fast A(t) � 1 means that participants made more correct re-
sponses by time t than was expected, and thus were exhibiting
a form of super capacity. Similarly, correct and fast A(t) � 1
implies that fewer correct responses were made by time t than
expected by the UCIP model (i.e., capacity was limited).

The interpretation differs for the other types of responses. For
example, for the incorrect and slow responses, A(t) � 1 would
mean that more incorrect responses were made after time t than
was expected in the UCIP model, which implies a type of
limited capacity. Finally, one must also consider the time t
under consideration. For example, a limited capacity system
might yield A(t) � 1 for correct and slow responses for a larger
t, because correct responses were much slower than was ex-
pected.

We calculated the four different types of A(t) separately for
speed- and accuracy-emphasis conditions. The upper panel of
Figure 2 shows the four different types of capacity for the speed-
emphasis condition. The bottom panel of Figure 2 shows the four
capacities for the accuracy-emphasis condition.

1 There are many different means of calculating capacity from linear
ballistic accumulator parameters, such as (vrt � vst)/s or vrt / vst. We reach
the same conclusions (e.g., that capacity is more limited under accuracy
emphasis) regardless of the specific measure of capacity that is used.
However, as with all interactions where the underlying scale of the depen-
dent variable cannot be known, the results should be interpreted with
caution (though we do assume that accumulation rates lie on a linear scale).
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Comparison of all four panels in Figure 2 reveals a number of
differences between the A(t) functions under speed- and
accuracy-emphasis conditions. The assessment functions within
each panel can be readily summarized as follows:

(1) For correct and fast responses, A(t) appears more
limited under accuracy emphasis than speed empha-
sis. Under accuracy emphasis, A(t) lies consistently
below 1, suggesting that responses were slower and
less frequent than expected. Mirroring the results
using the LBA-based capacity measure, the A(t) func-
tions under speed emphasis appear much closer to
unlimited capacity. In particular, one can see that, in
the speed condition, the A(t) functions rise relatively
quickly back to a value closer to unity. However,
under accuracy emphasis, one sees that A(t) not only

fails to reach the same height as the speed emphasis
A(t) function, but also takes much longer to reach
asymptote.

(2) For correct and slow responses, A(t) is greater than 1,
indicating that correct and slow responses were more
probable and slower than expected. One can also see
that almost all A(t) functions under speed emphasis
begin above unity, while those under accuracy em-
phasis tend to begin at a value below unity. As will
soon be shown, such a pattern suggests that responses
under accuracy emphasis are more limited in capacity
than under speed emphasis.

(3) Looking at incorrect and fast responses, one can see
that incorrect responses made by time t under speed
emphasis were less probable than expected, which is
characteristic of a system with higher capacity. On
the other hand, the A(t) functions under accuracy
emphasis were closer to 1, consistent with the inter-
pretation that capacity is more limited in the accuracy
condition.

(4) For the incorrect and slow responses, the A(t) mea-
sure is greater than 1, indicating faster than expected
and more incorrect and slow responses compared
with the unlimited capacity parallel baseline model. It
is worth noting that the A(t) functions under speed
emphasis start at values below unity, while those
under accuracy emphasis tend to start above 1, an-
other trend that is expected if capacity is more limited
under accuracy emphasis (see Figure 3).

To sum up, the A(t) measure indicates that the process used in
our discrimination task was less efficient than the baseline model
in the sense that correct and fast responses were less probable but
incorrect responses or correct but slow responses were more prob-
able. Further, this limited capacity processing is more extreme
under the accuracy-emphasis than in the speed-emphasis condi-
tion.

As is probably clear by now, the interpretation of A(t) functions
is nontrivial. To help our interpretation of the results in Figure 2,
we generated data from an LBA model of limited capacity (vcap �

Table 1
Best-Fitting Parameter Estimates for Each Individual Participant in Experiment 1

Parameter

Participant

1 2 3 4 5 6 7 8

s 0.23 0.35 0.38 0.38 0.57 0.40 0.55 0.28
A 0.14 0.13 0.19 0.28 0.17 0.10 0.52 0.11
t0 0.17 0.24 0.27 0.23 0.27 0.24 0.30 0.24
bacc 0.35 0.49 0.41 0.61 0.54 0.29 0.82 0.30
bspd 0.28 0.22 0.22 0.42 0.28 0.18 0.52 0.23
vstacc

0.73 1.02 0.88 1.05 1.28 0.79 1.01 0.87
vrtacc

0.67 0.74 0.70 0.88 1.08 0.62 0.80 0.77
vstspd

0.64 0.81 0.73 0.85 0.96 0.67 0.79 0.69
vrtspd

0.60 0.64 0.66 0.73 0.86 0.61 0.68 0.67

Figure 1. Accumulation rates for redundant- and single-target trials under
accuracy- and speed-emphasis conditions. Rates suggest that capacity is
limited, and more so under accuracy emphasis.
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0) and super capacity (vcap � 0).2 We then calculated A(t) for the
simulated data sets, as per Experiment 1. Figure 3 plots the
resultant assessment functions. We can now compare the results in
Figure 2 with the difference between the solid lines, generated
from a limited capacity system, and the dotted lines, generated
from a system with super capacity. It is immediately clear from a
comparison of all four panels of Figure 2 and Figure 3 that our
participants look more like the solid, limited capacity lines than the
dotted, super capacity lines.

