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A classic distinction in perceptual information processing is whether stimuli are composed of separable
dimensions, which are highly analyzable, or integral dimensions, which are processed holistically.
Previous tests of a set of logical-rule models of classification have shown that separable-dimension
stimuli are processed serially if the dimensions are spatially separated and as a mixture of serial and
parallel processes if the dimensions are spatially overlapping (Fifić, Little, & Nosofsky, 2010; Little,
Nosofsky, & Denton, 2011). In the current research, the logical-rule models are applied to predict
response-time (RT) data from participants trained to classify integral-dimension color stimuli into
rule-based categories. In dramatic contrast to the previous results for separable-dimension stimuli,
analysis of the current data indicated that processing was best captured by a single-channel coactive
model. The results converge with previous operations that suggest holistic processing of integral-
dimension stimuli and demonstrate considerable generality for the application of the logical-rule models
to predicting RT data from rule-based classification experiments.
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A fundamental aspect of human cognition involves the manner
in which people represent categories in memory and make deci-
sions about category membership. There is growing agreement in
the field that different cognitive systems may underlie the learning
and representation of different kinds of categories. For example, a
wide variety of ill-defined categories, such as those found in the
natural world, may be represented in terms of prototypes or stored
exemplars. Since the pioneering studies of Posner and Keele
(1968) and Rosch (1973), most research has focused on these
forms of ill-defined categorization.

By contrast, many other categories and concepts appear to be
organized in terms of systems of logical rules. Examples include
varieties of scientific and mathematical concepts, kinship terms,
and linguistic systems. Indeed, recent research has seen greatly
renewed interest in logical rule-based forms of category learning
and representation. Some of this research has been aimed at

predicting the difficulty of learning different concepts based on
their structural complexity or the length of the rules required to
represent them (e.g., Feldman, 2000; Goodman, Tenenbaum, Feld-
man, & Griffiths, 2008; Goodwin & Johnson-Laird, 2011; Vigo,
2009). Other approaches have focused on learning processes in-
volved in the trial-by-trial construction of rules and exceptions to
those rules (Erickson & Kruschke, 1998; Nosofsky, Palmeri, &
McKinley, 1994). Still another major theme has been to identify
the neural systems that mediate rule-based forms of category
learning (e.g., Ashby & Maddox, 2005; Nomura et al., 2007) and
rule-plus-exception learning (Davis, Love, & Preston, 2012).

Finally, modern research is also addressing the psychological
mechanisms that underlie the information-processing of rule-based
categorization (Bradmetz & Mathy, 2008; Fifić, Little, & Nosof-
sky, 2010; Lafond, Lacouture, & Cohen, 2009). One of the insights
from this literature is that there is a wide variety of ways in which
the cognitive system may process a stimulus when deciding
whether a logical rule that defines a category has been satisfied.
Furthermore, the time course of making rule-based categorization
decisions will be strongly influenced by the nature of these under-
lying information-processing mechanisms.

In our view, because evaluating logical rules appears to be one
of the major forms of categorization decision making, understand-
ing the information processing mechanisms that underlie logical-
rule use is of fundamental importance and can significantly ad-
vance our understanding of categorization behavior. As is well
known, it is often extremely difficult to distinguish among predic-
tions of alternative information-processing mechanisms based on
analysis of choice-probability data alone; this limitation is cer-
tainly true in the domain of categorization. Instead, by also ana-
lyzing the time course of categorization decision making through
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the modeling of response-time (RT) data, one can achieve deeper
insights into the psychological processes that implement rule-
based categorization. To achieve this goal it is important to answer
the questions: What should patterns of RT data look like if people
are indeed using logical rules as a basis for making categorization
decisions? And how will these patterns of RTs vary with the
precise information-processing mechanisms that are used to im-
plement the rules?

To address these questions, Fifić et al. (2010) and Little, Nosof-
sky, and Denton (2011) developed a set of logical-rule models of
categorization RTs. As is true of an extremely diverse set of
rule-based models in the field, the models from Fifić et al.’s (2010)
framework assume that people categorize by making independent
decisions about dimensional values and then combining these
independent decisions using logical-rule connectives such as
AND, OR, and NOT (Ashby & Gott, 1988; Bruner, Goodnow, &
Austin, 1956). The main advance of the theory is that these
logical-rule evaluations are implemented in an information-
processing framework. As reviewed below, to achieve this imple-
mentation, the models synthesize decision-bound theory (Maddox
& Ashby, 1996), random-walk RT models (Busemeyer, 1985), and
mental architecture models of information processing (Schweick-
ert, 1992; Sternberg, 1969; Townsend, 1984), enabling predictions
of the time course of categorization for individual stimuli at the
level of full RT distributions. As we demonstrate here, the rich RT
data sets that are analyzed allow one to discriminate among a
variety of distinct rule-based models, as well as to discriminate
members of the class of rule-based models from other major
alternatives in the field.

The logical-rule models address fundamental questions in the
psychology of perception and categorization, such as whether
multiple dimensions are processed sequentially in a serial fashion,
simultaneously in parallel, or are pooled into a single coactive
processing channel (Miller, 1982; Townsend & Wegner, 2004).
The logical-rule framework has already been applied to investigate

processing of a number of different stimulus types (see Figure 1),
and distinct processing mechanisms are sometimes associated with
the different types. For example, Fifić et al. (2010) and Little et al.
(2011) used the models to analyze the speeded categorization of
highly analyzable separable-dimension stimuli (Garner, 1974;
Shepard, 1964), such as forms varying in shape and color. That
research suggested that when the separable dimensions are also
spatially separated (e.g., see the lamp stimuli in Figure 1), the
processing of each dimension occurs in serial (Fifić et al., 2010;
Little et al., 2011). By contrast, in cases involving spatially over-
lapping separable dimensions (e.g., see the rectangles with inset
vertical line in Figure 1), rule-based categorization decision mak-
ing involves a mixture of serial and parallel processing (Little et
al., 2011).

An important contrast in the psychology of perception is drawn
between stimuli composed of separable dimensions and those
composed of integral dimensions, such as colors varying in bright-
ness and saturation (Garner, 1974). A variety of converging oper-
ations suggests that, unlike separable-dimension stimuli, integral-
dimension stimuli are processed holistically (Garner, 1974). For
instance, people tend to sort integral stimuli based on overall
similarity but separable stimuli based on individual dimensions
(Garner, 1974); classification errors can be predicted from pair-
wise identification errors for integral stimuli (Shepard & Chang,
1963) but not for separable stimuli (Shepard, Hovland, & Jenkins,
1961); attention-learning in categorization tasks takes place effi-
ciently for separable-dimension stimuli (Nosofsky, 1986) but not
for integral-dimension stimuli (Nosofsky, 1987; Nosofsky &
Palmeri, 1996); and stimulus similarities are better described by an
Euclidean-distance metric if the stimulus dimensions are integral
but by a city-block distance metric if they are separable (Shepard,
1987). Finally, for integral-dimension stimuli, RTs in a unidimen-
sional categorization task are speeded or slowed by the inclusion
of correlated or uncorrelated variation, respectively, on an irrele-
vant dimension. By contrast, RTs to separable-dimension stimuli

Figure 1. Examples of stimuli and dimensions previously tested using the logical-rules paradigm.
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are largely unaffected by such irrelevant variation (Garner &
Felfoldy, 1970). In summary, the distinction between integral- and
separable-dimension stimuli is foundational, because the nature of
the dimensions affects the manner in which stimuli are represented
and how decision making takes place.

To achieve generality, a model of category-based information
processing should be able to account for differences in perfor-
mance based on perceptual separability versus integrality. As
indicated in Figure 1, however, the logical-rule models framework
has not yet been applied in categorization domains involving
integral-dimension stimuli. The purpose of the present work was to
fill that gap and to investigate the information-processing mecha-
nisms by which people classify integral-dimension stimuli into
rule-described categories. As we address in our General Discus-
sion, the outcome of our experiments will yield a further source of
converging operations that distinguish the processing of integral-
versus separable-dimension stimuli.