Our interpretation of the empirical A(t) functions was that ca-
pacity looked more limited under accuracy than speed emphasis.
However, given our limited experience with the A(t) function, it
seems possible that we might expect the qualitative difference
between speed- and accuracy-emphasis conditions even if only
response thresholds vary (i.e., if capacity is unaffected). To test
this possibility, we also simulated data sets in which response
threshold was either small (to reflect speed emphasis) or large
(accuracy emphasis). Note that drift rates did not differ across
speed- and accuracy-emphasis conditions, and so the simulated
data were equivalent to the selective influence model tested ear-
lier.3 Therefore, the light gray (speed-emphasis) and dark gray
(accuracy-emphasis) lines correspond to A(t) functions we would
expect to see if the caution manipulation had a selective influence
on response thresholds. The figure largely confirms that our inter-
pretation of the assessment functions in Figure 2 was appropriate.
In particular, we see that the simulated assessment functions tend
to shift to the right (and up or down, depending on whether the
responses were incorrect or correct, respectively), but show no
change in the qualitative form of the function. This is unlike the
change in shape we observed in the empirical A(t) functions that
we attributed to more limited capacity when responding accu-
rately.

Finally, Townsend and Altieri (2012) described a method for
calculating the assessment functions conditionalizing on accuracy,
so that only the speed of responses is used to measure capacity.
Because accuracy in the redundant- and single-target conditions
did not differ greatly, the conditional assessment functions contain
relatively little additional information beyond that in Figure 2.
Nonetheless, we report the conditional assessment functions for
both Experiments 1 and 2 in Appendix B.

Discussion

Manipulating the amount of caution required when responding
had the standard effect on behavior—compared with accuracy-
emphasis—responses were faster and less accurate when respond-

ing quickly was emphasized. The LBA-based analysis of the data
revealed that changes in caution were in part due to adjustment of
the amount of evidence required to make decisions. Consistent
with the standard explanation of the SAT, participants show more
caution by increasing the threshold amount of evidence needed to
make a response (Ratcliff & Rouder, 1998).

In contrast to typical results, we also observed that the manip-
ulation of caution in our redundant-target experiment also influ-
enced the rate at which evidence accumulated. Responding more
quickly led to an overall decrease in accumulation rates. However,
the decrease was larger in single-target trials than in redundant-
target trials. This pattern caused processing under speed pressure
to become more unlimited-like in capacity. That is, though pro-
cessing was less efficient (accumulation rates were lower), there
was less of a cost of having a redundant target present (single- and
redundant-target rates were almost identical).

One possible cause of the differential effect of response caution
on capacity is that when under speed emphasis, participants may
have not always attended to both of the redundant stimuli. By
contrast, when accuracy was emphasized, participants may have
attempted to extract information from both targets. Due to the
limited workload capacity of the processing system, accumulation
rates for individual targets were lowered when both items had to be
processed. On the other hand, when speed was emphasized, par-
ticipants may have, in their rush to respond quickly, only attended
to one of the two targets. Because attention was directed at just one
of the targets, processing was degraded less by the presence of the
second target when speed was emphasized (i.e., the true limited
capacity of the processing system had less of an effect on perfor-
mance, because participants simply ignored one of the two stim-
uli).

Experiment 2

Processing just a single target when attempting to respond
quickly was a perfectly reliable strategy in our first experiment
because whenever there were two targets, they were both always of
the same type (light or dark). In fact, as participants were explicitly

2 The simulated data sets used to generate Figure 3 were based on 60,000
simulated trials. The following parameters were constant across limited and
super capacity data sets: A � 0.3, t0 � 0.25, and s � 0.25, and the
accumulation rate for single-target trials, vst, was set at 0.75. In the limited
capacity data set, the accumulation rate for redundant-target trials was vrt �
0.6. In the super capacity data set, vrt was set at 0.9.

3 In the speed-emphasis condition, the threshold was set to b � 0.35; and
in the accuracy-emphasis condition, the threshold was set to b � 0.5.

Table 2
Numerators for the Discrimination Capacity Assessment Function in Experiment 1

Correct and fast � log�P�TAC
� TAI

��0
t �1 � FB�t���fA|C�t�� dt� � P�TBC

� TBI
��0

t �1 � FA�t���fB|C�t�� dt��
Incorrect and fast � log�P�TAI

� TAC
��0

t �1 � FB�t���fA|I�t�� dt� � P�TBI
� TBC

��0
t �1 � FA�t���fB|I�t�� dt��

Correct and slow � log�P�TAC
� TAI

��t
� �1 � FB�t���fA|C�t�� dt� � P�TBC

� TBI
��t

� �1 � FA�t���fB|C�t�� dt��
Incorrect and slow � log�P�TAI

� TAC
��t

� �1 � FB�t���fA|I�t�� dt� � P�TBI
� TBC

��t
� �1 � FA�t���fB|I�t�� dt��

Note. The denominators are presented in Appendix A. Note that P�TAC
� TAI

� is the probability that the correct
response is made in channel A (over an incorrect response), FB(t=) is the probability that either a correct or
incorrect response was made in channel B by time t=, and ƒA|C(t=) the probability that the correct response in
channel A will be made at time t=.
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told, the two targets were always identical. In this second exper-
iment, we included trials that broke this contingency. Our second
experiment was almost identical to the first experiment, except that
we sometimes presented displays containing one light and one

dark target. So that participants could respond on these trials, we
told them to respond by pressing one button if there was at least
one “light” target present, and to only press the other button when
there were no light targets present. If participants focused on just