We should note that Fifić, Nosofsky, and Townsend (2008)
reported initial findings to suggest that classification of integral-
dimension stimuli is accomplished by a coactive processing mech-
anism. The present research goes well beyond that initial work in
several respects. First, we aim to use the logical-rule models to
provide detailed quantitative accounts, at the level of individual
subjects, of complete RT-distribution data associated with individ-
ual stimuli in tasks of rule-based classification of integral-
dimension stimuli. Second, we conduct novel qualitative tests to
contrast the manner in which subjects classify separable-
dimension stimuli versus integral-dimension stimuli into the rule-
based categories. Third, past research involving the logical-rule
models focused on tests involving the performance of only small
numbers of highly experienced observers. Here, we demonstrate in
addition that these contrasts between separable-dimension versus
integral-dimension stimuli are quite general effects, holding for
large numbers of relatively unpracticed subjects as well. Before
proceeding with these new tests and experiments, we first provide
a review of the logical-rule models framework.

Logical-Rule Models

For efficiency, in this review we refer to the category space
shown in Figure 2, which is used in the current experiment and
which is highly diagnostic of which information-processing archi-
tecture best accounts for performance (cf. Townsend & Nozawa,
1995). The category space is populated by nine stimuli created by
orthogonally combining three values of two continuous dimen-
sions, x and y. The four stimuli in the upper right quadrant are
members of the “target” category (A), and the remaining stimuli
are members of the “contrast” category (B). Membership in the
target category can be described by a conjunctive rule: A stimulus
is a member of Category A if it has value greater than or equal to
x1 on dimension x AND greater than or equal to y1 on dimension
y. Membership in the contrast category can be described by a
complementary disjunctive rule: A stimulus is a member of Cat-
egory B if it has value less than x1 on dimension x OR less than y1

on dimension y. The logical-rule models presume that observers
classify the objects by implementing these rules.

Following general recognition theory (Ashby & Townsend,
1986), the logical-rule models assume that the perception of each
stimulus is represented by a bivariate normal distribution. Decision

Figure 2. Top panel: Schematic illustration of the category structure used
for testing the logical-rule models. Each stimulus is represented by a
bivariate normal distribution over two dimensions, x and y. There are three
values per dimension, combined orthogonally to produce the nine members
of the stimulus set. The stimuli in the upper right quadrant of the space are
the members of the “target” category (A), whereas the remaining stimuli
are the members of the “contrast” category (B). Bottom panel: Three
architectures are contrasted on how they process the target category stim-
ulus, x1y2 (shaded in the top panel). The serial model processes both
dimensions, one after the other, using the marginal x and y distributions to
drive separate random walks; the final response time (RT) is given by the
sum of the two individual RTs. The parallel model uses the marginal
distributions to processes both dimensions simultaneously; because this
stimulus is from the target category and requires exhaustive processing, the
final RT for this stimulus is given by whichever dimension takes longer
(i.e., the maximum RT for the two dimensions). The coactive model uses
the joint bivariate normal distribution to drive a single random walk, which
provides the final RT.
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boundaries are established by the observer to separate Region A
from Region B (the dashed lines in Figure 2). To make a category
decision for a stimulus, the observer decides where the perceptual
distribution falls along each dimension. In the present logical-rule
models, these decisions are governed by random-walk processes
driven by information that is sampled from the perceptual distri-
butions.

First, the stimulus dimensions may be processed independently,
with each dimension driving a separate random walk. That is, one
random-walk process would determine to which side of the x
decision boundary a stimulus falls, and a separate random-walk
would do the same for dimension y. Furthermore, in this case, the
independent dimensions may be processed in either serial or
parallel fashion (see Figure 2, bottom panel). The final decision
and RT are determined either by the random walk that finishes
first, in the case of a self-terminating stopping rule, or by the
output of both random walks, for cases involving an exhaustive
stopping rule.

More specifically, suppose a stimulus is presented and the
observer is making a decision regarding the stimulus’s location on
dimension x. A random-walk counter with an initial value zero
accumulates information toward either the �A or �B criterion. At
each time step, a sample is taken from the marginal perceptual
distribution along dimension x. If that sample falls into the Cate-
gory �A region, the counter steps toward �A; otherwise, the
counter steps toward �B. The process continues until a criterion is
reached. An analogous random-walk process takes place along
dimension y. The decision time along each dimension is deter-
mined by the number of steps necessary to complete each random
walk.

The final categorization response is determined by which of the
logical-rules is satisfied. For the serial and parallel models, this
decision is achieved by combining the results of the individual
random walks according to whether the stopping rule is self-
terminating or exhaustive. For example, if the first finishing ran-
dom walk reaches the B criterion, then a self-terminating model
would stop, because the disjunctive OR rule that defines Category
B has already been satisfied. By contrast, exhaustive models
assume that even if the first random walk reaches the B criterion,
the second random walk must be completed prior to making the
decision. Note that for the current category space, the self-
terminating/exhaustive distinction applies only to stimuli from
Category B, which instantiates an OR decision rule. By contrast, a
Category A response can be successful only if the stimulus values
are above the boundary on the y axis AND to the right of the
boundary on the x axis; hence, exhaustive processing is required
for Category A stimuli.

The preceding discussion pertained to cases involving indepen-
dent decisions along each dimension. However, for cases involv-
ing integral-dimension stimuli, a different architecture based on
coactive processing may be involved. According to the coactive
model, instead of separate random walks operating along each
dimension, there is a single random walk driven by samples from
the bivariate perceptual distribution defined over dimensions x and
y. On each step, a sample is drawn from the bivariate perceptual
distribution associated with the stimulus. If the sampled percept
falls in Region A (defined by the combined x and y decision
bounds), then the single random walk steps toward Criterion �A.
Otherwise, if the sampled percept falls in Region B (defined by the

combined bounds), the random walk steps toward Criterion �B.
The process continues until one of the criteria is reached. Note that
the exhaustive/self-terminating distinction does not apply to the
coactive model, because only a single random walk is taking place.

In their previous applications of the rule models, Fifić et al.
(2010) and Little et al. (2011) assumed perceptual independence
and perceptual separability of the dimensional distributions
(Ashby & Townsend, 1986), because the stimuli varied along
highly separable dimensions. Although the stimuli used in the
current experiments were composed of integral dimensions, for
simplicity we nevertheless maintained these assumptions in
deriving quantitative fits from the models. More accurate pre-
dictions of the classification RTs could likely be achieved by
first estimating more fine-grained representations for the stim-
uli (e.g., Maddox & Ashby, 1996; Nosofsky, 1986; Thomas,
1996). The crucial point, however, is that these simplifying
assumptions do not a priori favor one of the processing archi-
tectures over the others. In our General Discussion, we report
results from analyses that examine predictions from the logical-
rule models in cases involving more complicated representa-
tional assumptions. As will be seen, the major qualitative con-
trasts for distinguishing among the alternative architectures
remain intact.

Qualitative Contrasts (Target Category)

Fifić et al. (2010) provided a set of qualitative contrasts for
differentiating the predictions from the alternative models. To help
describe the predictions, we make reference to Figure 3 (left
panel), which illustrates the brightness-saturation coordinates for
the integral-dimension color stimuli used in our experiments and
which provides a notation for the main stimulus types. The qual-
itative predictions from the models for the target-category mem-
bers are illustrated schematically in the left panels of Figure 4.
(Note: Figure 4 is presented in two separate 3 � 2 sections on
consecutive pages.)