Figure 2. Assessment functions for incorrect and fast, correct and fast, incorrect and slow, and correct and slow
responses under speed- and accuracy-emphasis conditions (top and bottom set of plots, respectively) in
Experiment 1.
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one target when under speed emphasis, then they would be at
chance on displays containing one light and one dark target. An
upshot of this new design was that the decision rule in Experiment
2 was the same as in Townsend and Altieri (2012), and so we could
use their assessment function.

Method

Eight participants, recruited and reimbursed in the same way as
in Experiment 1, completed four sessions in Experiment 2. The
stimuli were identical to those in Experiment 1. The design was
also identical to that in Experiment 1, except that we now included
”catch” trials, in which two items of different brightness were
presented. During this session, participants completed four blocks
of 200 trials. In each block, there were 100 single-target trials, half
light and half dark, and 100 trials on which two items were
presented. Of these, 50 trials were the redundant-target trials, half
with two light stimuli and half with two dark stimuli. The new
catch trials made up the remaining 50 trials, half with the light
stimulus in the upper location (and the dark stimulus in the lower
location) and half with the dark stimulus in the upper location.

The instructions were updated to take account of these new
trials. Participants were told that they were to press the “F” key if
there was ever a light stimulus present on screen, and to press “J”
whenever there were no light stimuli present. This response map-
ping meant that “F” was the correct response on 62.5% of trials
(two light stimuli, one light and one dark stimulus, and a single
light stimulus.), and the “J” key was correct for 37.5% of trials (a
single dark stimulus or two dark stimuli).

Results

The same criteria for censoring of trials was used for the data in
Experiment 2. Overall, 3.9% of the data was removed.

Summary measures. We first focused on the single- and
redundant-target conditions in which light stimuli were used, be-
cause the response instructions given to participants meant that
only these conditions were used to calculate capacity. We submit-
ted the proportion of correct responses and mean RT for correct
responses to a 2 � 2 (Emphasis [speed or accuracy] � Targets
[single or redundant]) within-subjects ANOVA. The emphasis

Figure 3. Assessment functions for incorrect and fast, correct and fast, incorrect and slow, and correct and slow
responses from two versions of the redundant-target linear ballistic accumulator (LBA) model—with limited and
super capacities (thick and dotted lines, respectively).
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condition again had the expected effect on both proportion correct
(Paccuracy � 0.95 vs. Pspeed � 0.90), F(1, 7) � 89, p � .001, and
on mean RT (RTaccuracy � 573 ms vs. RTspeed � 413 ms),
F(1, 7) � 17, p � .004. However, unlike Experiment 1, we do not
observe an interaction between the emphasis and location factors
on accuracy or RT (p � .23 and p � .14, respectively). An extra
target had no effect on the proportion of correct responses (p �
.15), but did lead to an increase in mean RT (RTredundant � 503 ms
vs. RTsingle � 483 ms), F(1, 7) � 10, p � .016.

Though much less important for the calculation of capacity, we
also examined the effect of emphasis and target redundancy for
dark stimuli. Being asked to respond more carefully also improved
performance for dark stimuli (proportion correct: Paccuracy � 0.86
vs. Pspeed � 0.70), F(1, 7) � 31.2, p � .001; (mean RT:
RTaccuracy � 645 ms vs. RTspeed � 467 ms), F(1, 7) � 20.3, p �
.003). The presence of an extra dark stimulus led to an increase in
accuracy (Predundant � 0.80 vs. Psingle� 0.76), F(1, 7) � 13.9, p �
.007, but had no effect on mean RT (p � .71). Interactions were
not significant for dark stimuli (ps � .36).

Finally, we considered the performance on our so-called catch
trials. Recall, the idea behind the catch trials was that if capacity
was more limited under accuracy emphasis in Experiment 1 be-
cause participants were not processing both items when under
speed emphasis, and participants in Experiment 2 did the same,
then we might see chance performance on catch trials under speed
emphasis. Performance on catch trials was certainly not at chance
under accuracy (Paccuracy � 0.95) or speed (Pspeed � 0.85) em-
phasis, but performance was worse under speed-emphasis condi-
tions. To ascertain whether this performance decrement was sim-
ply due to a SAT, or also because attention is sometimes given to
just one of the two stimuli, we compared the decrement for catch
trials to the one observed with two redundant light stimuli. Pro-
portion correct responses and mean correct RT were submitted to
a 2 � 2 (Trial Type [catch or redundant light] � Emphasis [speed
or accuracy]) within-subjects ANOVAs. The Emphasis � Trial
Type interaction was significant, F(1, 7) � 17.4, p � .03, sug-
gesting that the decrease in accuracy due to a change in response
emphasis was smaller for redundant light stimuli (Paccuracy � 0.95
and Pspeed � 0.90) than for the catch trials. The interaction was not
significant for mean RT (p � .13). These results suggest that
participants in Experiment 2 may have sometimes adopted the
strategy we found in Experiment 1, attending to just one stimulus
when forced to respond quickly. However, this behavior must not
have been used on every trial, because there was only a 5% drop
in accuracy.

LBA-based capacity. We again applied a version of the Ei-
dels et al. (2010) redundant-target LBA model. We had to change
some aspects of the model to incorporate the changes in design
used in Experiment 2. The basic model structure remained the
same—single-target trials require just two accumulators, while
redundant-target trials require a race between four accumulators.
However, the decision rule used meant that the likelihood func-
tions that yield “F” and “J” responses must be updated. Recall that
an “F” response should be given whenever a single light stimulus
is detected before dark stimuli are detected in both locations. As
such, we could no longer collapse over light and dark responses,
and the likelihood of an “F” response on a redundant-target trial is:

[fLA
(t)(1 � FDB

(t)) � fLB
(t)(1 � FDA

(t))]

· [1 � (FDA
(t))(FDB

(t))] (3)

where L and D refer to light and dark response accumulators,
respectively. Similarly, the likelihood of a “J” response on
redundant-target trials occurs whenever both dark accumulators
reach threshold before either of the light accumulators.

[fDA
(t)(FDB

(t)) � fLB
(t)(FDA

(t))] · [1 � FLA
(t)] · [1 � FLB

(t)] (4)

We again fit two different versions of the model to our data, one
that assumed a selective influence of emphasis on response thresh-
olds, and another that assumed both accumulation rates and re-
sponse thresholds varied with emphasis instruction. Both models
assumed that A, t0, and s were constant across all conditions, and
that there were different response thresholds for light and dark
accumulators bL and bD. Both models also assumed separate
accumulation rates for the correct responses for light and dark
stimuli, and for single- and redundant-target displays, vstL

, vstD
, vrtL

,
and vrtD

. Again, incorrect response accumulators were set at 1
minus the respective correct accumulator.

The model that assumed a selective influence of response
threshold estimated separate threshold parameters for speed-
emphasis and accuracy-emphasis conditions, requiring two addi-
tional parameters to make up the full set of thresholds: bLspd

, bLacc
,

bDspd
, and bDacc

. The model that assumed both response thresholds
and accumulation rates change also estimated separate accumula-
tion rate parameters for speed- and accuracy-emphasis conditions,
requiring an additional four parameters to yield: vstLacc

, vstLspd
, vrtLacc

,
vrtLspd

, vstDacc
, vstDspd

, vrtDacc
, vrtDspd

.
For six of eight participants, the selective influence model

provided the most parsimonious account of the data according to
BIC. That is, unlike Experiment 1, most participants in Experiment
2 appeared to only adjust their response thresholds when asked to
be more or less cautious. Table 3 shows the best-fitting parameters
for each individual under the response-threshold-only model. Each
participants’ four-response thresholds were analyzed in a 2 � 2
(Stimulus [light or dark] � Emphasis [speed or accuracy]) within-
subjects ANOVA. The interaction between emphasis and stimulus
was significant, suggesting that the increase in response thresholds
from speed to accuracy emphasis was larger for dark stimuli
�bDspd

� 0.23 vs. bDacc
� 0.32) than for light stimuli (bLspd

�
0.20 vs. bLacc

� 0.26). The accumulation rate for correct responses
to light stimuli in single- and redundant-target conditions again
revealed that capacity in this discrimination task was limited
�vrtL

� 0.51 � vstL
� 0.74, vcap � �0.23), t(7) � 20.8, p � .001.

Interestingly, accumulation rates for correct responses to dark stim-
uli were higher when there were two stimuli rather than one �vrtD

�
0.89 � vstD

� 0.72, vcap � 0.17), t(7) � 10.2, p � .001. This super
capacity is likely because a correct dark response requires that both
items be processed correctly (i.e., the decision rule is an exhaustive
one). That is, both accumulators for a dark response must reach
threshold before either of the incorrect light accumulators. Because
people were able to identify two dark stimuli quite well, the model
must estimate that the processing of two dark stimuli was more
efficient than the processing of a single dark stimulus.

The change in accumulation rate parameters in the more com-
plex model across emphasis conditions was consistent with the
observed preference using BIC for the response-threshold model.
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We observed no difference between accumulation rates for single-
(vstLacc

� 0.74 vs. vstLspd
� 0.73, p � 0.77) and redundant-target

�vrtLacc
� 0.50 vs. vrtLspd

� 0.50, p � .83) conditions. Further, for the
two participants who were better fit by the model that assumed
accumulation rates were influenced by emphasis, the pattern of accu-
mulation rates were not consistent—both participants showed an
unusual pattern, wherein accumulation rates were higher for single
light stimuli under speed emphasis than accuracy emphasis. One
participant showed no effect of emphasis condition on redundant light
stimuli, while the other showed higher accumulation rates for redun-
dant light stimuli under accuracy emphasis. For these participants, the
difference between accuracy- and speed-emphasis conditions was
much larger for dark stimuli than light stimuli, and so perhaps the
selection of the more complicated model for these two participants
was driven by the dark stimuli, and not the light stimuli.