Following previous convention (Townsend & Nozawa, 1995),
the four members of the target category are denoted LL, LH, HL,
and HH, where “L” denotes a “low-salience” dimension value
(close to the decision bound) and “H” denotes a “high-salience”
value (see Figure 3). Naturally, H values lead to faster decisions
than L values, because the H values are farther from the catego-
rization decision bounds. The pattern of mean RTs for the target
category can be quantified by using a measure known as the mean
interaction contrast (MIC; Townsend & Nozawa, 1995), which
expresses the type of interaction in mean RTs (in ms) between the
factorially combined stimuli in the target category:

MIC � �RTLL � RTLH� � �RTHL � RTHH�. (1)

As shown in Figure 4 (left panels), the MIC distinguishes among
the models based on whether MIC � 0, an additive pattern
predicted by the serial models; MIC � 0, an under-additive pattern
predicted by the parallel models; or MIC � 0, an over-additive
pattern predicted by the coactive model (Townsend & Nozawa,
1995). The basis for these qualitative predictions for the target-
category members has been described in numerous previous arti-
cles, including many that predate the logical-rules models frame-
work (for a recent review, see Fifić et al., 2008). Therefore, we
omit providing a detailed explanation in this section.
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Qualitative Contrasts (Contrast Category)

The more novel qualitative contrasts to be examined in this
work involve results from the contrast category. In particular, Fifić
et al. (2010) showed that the patterns of mean RTs for the contrast
category also differentiate the models (see Figure 4, right panels).
Again, we make use of the notation in Figure 3 (left panel), where
“R” denotes the “redundant stimulus” that satisfies the disjunctive
rule on both dimensions; and where “I” and “E” denote the
“interior” and “exterior” stimuli on each dimension. We focus our

discussion on the models that assume self-terminating stopping
rules, as those models are the most plausible models in this
paradigm (see e.g., Fifić et al., 2010; Little et al., 2011).

Fixed-Order Serial Self-Terminating Model

Consider a fixed-order serial self-terminating model in which
dimension x (brightness) is always processed before dimension y
(saturation). Assuming accurate responding, the model predicts
that the R, IB and EB stimuli will have the same RTs. The reason

Figure 3. Schematic illustration of the category structure for each participant. A shorthand nomenclature is
used to identify the main stimulus types in the category structure: For the target category (A), H and L refer to
the high- and low-salience dimension values, respectively. The low-low (LL) stimulus is close to both
dimensional boundaries and should therefore have the slowest response times (RTs), while the high-high (HH)
stimulus is far from both boundaries and should have the fastest RTs. The low-high (LH) and high-low (HL)
stimuli are close to only one of the boundaries and should have intermediate RTs. The Category B stimulus
that satisfies the disjunctive OR rule on both dimensions is denoted as the redundant (R) stimulus. The Category
B stimuli closest to the redundant stimulus are denoted the interior (I) stimuli, and the Category B stimuli furthest
from the redundant stimulus are denoted the exterior (E) stimuli. Each participant received the same stimuli but
with a different rotation of the category boundaries.
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is that these stimuli are the same distance from the brightness
bound and processing will self-terminate after the random walk on
the brightness dimension is completed (the disjunctive rule is
already satisfied). The model predicts that RTs for the interior and
exterior stimuli on the saturation dimension (IS and ES) will be
slower, because they require a second stage of processing. Fur-
thermore, as shown in Figure 4 (top-right panel), the RT for IS will
be slower than for ES; the reason is that, during the first stage in
which brightness is processed, subjects will be slower to decide
that IS lies to the wrong side of the brightness bound (i.e., IS is
closer to the brightness bound than is ES). The predictions of the

mixed-order serial self-terminating model are explained in a sim-
ilar fashion but with dimension x processed first on some trials and
dimension y processed first on other trials.

Parallel Self-Terminating Model

The parallel self-terminating model assumes that both dimension x
and dimension y are processed simultaneously and that processing
ends as soon as a Category �B decision is made along either of these
dimensions (i.e., the minimum processing time). This model predicts
equal processing times for the IB and EB stimuli because the distance

Figure 4. Summary predictions of mean response times (RTs) from the alternative logical-rule models of
classification. Each row corresponds to one of the models. The left panels show the pattern of predictions for the
target-category members, and the right panels show the pattern of predictions for the contrast-category members.
As explained in the text, note that regardless of the stopping rule, correct classification of target-category
members requires exhaustive processing. Left panels: MIC � mean interaction contrast; L � low-salience
dimension value; H � high-salience dimension value; D1 � Dimension 1; D2 � Dimension 2. Right panels:
R � redundant stimulus; I � interior stimulus; E � exterior stimulus. For the serial models, if x tends to be
processed before y, then we refer to Dimension x as the first-processed dimension and to Dimension y as the
second-processed dimension. This same terminology is also used for the parallel and coactive models if
processing tends to be faster or more accurate on one dimension than the other. (Figure 4 continues on the next
page.)
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of the brightness value from the brightness boundary is the same for
both the IB and the EB stimulus. For an analogous reason, the parallel
self-terminating model also predicts equal RTs for the IS and ES

stimuli. This model predicts that the R stimulus should be processed
faster on average than the I or the E stimulus because opportunities for
self-termination arise on both the x and y dimensions: If there are
more opportunities to self-terminate the minimum processing time
will tend to be faster.

Coactive Model

Finally, the coactive model uniquely predicts that the interior
stimuli will be processed faster than the exterior stimuli. This
prediction may seem counterintuitive because the interior stimuli
are closer to some of the category boundaries. In point of fact,
however, according to the coactive model, the closer a contrast-
category stimulus is to the redundant stimulus (see the lower left
corner in Figure 2), the faster is its predicted RT. The reason is
that, as one approaches the lower left corner, a greater proportion
of a stimulus’s bivariate perceptual distribution falls in the Cate-
gory �B region (see illustration in Figure 2). Furthermore, as
explained earlier, for the coactive model the step probabilities
toward the �B criterion are determined solely by these bivariate
proportions. That is, anytime a sampled bivariate percept falls in

the B region that is defined by the combined x and y decision
boundaries, the random walk steps toward the �B criterion. Thus,
presentations of the interior stimuli lead to a more efficient random
walk. This prediction of the coactive model has never been tested
in previous research.

As we noted earlier, Fifić et al. (2008) conducted preliminary tests
that classification of integral stimuli would involve coactive process-
ing. However, that earlier study considered only a single contrast
involving the over-additivity for the target category (MIC � 0). In the
present work, we extend the analysis to the contrast category. The
diagnosticity of the contrast-category RTs was not known when Fifić
et al. conducted their study, and their design did not utilize all of the
contrast-category items. As shown in Figure 4, each of the rule
models yields its own unique signature of the pattern of mean RTs
(considered collectively across the target and contrast categories), so
the current paradigm is highly diagnostic. Second, Fifić et al. used
only a nonparametric analysis that examined a single qualitative
effect. By contrast, our approach also utilizes parametric model fitting
with the goal of accounting quantitatively for the complete set of
individual-stimulus RT distributions. In a nutshell, we examine the
extent to which the coactive rule model can account for the complete
set of data, which is an approach that provides far more rigorous tests
than attempted previously.

Figure 4 (continued).
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Experiment 1

In Experiment 1, we tested four participants on their speeded
classification of integral-dimension stimuli (colors varying in
brightness and saturation), using the rule-based category structures
in Figure 3. A novel property of our design was that a different
rotation of the category space was used for each participant. We
conducted this manipulation for generality and to reduce the de-
pendence of the results on possible stimulus-specific properties
associated with individual colors. Our central hypothesis is that, in
contrast to previous results involving separable-dimension stimuli,
our applications of the rule models will point toward coactive
information processing.

Method

Participants. Four Indiana University students, with normal
or corrected-to-normal vision, completed the experiment. They
received $9 per session and a $3 bonus per session for accurate
performance.

Stimuli. The stimuli were color squares (187 pixels � 187
pixels) varying in brightness and saturation. The stimuli were
presented at a monitor resolution of 1,280 � 1,024, and subtended
a visual angle of about 4.70 degrees.

Each color was selected from the Munsell hue 5R; the full set of
nine stimuli was created by combining three levels of brightness
(4.0, 5.5, and 7.0) and three levels of saturation (4.0, 7.0, and 10.0).
The standard xyY coordinates corresponding to the Munsell
brightness and saturations (available at http://www.cis.rit.edu/
research/mcsl2/online/munsell_data/all.dat) were converted to
RGB values by converting the xyY values first to CIE XYZ color
space coordinates and then to RGB values using standard trans-
formations (Rossel, Minasny, Roudier, & McBratney, 2006). The
Munsell brightness-saturation levels and associated RGB coordi-
nates for each of the stimuli are shown in Table 1.

The assignment of colors to categories was varied across par-
ticipants, as illustrated in Figure 3.

Procedure. Participants completed five sessions on near con-
secutive days. In each session, participants first completed 27
practice trials, followed by 810 experimental trials grouped into six
blocks of 15 presentations of each of the nine colors. During the
experimental trials, each color was presented 90 times per session
and 450 times over the entire experiment. The order of presenta-
tion was randomized anew within each block.

All responses were collected using the mouse. Participants
rested their left and right index fingers on the mouse buttons
throughout testing, with the left button indicating A and the right
button B. Each trial began with a 1,770-ms fixation cross, and a
warning tone initiated 1,070 ms after the onset of the cross and
played for 700 ms.

The first session was a training session. Participants learned the
categories through trial and error by responding to the individually
presented members of the categories and receiving feedback. The
feedback was provided for both correct and incorrect trials, and the
stimulus and feedback remained on screen until the participant
pressed a mouse button.

In the later test sessions, the stimulus was presented until either
a response was made or 5,000 ms passed (a time out). Feedback
was presented only after incorrect trials or time-out responses (e.g.,
“. . . TOO SLOW . . .”). RTs were recorded from the onset of a
stimulus display up to the time of a response. A blank interval of
1,870 ms was inserted between each trial.

The contrasting qualitative model predictions all assume highly
accurate responding; hence, the instructions emphasized accuracy.
However, subjects were also informed that their RTs were being
recorded and to execute their response as soon as they had made
their decision.

Results and Discussion

For each participant/item combination, we excluded trials with
RTs less than 150 ms or greater than two standard deviations
above the mean.1 Less than 4% of the data were excluded. Error
rates were low, with the exception of the items with the slowest
RTs for Participants 1 and 2 (see Table 2).

Mean-RT analyses. The mean correct RTs and error rates are
reported in Table 2 and shown graphically in Figure 5. (The
contrast category dimensions for each participant are labeled as
either first-processed or second-processed depending on which of
the two dimensions was processed faster or slower, respectively.)
Comparison of Figures 4 and 5 suggests that the results are most
consistent with the coactive model. First, replicating the previous
results of Fifić et al. (2008), the mean RTs for the target category
tend to show the over-additive pattern predicted by the coactive
model (although the magnitude of over-additivity is small in some
cases). The second and more novel result is that the mean RTs for
the contrast category (right hand panels) get slower as one moves
from the redundant (R) stimulus to the interior (I) stimuli to the
exterior (E) stimuli, again supporting the predictions from the
coactive model. We should note that the schematic predictions
illustrated in Figure 4 (bottom-right panel) are intended to illus-

1 We also analyzed the data after removing RTs greater than three
standard deviations above the mean. The main analyses all showed that
same qualitative pattern.

Table 1
RGB Values for the Munsell (5R) Colors Used in Experiments 1
and 2

Brightness Saturation R G B

Integral stimulus condition

4.0 4.0 130 86 84
4.0 7.0 150 75 75
4.0 10.0 167 62 66
5.5 4.0 170 125 122
5.5 7.0 192 114 111
5.5 10.0 212 102 101
7.0 4.0 208 163 160
7.0 7.0 233 153 148
7.0 10.0 255 142 137

Separable stimulus condition

5.0 6.0 170 104 102
5.0 8.0 184 97 95
5.0 10.0 197 89 88

Note. R � red; G � green; B � blue.
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trate only a slowing of RTs as one moves from R to I to E. The
relative degree of slowing across the first-processed and second-
processed dimensions will depend on specific parameter settings in
the model. As will be seen, the coactive model achieves accurate
quantitative accounts of the observed results.

We conducted statistical tests to corroborate the descriptions of
the data provided above. Table 3 presents the results of a 4
(session) � 2 (brightness level) � 2 (saturation level) analysis of
variance conducted on the target-category RTs of each participant.
In all cases, the main effects of brightness and saturation were
highly significant, reflecting that subjects were faster to classify
stimuli that were far from the category boundaries. (Because these
main effects are obvious from inspection of Figure 5, the statistical
tests are not shown in Table 3.) As in previous experiments (Little
et al., 2011), there was also a significant main effect of session
resulting from a slight speed-up effect. Most important, for two of
the participants (S2 and S4), there was a significant interaction
between brightness and saturation, confirming the over-additive
pattern of mean RTs. For the remaining two participants (S1 and
S3), however, the interaction was not significant (see Table 3).

Table 3 also presents the results of several paired t tests con-
ducted on the mean RTs from the contrast category. For all
participants, and on both the brightness and saturation dimensions,
the external stimuli were always processed significantly more
slowly than the internal stimuli. Furthermore, this effect was
reasonably stable across sessions. For each subject, we conducted
a three-way analysis of variance (ANOVA) using as factors di-
mension (saturation vs. brightness), item type (interior vs. exte-

rior), and session. In none of the cases did session interact signif-
icantly with item type. Finally, as shown in Table 3, the internal
stimuli were processed significantly more slowly than the redun-
dant stimulus. (This effect was only marginal for stimulus IS for
participant S2.)

In sum, overall, the results point decidedly toward a coactive
processing pattern. We now turn to detailed formal modeling of the
RT-distribution data to provide rigorous tests of the coactive rule
model and develop further contrasts with the other architectures.

Computational modeling. For simplicity, when modeling
the perceptual distributions, we assumed that the mean location for
each individual stimulus was given by its logical coordinates
within the stimulus space. We also assumed equal variances within
a given dimension; however, to model differences in overall dis-
criminability between the dimensions, we estimated separate vari-
ance parameters for Dimension x (	x

2) and y (	y
2). To facilitate

model fitting, we allowed continuous variation in the discrete �A
and �B criterion parameters. Specifically, we assumed that the
criterion locations were uniformly distributed and estimated mean
locations for the �A and �B criteria and a range, R, for the
uniform distribution. On each simulated trial, a criterion location
was sampled randomly from the uniform distribution and then
truncated to its integer-valued setting. We also assumed a log-
normal distribution of residual times (encoding and motor-
execution) with location-parameter 
r and scale-parameter 	r

2. A
scaling parameter k translated the number of steps in each random
walk into ms. In total, the logical-rule models have 10 free param-
eters: the perceptual-variance parameters 	x

2 and 	y
2; decision-

Table 2
Mean Correct RTs (ms) and Error Rates for the Individual Stimuli, Along With the Model Predictions From the Coactive Model

Variable

Item

HH HL LH LL ES IS EB IB R

Participant S1
RT Observed 509.1 540.1 659.6 692.3 598.6 491.0 599.2 514.4 475.5
RT Model 504.5 533.8 651.6 705.3 580.1 518.6 568.5 550.4 464.1
SE 4.14 5.23 10.92 9.95 9.60 5.42 10.80 7.48 5.11
p(e) Observed .01 .01 .06 .13 .06 .01 .03 .01 .00
p(e) Model .00 .01 .10 .18 .05 .01 .03 .02 .00

Participant S2
RT Observed 508.6 605.8 546.2 697.8 607.0 544.4 647.4 604.2 543.6
RT Model 490.3 637.7 552.8 723.6 596.6 563.7 651.5 618.1 523.6
SE 5.95 11.24 7.56 12.19 8.02 5.84 10.63 9.04 7.28
p(e) Observed .00 .03 .02 .23 .02 .01 .05 .03 .00
p(e) Model .00 .07 .01 .22 .03 .01 .07 .04 .00