Assessment function. In Experiment 2, we were able to use the
A(t) functions derived by Townsend and Altieri (2012). Rather than
restate all of their equations, we point the reader to their Table 1 (more
specifically, Equations I-IV in the Table). Despite the different for-
mulation, the idea behind the assessment functions is identical to that
used to derive the equations used in our Experiment 1. Responses are
partitioned into the four types of responses outlined earlier (correct
and fast, incorrect and fast, etc.). The key difference is that the
decision rule in Experiment 2 is that participants should respond
“light” if any item in the display is light, and “dark” only if there are
no light items present. As such, a correct and fast response on a
redundant-target trial (i.e., when there were two light stimuli present)
would happen in one of five different ways: (a) the light stimulus in
channel A is correctly identified by time t while the light stimulus
in channel B is incorrectly identified as dark, (b) the light stimulus in
channel B is correct by time t while the decision to light stimulus A is
incorrect, (c) the decision to light stimulus A is correct and made by
time t while a correct decision would have been made to light stimulus
B after time t, (d) the decision to light stimulus B is correct and made
by time t while the correct decision to light stimulus A would be made
after time t, and (e) when the decisions to both light stimuli, A and B,
are correct and made by time t. The same logic can be used to develop
assessment functions for incorrect and fast, correct and slow, and incor-
rect and slow responses (see Townsend & Altieri’s (2012) Table 1).

Figure 4 contains the assessment functions for each of the types of
responses under speed emphasis (rows 1 and 2) and under accuracy
emphasis (rows 3 and 4). First, we note that the A(t) functions in

Experiment 2 appear similar to those from Experiment 1 (see Figure
2). More specifically, there is a qualitative correspondence between
the speed-emphasis and accuracy-emphasis conditions, which can be
summarized as follows:

(1) As in Experiment 1, for both speed and accuracy con-
ditions, the correct and fast A(t) measure is less than 1,
indicating limited capacity or correct responses occur-
ring slower and less frequently than expected. However,
unlike Experiment 1, we saw little difference in the
qualitative shape of the A(t) function between speed-
and accuracy-emphasis conditions.

(2) The assessment function for incorrect and fast responses is
greater than 1, indicating that fast, incorrect responses were
more probable in the observed data than predicted under
the baseline model.

(3) Correct and slow response A(t) functions are greater than 1
in both conditions, indicating that slow, correct responses
were slower and more likely to occur in the observed data
than under the baseline model. Also note again that both
functions have the same shape under speed and accuracy
emphasis, unlike in Experiment 1.

(4) Finally, the assessment functions for incorrect and slow
responses were approximately equal to or less than 1 for
most observers in both the speed- and accuracy-emphasis
conditions. Compared with the baseline model, the proba-
bility of an incorrect and slow response was about the same
or perhaps slightly less than what was expected. This
exception likely reflects a trade-off with accuracy in Ex-
periment 2; that is, on the whole, accuracy was higher
overall in both conditions than in Experiment 1. Conse-
quently, once error responses were parceled out into fast
and slow quadrants, there were likely to be fewer overall
slow errors. Notwithstanding this difference to Experiment
1, capacity considered across all four processing categories
was consistent with a limited capacity process. The overall
effect of shifting from accuracy to speed emphasis was to
shift the assessment function earlier in time without chang-
ing its qualitative character.

Table 3
Best-Fitting Parameter Estimates for Each Individual Participant in Experiment 2

Parameter

Participant

1 2 3 4 5 6 7 8

s 0.27 0.24 0.26 0.31 0.24 0.25 0.24 0.19
A 0.18 0.06 0.06 0.06 0.02 0.05 0.01 0.07
t0 0.25 0.23 0.21 0.23 0.26 0.23 0.28 0.21
bLspd

0.20 0.16 0.24 0.19 0.15 0.20 0.21 0.25
bLacc

0.26 0.20 0.33 0.25 0.16 0.22 0.37 0.34
bDspd

0.20 0.18 0.25 0.22 0.20 0.25 0.23 0.31
bDacc

0.29 0.22 0.35 0.31 0.23 0.30 0.43 0.41
vstL

0.76 0.73 0.80 0.76 0.71 0.72 0.80 0.68
vrtL

0.53 0.51 0.55 0.53 0.41 0.48 0.58 0.48
vstD

0.77 0.71 0.60 0.74 0.73 0.79 0.78 0.68
vrtD

0.89 0.87 0.80 1.00 0.89 0.89 0.95 0.82
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In addition to the conditional assessment functions reported in
Appendix B, we also carried out one further analysis related to the
impact of having distracting information on processing. The design
of Experiment 2 was such that there were trials in which light
stimuli were presented alone, and also in the presence of a dis-

tracting, dark stimulus. Appendix C reports an analysis of the
impact of the distractor item on the processing of the light stim-
ulus, but the results are consistent with those in Figures 2; the
presence of an additional stimulus degraded performance, suggest-
ing that workload capacity is limited, but there appears to be

Figure 4. Assessment functions for incorrect and fast, correct and fast, incorrect and slow, and correct and slow
responses under speed- and accuracy-emphasis conditions (top and bottom set of plots, respectively) in
Experiment 2.
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relatively little difference between capacity under speed- and
accuracy-emphasis conditions.