Participant S3
RT Observed 465.8 534.8 507.8 587.0 519.5 450.8 544.4 457.9 403.7
RT Model 461.0 519.4 501.2 620.0 494.7 464.1 528.1 471.3 424.8
SE 4.18 6.15 5.23 6.11 5.96 4.55 5.33 5.08 3.44
p(e) Observed .00 .01 .03 .04 .01 .00 .02 .00 .00
p(e) Model .00 .00 .00 .05 .00 .00 .01 .00 .00

Participant S4
RT Observed 401.3 443.6 433.6 515.6 467.3 433.6 456.6 425.4 398.8
RT Model 401.0 439.7 436.8 499.7 461.9 443.3 447.6 435.5 399.2
SE 1.94 3.63 2.99 5.71 3.61 4.60 4.36 3.53 2.76
p(e) Observed .00 .00 .00 .03 .01 .00 .01 .00 .01
p(e) Model .00 .00 .00 .02 .01 .00 .00 .00 .00

Note. H and L refer to the high- and low-salience dimension values, respectively. RT � response time; HH � high-high; HL � high-low; LH � low-high;
LL � low-low; E � exterior; I � interior; S � saturation; B � brightness; R � redundant; p(e) � proportion of errors; SE � the observed standard error
of the mean for each item.
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bound locations on Dimensions x and y (Dx and Dy); random-walk
criterion locations �A and �B; the uniform criterion range, R;
residual-stage parameters 
r and 	r

2; and a scaling constant k. For
the serial-self terminating model, an additional parameter, px,
indicated the probability that dimension x was processed before
dimension y.

Following Little et al. (2011), in addition to the serial, parallel,
and coactive models, we also fitted a mixed serial-parallel model
to the data. See Little et al. (2011) for a description of the
additional free parameters used for fitting the mixed model to the
data.

We fitted the models to the correct-RT distributions for each
item separated into fixed width 50-ms bins (Heathcote, Brown, &
Mewhort, 2002; Speckman & Rouder, 2004). We did not fit
error-RT distributions because of the low overall error rates;
however, the error rates strongly constrain the models, because the
models are required to simultaneously fit the error rates and the
correct-RT distributions. Specifically, we searched for the free
parameters that maximized the multinomial log-likelihood fit func-
tion

ln L � �
i�1

n

ln(Ni!) � �
i�1

n �
j�1

m�1

ln (fij!) � �
i�1

n �
j�1

m�1

fij·ln (pij) (2)

where Ni the total number of times that item i (i � 1, n) was
presented, fij is the frequency with which item i had a correct RT
in the jth bin (j � 1, m) or was an error response (m � 1), and pij

(which is a function of the model parameters) is the predicted
probability that each item i had a correct RT in the jth bin or was
an error. The log-likelihoods were converted to Bayesian informa-
tion criteria (BIC; Schwarz, 1978) by penalizing the log-likelihood
with an additional term based on the number of free parameters in
the model, np, and the number of data observations, M:

BIC � � 2lnL � npln (M). (3)

The model that yields the smallest BIC is preferred.
Predictions of the RT distributions and error probabilities were

generated using 10,000 simulations for each individual stimulus.
Fifić et al. (2010, pp. 311–317) provided complete descriptions for
the mechanics of each of the models. Numerical methods are also
available for generating predictions for each of the models (Little,
in press).

The model fits are shown in Table 4. It is important to reem-
phasize that in past cases involving separable-dimension stimuli
(Fifić et al., 2010; Little et al., 2011), the serial self-terminating
and mixed serial/parallel models fitted far better than did the
coactive model. By contrast, with the present integral-dimension
stimuli, we see a dramatic reversal. For all four subjects, the
coactive model yields a much better fit than the serial self-
terminating, serial-exhaustive, and parallel-exhaustive models. For
three of the four subjects, the coactive model also fares consider-
ably better than the parallel self-terminating model. (For S2, how-
ever, the parallel model yields a better fit, although not nearly as
dramatic as the advantage of the coactive model for the other
subjects.) Furthermore, making allowance for a mixture between
parallel and serial processing fails to improve the BIC from the
parallel model (except for S2, where the mixed serial-parallel
model fits slightly better than the parallel model).

To understand the reason for these results, Figure 6 compares
the mean correct-RT predictions from the serial self-terminating,
parallel self-terminating, and coactive models. Clearly, the serial
and parallel models fail to predict the pattern of RTs for the
contrast category. By comparison, the coactive model achieves
excellent accounts of the contrast-category results. In addition, the
parallel model always incorrectly predicts an under-additive pat-
tern of mean RTs for the target category, while the serial model
fails to predict the over-additive pattern observed for S2 and S4.
The coactive model predicts correctly the over-additivity for S2
and S4. Its main failing is that it over-predicts the degree of
over-additivity for S1 and S3.

Figure 5. Observed mean response times (RTs) for the individual sub-
jects and stimuli. Error bars represent � 1 SE. Note that the standard error
bars for the mean RTs are too small to be seen. The left panels show the
results for the target-category stimuli, and the right panels show the results
for the contrast-category stimuli. L � low-salience dimension value; H �
high-salience dimension value; D1 � Dimension 1; D2 � Dimension 2;
R � redundant stimulus; I � interior stimulus; E � exterior stimulus.
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In Figure 7, we present the fit of the coactive model to the full
RT distributions observed for each of the individual stimuli of
each of the participants. (The spatial layout for each participant
has been rotated to match the category space shown in Fig-
ure 2.) The coactive model accounts well for not only the mean
RTs but also for the detailed shapes of the individual-stimulus
RT distributions. (Note also that the model accounts well for the
error rates of the individual stimuli reported in Table 2, al-
though the error rates are generally low.) In our view, these
good quantitative accounts of the individual-stimulus RT-
distribution data provide strong further support for the logical-
rules framework of classification RTs (Fifić et al., 2010), while
at the same time providing insights into the information-

processing architecture that underlies the rule-based classifica-
tion of integral-dimension stimuli.

Other model comparisons. The goal of our design was to
develop sharp qualitative contrasts among only the members of the
logical-rule family displayed in Figure 4. Nevertheless, it is useful
to also consider prominent RT models from the field of perceptual
categorization that are outside this family. In this section, we
consider three such models: the distance-from-boundary model of
Maddox and Ashby (1996), a prototype-based random-walk model
(Nosofsky & Stanton, 2005), and an exemplar-based random-walk
model (Nosofsky & Palmeri, 1997b).

According to Maddox and Ashby’s (1996) distance-from-
boundary model, the observer partitions a perceptual space into

Table 3
Statistical Test Results for the Individual Subjects

Variable

Target category Contrast category

df F Paired comparison M t

Participant S1
Session 3 29.35��� ES–IS 107.69 9.92���

Brightness � Saturation 1 0.1 EB–IB 84.89 6.46���

Session � Brightness � Saturation 3 0.47 ES–R 123.16 11.58���

Error 1,339 IS–R 15.47 2.08�

EB–R 123.75 10.53���

IB–R 123.16 11.58���

Participant S2
Session 3 59.79�� ES–IS 62.67 6.31���

Brightness � Saturation 1 12.87��� EB–IB 43.19 3.11��

Session � Brightness � Saturation 3 7.33��� ES–R 63.41 5.86���

Error 1,286 IS–R 0.74 0.08†

EB–R 103.74 8.20���

IB–R 63.14 5.86���

Participant S3
Session 3 39.98��� ES–IS 68.75 9.20���

Brightness � Saturation 1 1.34 EB–IB 86.51 11.76���

Session � Brightness � Saturation 3 0.73 ES–R 115.85 16.89���

Error 1,378 IS–R 47.11 8.23���

EB–R 140.77 22.21���

IB–R 115.85 16.89���

Participant S4
Session 3 9.14��� ES–IS 33.69 5.72���

Brightness � Saturation 1 28.99��� EB–IB 31.19 5.55���

Session � Brightness � Saturation 3 0.32 ES–R 68.54 15.12���

Error 1,389 IS–R 34.85 6.43���

EB–R 57.80 11.13���

IB–R 68.54 15.12���

Note. E � exterior; I � interior; S � saturation; B � brightness; R � redundant. The mean-interaction-contrast test is highlighted in boldface.
† p � .10. � p � .05. �� p � .01. ��� p � .001.