Discussion
In Experiment 2, we again observed that the increased caution

when instructed to respond accurately led to an increase in the
proportion of correct responses and in mean RT. However, unlike
Experiment 1, we found that more caution led participants to simply
collect more evidence before making a decision, while their capacity
remained unchanged. This result was found using both the nonpara-
metric assessment function, and the parametric LBA capacity mea-
sure. That is, in Experiment 2, participants appeared to trade speed for
accuracy in the usual way.

Unlike participants in Experiment 1, those in Experiment 2 showed
no further reduction in capacity when being more cautious. We take
this result to suggest that participants did indeed ignore one of the two
stimuli when being less cautious in Experiment 1. Further, because
participants were not at chance during the catch trials, wherein both
light and dark stimuli were presented, participants in Experiment 2
appear to have attended to both stimuli before making a decision. It
seems likely that the instructions we provided in Experiment 2, and
the existence of the catch trials, forced participants to process both
stimuli before making a response. Interestingly, participants in Experi-
ment 2 were now more consistent with what is usually observed when
caution is manipulated in simple-choice RT tasks—a selective influence
of caution on the amount of evidence required to make a decision.

General Discussion

We have presented the first examination of the SAT effect in the
context of multiple signal processing, using newly developed
measures of workload capacity that can accommodate both accu-
racy and RT. We found that responding more accurately had a
large effect on the pattern of correct and error RT distributions. For
instance, responding with an emphasis on fast responses resulted in
incorrect responses that were faster than correct responses; by
contrast, an emphasis on accuracy resulted in incorrect responses
that were slower than correct responses (Ratcliff & Rouder, 1998).
This pattern of results has proven challenging for models of choice
RT that do not include mechanisms to allow for between-trial
variability in drift rates or starting point (Smith & Ratcliff, 2004).
Models that can handle this pattern, such as the LBA model,
handle the effect of caution by proposing that when making fast
responses, observers require less evidence than when making
cautious responses.

Our experiments suggest that the primary influence of the SAT
required by the decision maker is not on the capacity of a process-
ing system, but on the amount of evidence required to make a
choice. The selective influence of caution on response thresholds
is in line with the vast majority of results in two-choice tasks (e.g.,
Brown & Heathcote, 2005; Forstmann et al., 2008; Forstmann et
al., 2010; Forstmann et al., 2011; Ratcliff & Smith, 2004). In our
second experiment, the assessment function was barely changed at
all between the speed- and accuracy-emphasis conditions.

Interestingly, we found that participants were capable of strate-
gically ignoring redundant information when forced to process
information quickly. As such, our results suggest that when par-
ticipants trade accuracy for speed in more complex tasks, they may

not simply collect less evidence before making a response, but may
also look for strategies that reduce the load of their processing
system. In Experiment 1, participants responding quickly would
ignore redundant information, which lifted the burden off of their
limited-capacity processing architecture. However, we found that
participants were only willing to ignore the redundant information
when they could be certain that it was indeed redundant. In
Experiment 2, when we broke the contingency that pairs of stimuli
were always identical, we found that participants almost always
processed both stimuli regardless of how much caution was re-
quired.

In Experiment 1, the rate of evidence accumulation was faster
when participants were being more cautious for both single and
redundant trials. This is an unusual pattern, because caution is
usually found to have a selective influence on response thresholds
and not accumulation rates. However, our result is not unprece-
dented. For example, Heathcote and Love (2012) and Vandeker-
ckhove, Tuerlinckx, and Lee (2008) found that accumulation rate
parameters varied across caution conditions in fits to empirical
data. Rae, Heathcote, Donkin, and Brown (in press) also found
model-free evidence using a signal-to-respond task to support the
notion that participants accumulate evidence at a more efficient
rate when attempting to be more accurate. However, the effect of
caution on accumulation rate was not present in Experiment 2. The
difference between performance in speed- and accuracy-emphasis
conditions was much smaller in Experiment 2, presumably because
participants could no longer ignore half of the stimuli on
redundant-target trials. We suspect that participants in Experiment
1 were so motivated to respond quickly under speed emphasis that
they not only ignored redundant information, but also extracted
degraded evidence from stimuli. In Experiment 2, participants
could not ignore the redundant information, and therefore could
not respond as quickly as they might have liked to, and so appeared
to have extracted information from stimuli at the same rate as
when they were making accurate decisions.

One might wonder whether we have a preference for either the
nonparametric or parametric capacity measures given that both
have their advantages and disadvantages. The A(t) measure has the
benefit of giving a continuous measure of capacity, whereas vcap is
a single number that summarizes the overall capacity. Under
certain assumptions, the nonparametric measure is also capable of
revealing differences in processing architecture (i.e., limited ca-
pacity when processing is not parallel). On the other hand, the
LBA-based model we presented here enforces a parallel process-
ing architecture. Though it is possible to arrange LBA accumula-
tors in such a way that they do not have a parallel architecture (e.g.,
Donkin & Shiffrin, 2011, constructed a serial LBA model; see also
Fific, Little, & Nosofsky, 2010 and Little, Nosofsky, Donkin, &
Denton, 2013, who develop serial and parallel architecture models
using other sequential sampling assumptions), such alternatives
generally lose the computational advantage that the LBA model
offers. On the other hand, vcap allows for more targeted assessment
of “noncapacity” aspects of decision making that are related to
psychologically valid mechanisms, such as the effect of caution on
response thresholds that we observed here. The A(t) measure is
also more open to interpretation—we did observe subtle differ-
ences between A(t) in the speed- and accuracy-emphasis condi-
tions, and we must rely on our interpretation that these differences
are indeed small, and on the combination of evidence from mul-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

13SPEEDED CAPACITY



tiple sources. Nonetheless, we believe that using both measures in
concert can provide converging and complementary information
about the underlying processing system.
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Appendix A

Derivation of the Assessment Function for Experiment 1

We describe the assessment function for our alternative decision rule in the same manner that
Townsend and Altieri (2012) developed their assessment function, by breaking up the likelihood of
responses into the following categories: correct and fast, incorrect and fast, correct and slow, and
incorrect and slow. The definitions of these terms are identical to those outlined in the main text. For
example, a correct and fast response refers to the likelihood that a response is correct and has finished
at or before time t. In each case, the response is determined by whichever process finishes first.

To calculate the assessment function for correct and fast, we consider how a response can be made
when a target is presented in both locations A and B. A correct and fast response occurs when either
the target in location A is correctly classified OR the target in location B is correctly classified at or
before time t. Therefore, the likelihood of a correct and fast response is the sum of the following
likelihoods: Either target A is correctly classified at or before time t (correct and fast) while target
B is not classified by time t (and, therefore, could be either correct or incorrect—and therefore either
correct and slow or incorrect and slow), target B is correct and fast while target A is correct and slow
or incorrect and slow, or both target A and target B are correct and fast. These likelihoods can be
expressed using the following equation:

P{Correct and Fast} � P{A Correct is First and at or before t}

� P{B Correct is First and at or before t}

�P{TAC
� TAI

, TAC
� TBC

, TAC
� TBI

, TAC
	 t}

� P{TBC
� TBI

, TBC
� TAC

, TBC
� TAI

, TBC
	 t}.

To get a function that can be estimated from observable data, we first condition the first term on
the probability of A correct and second term on the probability of B correct.

�P{TAC
� TAI

}P{TAC
� TBC

, TAC
� TBI

, TAC
	 t�TAC

� TAI
}

� P{TBC
� TBI

}P{TBC
� TAC

, TBC
� TAI

, TBC
	 t�TBC

� TBI
}.

Because the completion time for A is the faster of AC and AI, we can replace TBC
�

TAC
, TBC

� TAI
with TBC

� TA and likewise for B in the second term. Next, assuming the densities
for the completion time of AC conditioned on AC � AI and for the completion time of BC conditioned
on BC � BI exist, which we denote ƒA|C (t) and ƒB|C (t), respectively,

�P{TAC
� TAI

}�0

t
P{t� � TB�TAC

� TAI
}fA�C(t�) dt�

� P{TBC
� TBI

}�0

t
P{t� � TA�TBC

� TBI
}fB�C(t�) dt� .

If we assume unlimited capacity, independent, parallel processing, then the completion times of
TA and TB are independent, so we can drop the conditioning,

�P{TAC
� TAI

}�0

t
P{t� � TB}fA�C(t�) dt�

� P{TBC
� TBI

}�0

t
P{t� � TA}fB�C(t�) dt� .

Using FA (t) � P{TA 	 t} and FB (t) � P{TB 	 t} for the cumulative distribution functions of
A and B, we now can write the correct and fast discrimination assessment function as,

ACF
OR(t) �

log[P{TAC
� TAI

}�0

t
[1 � FB(t�)]fA�C(t�) dt� � P{TBC

� TBI
}�0

t
[1 � FA(t�)]fB�C(t�) dt�]

log[P{TABC
� TABI

}FAB�C(t)]
.

P�TAC
� TAI

� can be estimated with the hit rate when only A was presented, P�TBC
� TBI

� can be
estimated with the hit rate with only B presented, and P�TABC

� TABI
� can be estimated with the hit

rate when both A and B were presented. FA (t), FB (t), and FAB (t) can be estimated using the
empirical cumulative distribution function: the number of response times in the condition that were

(Appendices continue)
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less than or equal to t divided by the total number of responses in that condition. To estimate �0
t

�1 � FB�t���fA|C�t�� dt�, sum the value of 1 � F̂B�t�� at each time that there was a correct response
to A alone faster than t.

The same logic that was used to derive the correct and fast assessment function can also be used
to derive the other assessment functions. The correct and slow assessment function is quite similar
to the correct and fast, with the only difference in the bounds of the integral. This comes from
requiring that the model is correct, so either AC or BC must finish first as above, but slow, so
TAC

and TBC
are slower than t,

P{Correct and Slow} � P{A Correct is First and after t}

� P{B Correct is First and after t}

�P{TAC
� TAI

, TAC
� TBC

, TAC
� TBI

, TAC
� t}

�P{TBC
� TBI

, TBC
� TAC

, TBC
� TAI

, TBC
� t}

�P{TAC
� TAI

}�t

�
P{t� � TB}fA�C(t�) dt�

� P{TBC
� TBI

}�t

�
P{t� � TA}fB�C(t�) dt� .