Table 4
Negative Log-Likelihood and BIC Fits for Each Model

Model S1 S2 S3 S4

Serial self-terminating 594 (1,277) 634 (1,358) 543 (1,175) 426 (941)
Parallel self-terminating 500 (1,082) 552 (1,184) 493 (1,066) 397 (874)
Mixed serial-parallel 498 (1,109) 533 (1,179) 492 (1,098) 393 (898)
Serial exhaustive 767 (1,615) 710 (1,500) 611 (1,303) 535 (1,151)
Parallel exhaustive 808 (1,697) 676 (1,433) 629 (1,338) 554 (1,188)
Coactive 477 (1,035) 559 (1,199) 457 (995) 348 (776)

Note. BIC � Bayesian information criterion; S � subject. Boldface type is used to indicate the best fit. BIC is shown in parentheses.
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category regions using decision boundaries. For the present design,
we assume that the boundaries are the rule-based ones illustrated in
our Figure 2. Presentation of a stimulus gives rise to a noisy
perceptual representation in the space. The observer determines the
region in which the perceptual representation falls and emits the
appropriate categorization response. The RT for making the re-
sponse is assumed to be some decreasing function of the distance
of the perceptual representation from the decision boundary. For
the present design, in which multiple decision boundaries are
involved, additional assumptions are needed to instantiate this
general hypothesis. One possibility is that the RT depends only on
the distance of the percept from the closest relevant bound. For
example, the speed of correct classification of Is and Es in our
Figure 3 would depend only on their distance from the saturation
boundary. An alternative possibility is that the RT depends on the
distance of the percept from the closest bound, regardless of
whether it is relevant or irrelevant. Regardless of which assump-
tion is made, the distance-from-boundary model would fail to
account for the main qualitative pattern of results in our experi-
ment. For example, because Is and Es are equidistant from the
relevant saturation bound, the first version of the model would
predict incorrectly that those two stimuli should have identical RT
distributions. And because Is is closer to the brightness bound than
is Es, the second version of the model would predict that Is would
tend to have slower RTs than Es (whereas our data show the
opposite pattern). In our view, the present logical-rule models
framework improves upon the descriptive RT-distance hypothesis

by incorporating psychological processing assumptions. These in-
clude the sequential sampling of perceptual information to drive
random-walk processes, mental architecture assumptions (e.g., se-
rial vs. parallel vs. coactive processing), and stopping rules (self-
terminating vs. exhaustive processing).

A second major theory of perceptual categorization is prototype
theory (e.g., Reed, 1972), which holds that people classify objects
according to their similarity to the central tendencies of the alter-
native categories. Nosofsky and Stanton (2005) developed an RT
version of prototype theory, in which retrieved prototype informa-
tion was presumed to drive a random-walk process (for details, see
Nosofsky & Stanton, 2005, p. 610). Prototype models would be
unable to account for the data in the present experiment. As is well
known, accurate classification by means of a prototype strategy
requires that the contrasting categories be linearly separable (see
Reed, 1972). It is easy to see from inspection of Figure 2 that one
cannot draw a straight line through the space that perfectly sepa-
rates the members of Category A from Category B. Yet partici-
pants in our experiment performed with extremely high levels of
accuracy on all stimuli.

An alternative model that can capture the general qualitative
pattern of results in this experiment is Nosofsky and Palmeri’s
(1997b) exemplar-based random walk (EBRW) model. According
to the EBRW, people store individual exemplars from each of
previously studied categories in memory. When an item is pre-
sented for classification, the stored exemplars race to be retrieved.
If the retrieved exemplar belongs to Category A then a random

Figure 6. Mean response time (RT) predictions from the serial self-terminating, parallel self-terminating, and
coactive models. L � low-salience dimension value; H � high-salience dimension value; D1 � Dimension 1;
D2 � Dimension 2; R � redundant stimulus; I � interior stimulus; E � exterior stimulus.
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walk counter takes a step toward the �A criterion. If a Category
B exemplar is retrieved then the counter takes a step toward the
�B criterion. The probability with which an exemplar is retrieved
is determined by its similarity to the currently presented item.
Nosofsky and Palmeri (1997b) derived formal predictions for the
EBRW and showed that the RT could be predicted from
the relative “summed similarity” between a presented item and the
stored exemplars from the alternative categories. In general, the
greater the summed similarity between an item and the exemplars
of one category and the less the summed similarity to the other
category, the faster the classification RT for that item.

Fifić et al. (2008, 2010) provided evidence that in the current
paradigm the qualitative predictions of the EBRW are the same
as those of the coactive rule model. The models make similar
predictions because (a) both assume a single-channel random
walk in the evidence-accumulation and decision process, and
(b) the random-walk step probabilities from the exemplar model
are strongly correlated with those from the coactive rule model.
For example, as can be seen in Figure 3 (left panel), as one
moves toward the lower left corner of the space, the summed
similarity of items to the members of Category B increases,
resulting in faster Category B RTs. Future research involving
other experimental manipulations would be needed to sharply
discriminate the coactive rule model from the EBRW model in
this paradigm.2

In our view, although the coactive rule model and EBRW
model yield similar predictions, our results still converge on a
general conclusion: namely, that the type of information pro-
cessing that underlies categorization performance for these

integral-dimension stimuli is “holistic” in nature. That is, our
results suggest that observers are not making separate cognitive
decisions about the category region of the stimuli on each
separate dimension and then combining those separate deci-
sions to emit a final response. Instead, perceptual information
from the individual dimensions is combined at an early stage,
via, for example, coactive processing or retrieval of whole
exemplars, and it is this holistic pooled information that is
driving categorization decision making. For simplicity, in our
ensuing discussions, we refer to this holistic form of perceptual-
category decision making as coactive processing.

Summary and remaining issues. In sum, the overall quali-
tative pattern of results as well as the results from the computa-
tional modeling point strongly in the direction of a coactive
information-processing architecture for classifying these integral-
dimension stimuli into the rule-based categories. Nevertheless,
there are a couple of issues that remain to be resolved. First, for

2 We fitted the EBRW model to the RT-distribution data of the individ-
ual subjects by using the same methods as already described for the
logical-rule models. The EBRW model provided slightly worse BIC fits
than did the coactive-rule model for Subjects 1, 3, and 4, and a slightly
better fit for Subject 2. Because our assumed stimulus configuration
provides only an approximation to the true perceptual spaces of each of the
individual observers, our view is that the small differences in quantitative
fit are not very meaningful. We should note that in previous studies
involving separable-dimension stimuli (Fifić et al., 2010; Little et al.,
2011), the EBRW provided dramatically worse quantitative fits to the data
than did the serial-processing and parallel-processing logical-rule models.

Figure 7. Fit (smooth curves) of the coactive model to the individual-stimulus response time (RT) distribution
data (open bars) of the individual subjects. Each cell of each panel shows the RT distribution associated with an
individual stimulus. Within each panel, the spatial layout of the stimuli has been rotated to match Figure 1 and
Participant S1 in Figure 2.
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two of the participants, the predicted over-additive MIC for the
target-category items failed to reach significance. Of course, we
expect that there must be individual differences in the detailed
perceptual spaces of the individual observers. Possibly, the lack of
significant over-additivity for these two participants may be due to
their perception of the individual colors diverging slightly from the
positions assumed in Figure 3.3 Second, the Experiment 1 results
were limited to only four highly experienced observers. Our reason
for collecting extensive data from only four observers was to
obtain detailed RT-distribution data suitable for quantitative fitting
at the individual-subject level. Nevertheless, questions may arise
regarding the generality of our main qualitative effects. To address
these issues, we decided to conduct a second experiment, using the
same stimuli and category structure as before, but in which we
collected data from a larger number of observers. Rather than
fitting detailed RT distributions of individuals, the central goal was
now to evaluate whether the fundamental qualitative predictions
from the coactive model would be observed at the group level. In
addition, as a source of comparison, we tested a separate group of
subjects on the same rule-based category structure, except using
separable-dimension stimuli instead of integral-dimension ones.
As explained in our introduction and reviewed below, we expect to
see dramatically different mean-RT signatures across the integral-
dimension and separable-dimension conditions.

Experiment 2

In Experiment 2, we sought to replicate our main qualitative
pattern of results from Experiment 1, namely, that for integral-
dimension stimuli: (a) there should be an over-additive pattern of
target-category mean RTs, and (b) the internal stimuli of the
contrast category should have faster mean RTs, on average, than
do the external stimuli. In direct contrast, categorization RTs for
separable-dimension stimuli should show: (a) an additive or under-
additive pattern of target-category mean RTs, and (b) a pattern in
which mean RTs for the internal stimuli of the contrast category
are either the same as or slower than for the external stimuli.

Method

Participants. Thirty-three participants from the University of
Melbourne community were paid $10/session for participation.
The qualitative predictions of RTs from the logical-rule models
hold only under conditions in which observers are responding with
high accuracy (for detailed simulation results, see Fifić et al.,
2008). Therefore, participants were required to achieve a high
level of accuracy (i.e., �90% correct categorization of each stim-
ulus) to be included in the main data analysis. If a participant failed
to achieve this level on the first attempt, he or she was invited to
complete a second session. If the participant failed to achieve the
required accuracy in the second session, the data were discarded.
Nine participants were removed due to below-criterion accuracy.
Five of the retained participants needed to complete the second
session to meet the accuracy criterion.

Stimulus condition (integral vs. separable) and category rotation
(see Figure 3) were balanced across participants. Participants re-
moved for failure to achieve the accuracy criterion were replaced
with new participants in the same condition and rotation. After
deleting participants who failed to meet the accuracy criterion,

there were 24 participants in total, three participants in each of the
Stimulus-Condition � Rotation-Condition cells of the design.

Stimuli. There were two stimulus conditions: an integral-
dimension condition and a separable-dimension condition. The
stimuli in the integral-dimension condition were the same colors as
used in Experiment 1.

The stimuli in the separable-dimension condition were colored
rectangles with an inset vertical line (the same stimuli used in
Experiment 2 of Little et al., 2011). The rectangles were 225 pixels
wide and 150 pixels high, displayed in red (Munsell hue 5R,
brightness-value 5) with a 10-pixel black border. The inset vertical
line, which extended from the lower left corner of the rectangle,
was 100 pixels tall � 10 pixels wide. The saturation of the
rectangles varied in three levels (Munsell-chroma levels 6, 8, and
10), and the vertical line varied in the pixel-distance from the
left-hand side of the rectangle (30, 40, 50 pixels). Munsell hue,
chroma, and value coordinates were converted to RGB values
using the same method described in Experiment 1 (see Table 1).
The separable-dimension stimuli subtended a vertical visual angle
of about 3.64° and a horizontal visual angle of about 5.79°.

The same rule-based category structure was used as in Experi-
ment 1 (see Figure 3). Participants responded to each stimulus by
pressing the left mouse button for Group A and the right mouse
button for Group B. As in Experiment 1, the assignment of stimuli
to categories was varied across participants. For the integral-
dimension condition, the category boundaries were rotated as
illustrated in Figure 3. An analogous set of rotations was created
for the separable-dimension condition but with bar position replac-
ing brightness as the horizontal dimension in Figure 3 and with the
saturation values updated to chroma levels 6, 8, and 10. (We used
slightly different chroma spacings across the integral-dimension
and separable-dimension conditions to achieve roughly equal dis-
criminability across the conditions.)

Procedure. Participants completed nine practice trials (one rep-
etition of each item) followed by 90 training trials (10 repetitions of
each item). Following the training trials, participants completed 540
test trials (60 reps of each item) with a break every 90 trials. The
procedure during the training trials was identical to the procedure used
in the first training session in Experiment 1. The procedure during the
test trials was identical to the procedure used in the test sessions in
Experiment 1 with the following exceptions: (a) to encourage highly
accurate responding, at each break in the test trials, all of the stimuli
were presented on screen with the percentage of correct responses for
that stimulus in the previous block. (b) The duration of the warning
tone was shortened to 100 ms.

Results and Discussion

The practice and training trials were excluded from the analysis.
For the test trials, for each participant/item combination we ex-
cluded trials with RTs less than 150 ms or greater than three
standard deviations above the mean. Error trials were also ex-
cluded. Less than 3% of the data were excluded. As shown in
Table 5, average error rates were low were for all items in both
conditions.

3 This factor may also be relevant in assessing the meaningfulness of the
better fit of the mixed serial-parallel model compared to the coactive model
for Subject 2.
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In the main RT analyses that we report below, we collapsed
across rotations and analyzed the data only at the level of stimulus
condition (integral vs. separable) and item type. We collapsed
across rotation for two reasons. First, there were only three sub-
jects per individual rotation. Second, because the dimensions dif-
fered across the two stimulus conditions, aligning the rotation
variable across the stimulus conditions is arbitrary.

Mean correct RTs for the main item types are shown graphically
in Figure 8, with the results from the integral condition shown in
the top panels, and the results from the separable condition shown
in the bottom panels. First, consider the target-category results (left
panels). For the integral condition, the target-category mean RTs
show an over-additive pattern, consistent with the predictions of
the coactive model (see Figure 4). By contrast, for the separable
condition, the target-category mean RTs are additive or slightly
under-additive, consistent with either a serial or parallel model.

More specifically, the integral condition displayed a positive MIC
(MICIntegral � 132.91 ms), but the separable condition displayed a
negative MIC (MICSeparable � –51.70 ms). Statistical analyses
commensurate with those from Experiment 1 were conducted
separately within each condition (see Table 6). The critical result
is that the Brightness � Saturation interaction was significant for
the integral condition, but the Bar Position � Saturation inter-
action was not significant for the separable condition. In addi-
tion, a direct comparison across the integral and separable
conditions revealed a significant difference in the observed
MICs (MICIntegral � MICSeparable), t(22) � 3.79, p � .001.

Next, consider the contrast-category RTs (see Figure 8, right
panels). Recall that the coactive model is the only member of the
set of logical-rule models that predicts that RTs should get slower
as the stimulus moves from the interior to the exterior of the
stimulus space (see Figures 3 and 4). As can be seen in Figure 8
(top-right panel), precisely this pattern of results was observed in
the integral condition. By contrast, if processing is serial or par-
allel, then mean RTs should either be roughly constant for the
interior and exterior stimuli or else slower for the interior stimuli.
This pattern of results is the one observed in the separable condi-
tion (see Figure 8, bottom-right panel).

This contrast in the pattern of interior versus exterior RTs across
the integral and separable conditions is corroborated by statistical
test. In particular, the average E-I difference was significantly
greater in the integral-dimension condition than in the separable-
dimension condition, t(22) � 1.79, p � .05 (one-tailed). A one-

Table 5
Error Rates for Each Condition in Experiment 2 for Each Item

Condition

Item

HH HL LH LL E1 I1 E2 I2 R

Integral .00 .01 .00 .06 .03 .02 .02 .02 .00
Separable .01 .00 .01 .03 .03 .02 .03 .01 .00

Note. H and L refer to the high- and low-salience dimension values, respectively. HH � high-high; HL � high-low; LH � low-high; LL � low-low;
E � exterior; I � interior; R � redundant.

Figure 8. Observed mean response times (RTs) for the averaged subjects
and stimuli from Experiment 2. Error bars represent �1 SE. The top panels
show the results for the integral stimulus condition; the bottom panels show
the results for the separable stimulus condition. The left panels show the
results for the target-category stimuli, and the right panels show the results
for the contrast-category stimuli. L � low-salience dimension value; H �
high-salience dimension value; D1 � Dimension 1; D2 � Dimension 2;
R � redundant stimulus; I � interior stimulus; E � exterior stimulus.