Hence,

ACS
OR(t) �

log[P{TAC
� TAI

}�t

�
[1 � FB(t�)]fA�C(t�) dt� � P{TBC

� TBI
}�t

�
[1 � FA(t�)]fB�C(t�) dt�]

log[P{TABC
� TABI

}[1 � FAB�C(t)]]
.

The incorrect assessment functions are given by swapping the correct and incorrect subscripts in
the correct assessment functions. For, example the correct and fast completion time was determined
by either AC or BC. To be incorrect, then either AI or BI must finish first and, to be fast, that process
must have finished at or before t,

P{Incorrect and Fast} � P{A Incorrect is First and at or before t}

� P{B Incorrect is First and at or before t}

�P{TAI
� TAC

, TAI
� TBC

, TAI
� TBI

, TAI
	 t}

� P{TBI
� TBC

, TBI
� TAC

, TBI
� TAI

, TIC
	 t}

�P{TAI
� TAC

}�0

t
P{t� � TB}fA�I(t�) dt�

� P{TBI
� TBC

}�0

t
P{t� � TA}fB�I(t�) dt� .

Therefore, the incorrect and fast assessment function is given by,

AIF
OR(t) �

log�P{TAI
� TAC

}�0

t
�1 � FB(t�)�fA�I(t�) dt� � P{TBI

� TBC
}�0

t
�1 � FA(t�)�fB�I(t�) dt��

log�P{TABI
� TABC

}FAB�I(t)�
.

Finally, combining the change from fast to slow and from correct to incorrect, we arrive at the
final assessment function for incorrect and slow,

AIS
OR(t) �

log�P{TAI
� TAC

}�t

�
�1 � FB(t�)�fA�I(t�) dt� � P{TBI

� TBC
}�t

�
�1 � FA(t�)�fB�I(t�) dt��

log�P{TABI
� TABC

}FAB�I(t)�
.

(Appendices continue)
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Appendix B

Conditional Assessment Functions

One additional benefit of using the A(t) measures is that we can look at the effect of response
emphasis on A(t), conditioned on the accuracy of responses. Townsend and Altieri (2012) have
outlined how it is possible to decompose the A(t) measure, which takes into account both the speed
and accuracy of responses, into a measure of capacity that takes into account just one of the two
variables. By conditionalizing on the accuracy of responses, we can seek further evidence for
whether capacity is indeed stable across speed- and accuracy-emphasis conditions.

We direct readers to Townsend and Altieri (2012) for full details on how to conditionalize the A(t)
measure on accuracy or speed, but the basic idea is to divide out of each expression for A(t), the
probability that the particular response is made. So, for example, the conditionalized A(t) for
incorrect and fast responses in Experiment 1 is

AIF
OR�t� �

log��
0

t

PA�TAI
� t� � TAC�dt�

PA(C)
·
�
0

t

PB�TBI
� t� � TBC�dt�

PB(C)
	

log��
0

t

PAB�TABI
� t� � TABC�dt�

PAB(C)
	

(5)

The calculation of the conditionalized A(t) for Experiment 2 takes the same approach, and we
direct readers to Townsend and Altieri (2012) for a description of how it is calculated in the context
of their assessment functions.

Figures B1 and B2 show the assessment functions conditionalized on accuracy for speed- and
accuracy-emphasis conditions for Experiments 1 and 2, respectively. With the influence of accuracy
removed, if response thresholds are all that differ between speed and accuracy conditions, we might
expect the effect of changing emphasis on capacity to have reduced, leaving an even smaller
difference between speed- and accuracy-emphasis conditions. For Experiment 2, we see that the
assessment functions have become almost identical. On the other hand, for Experiment 1, we still
see systematic and qualitative differences between the shapes of the assessment functions (consis-
tent with the interpretation of different capacities under different emphasis conditions).
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(Appendices continue)

Figure B1. Conditional assessment functions for incorrect and fast, correct and fast, incorrect and slow, and
correct and slow responses under speed- and accuracy-emphasis conditions (top and bottom set of plots,
respectively) in Experiment 1.
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Figure B2. Conditional assessment functions for incorrect and fast, correct and fast, incorrect and slow, and
correct and slow responses under speed- and accuracy-emphasis conditions (top and bottom set of plots,
respectively) in Experiment 2.

(Appendices continue)
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Appendix C

The Effect of Distractors in Experiment 2

The design of Experiment 2 permits the analysis of the effect of distracting information on
processing capacity. Light stimuli are presented both alone, and in the presence of a distracting dark
stimulus. We can ask what influence the distracting dark stimulus has on the processing of the light
stimulus by using the following equation:

log(1 � F(t�correct and light item alone))

log(1 � F(t�correct and light item with dark item))
(5)

Figure C1 plots this measure for both speed- and accuracy-emphasis conditions. We see that the
functions tend to lie below a value of 1, suggesting that the additional distracting item interfered
with the processing of the light stimulus. Further, we see essentially no difference between the
functions under speed and accuracy emphasis.

Received June 2, 2013
Revision received October 10, 2013

Accepted November 5, 2013 �

Figure C1. The impact of the distracting dark stimulus on the processing of the light stimulus under speed- and
accuracy-emphasis conditions in Experiment 2.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

20 DONKIN, LITTLE, AND HOUPT