Table 6
Statistical Test Results for the Average Data From the Integral
and Separable Stimulus Conditions in Experiment 2

Variable

Target category

df F

Integral stimulus condition
Brightness 1 96.19���

Saturation 1 23.24���

Brightness � Saturation 1 10.47��

Error 11
Separable stimulus condition

Bar Position 1 5.3�

Saturation 1 29.28���

Bar Position � Saturation 1 3.93
Error 11

Note. The mean-interaction-contrast test is highlighted in boldface.
� p � .05. �� p � .01. ��� p � .001.
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tailed test is justified because our prior hypothesis is clearly
directional in nature: The coactive model hypothesized for the
integral condition predicts a positive value of E-I, whereas the
serial/parallel models hypothesized for the separable condition
predict a value of E-I that is either zero or negative.

Although the main patterns of results for Experiment 2 corrob-
orate our hypotheses, it is important to acknowledge that we
observed considerable variability in the patterns across the indi-
vidual rotations. Whether this variability is due to the small num-
bers of subjects at each rotation or to stimulus-related factors
involving the category configuration itself remains an open ques-
tion. In follow-up analyses, we found that the factor of rotation did
not interact significantly with stimulus type (E vs. I) in either the
integral-dimension condition or the separable-dimension condi-
tion. However, the lack of a significant interaction may simply
reflect a lack of statistical power due to the small number of
subjects in each cell of the design. We pursue the potential role of
the different category rotations in theoretical analyses reported in
our General Discussion.

In summary, the results from the present experiment lend con-
siderable generality to our earlier findings from Experiment 1.
Taken together, the results support the hypothesis that classifica-
tion of integral-dimension stimuli into rule-based categories is
accomplished via a coactive processing mechanism. We expand
upon these results in our General Discussion.

General Discussion

Summary and Conclusions

The results of this study highlight a fundamental distinction in
the architectures underlying the processing of separable- versus
integral-dimension stimuli in tasks of rule-based categorization.
Past tests of the logical-rule models indicated that in cases involv-
ing separable-dimension stimuli, rule-based classification decision
making operates via serial or mixed serial/parallel processing of
the individual dimensions that compose the stimuli (Little et al.,
2011). From a psychological perspective, the idea is that the
observer makes separate decisions along each individual dimen-
sion regarding the category region in which a stimulus falls. These
separate decisions are then combined to determine which logical
rule has been satisfied. By contrast, the present results suggest that
a dramatically different coactive process operates when people
classify integral-dimension stimuli into rule-based categories. In
coactive processing, rather than making separate decisions along
each individual dimension, information from the individual dimen-
sions is instead pooled into a single channel that governs catego-
rization decision making. These results converge with past classic
ones in the field that suggest that integral-dimension stimuli are
perceived and processed in “holistic” fashion (e.g., Garner, 1974).
The work goes well beyond classic previous results, however, by
formalizing the manner in which the pooled, holistic perceptual
information is accumulated to yield classification decisions in
rule-based categorization tasks.

Contribution of the Current Work

We obtained several sources of converging evidence in favor of
the coactivation hypothesis for the integral-dimension stimuli.

First, we replicated the earlier results of Fifić et al. (2008) that
demonstrated a positive MIC for members of the conjunctive-rule
target category. Second, we obtained support for the novel theo-
retical prediction that the interior members of the disjunctive-rule
contrast category would be classified faster than the exterior mem-
bers. These results were observed for both a small number of
highly experienced observers (Experiment 1) and a larger group of
relatively unpracticed observers (Experiment 2). Third, the coact-
ive model provided outstanding quantitative accounts, at the
individual-subject level, of the complete RT distributions observed
for each of the individual stimuli in the categorization task. In our
view, this ability of the coactive model to account quantitatively
for these rich sets of data with relatively few free parameters is
extremely important. It suggests that, beyond accounting for the
focused qualitative effects of interest (i.e., the positive MIC for the
target category and the interior-stimuli advantage for the contrast
category), the model is likely capturing a wide assortment of other
effects yet to be brought to light. In a nutshell, our verification of
the model’s a priori qualitative predictions combined with its
excellent quantitative fits provides impressive converging evi-
dence in support of the model. Moreover, none of the other
logical-rule models of categorization could predict the focused
qualitative effects, and none came close to the coactive model in
their ability to quantitatively fit the individual-stimulus RT distri-
butions across the individual subjects.

Alternative Perceptual-Representation Assumptions

As acknowledged in our introduction, for simplicity in the
present investigation, we adopted the assumption that the integral-
dimension stimuli in the category structure occupied locations in a
rectangular grid (see Figure 3). Because the saturation/brightness
values of colors from the Munsell system are derived from psy-
chological judgments, this assumption about the structure of the
psychological space in which the colors are organized seems like
a reasonable starting point. Nevertheless, an interesting question is
whether some of the alternative logical-rule architectures could
account for the present data if alternative perceptual-representation
assumptions were introduced. Because there are an infinite variety
of different possible perceptual-representation assumptions, we are
limited in our ability to draw any very general conclusions regard-
ing this issue. Nevertheless, we did conduct investigations involv-
ing one type of alternative perceptual representation with particu-
lar theoretical importance. Various researchers have suggested that
the perceptual representation for integral-dimension stimuli may
display “mean-shift integrality” (e.g., Ashby & Maddox, 1994,
Figure 4). The idea is that as values increase, say, along Dimension
x, there is a correlated increase in the perceived values along
Dimension y (and vice versa), leading to a distorted rhombic
configuration of the type illustrated in Figure 9. In the present
investigation, we were interested to test the predictions of the serial
and parallel-processing architectures when applied to a configura-
tion with mean-shift integrality, rather than the rectangular con-
figuration assumed in the present work. We report the details of
our preliminary investigation in the Appendix. In short, we found
that the serial and parallel models could sometimes predict
coactive-looking results for subsets of the four 90-degree rotations
of the Figure 9 category boundaries. (For example, the parallel
model might predict coactive-looking RT results if the target
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category occupied the upper right quadrant of the 3 � 3 stimulus
space.) Crucially, however, the serial and parallel models never
predicted coactive-looking results after averaging predictions
across the four rotations. Thus, the serial and parallel models of
logical-rule-based categorization would be unable to account for
the data reported in the present experiments simply by adopting the
assumption of mean-shift integrality.

Although the assumption of mean-shift integrality is not suffi-
cient to allow the serial or parallel models to account for the data,
we do not, of course, conclude that more complex perceptual-
representation assumptions are not necessary. Almost certainly,
achieving a complete quantitative account of the present results
would require the derivation of more detailed perceptual maps for
these integral-dimension stimuli, regardless of the information-
processing architecture that operates.

Toward a More Complete Theory of the
Representation and Processing of Integral- and
Separable-Dimension Stimuli

More generally, a crucial goal for future research is to achieve
a deeper theoretical understanding of inter-connections among the
wide assortment of converging operations associated with the
representation and processing of integral-dimension stimuli, in-
cluding the present evidence for coactivation. In this final section,
we take a step toward that goal by considering results from
Garner’s (1974; Garner & Feldfoldy, 1970) hugely influential
speeded classification tasks. Because these tasks provide examples
of speeded classification tasks involving rule-based category struc-
tures, the present theory should have some direct things to say
about them.

Two of the most fundamental of Garner’s (1974; Garner &
Feldfoldy, 1970) speeded classification tasks are the control and

filtering tasks illustrated in Figure 10. The overall set of four
stimuli is constructed by orthogonally combining two values along
each of two dimensions. In the control task, the value on one
dimension is held constant, and participants classify stimuli ac-
cording to values on a single relevant dimension. For example, in
a case in which Dimension x is relevant, participants might be
required to classify Stimulus 1 into Category A and Stimulus 2 into
Category B. In the comparison filtering task, values are allowed to
vary along the irrelevant dimension. Thus, participants would be
required to classify Stimuli 1 and 3 into Category A, and Stimuli
2 and 4 into Category B. The classic result is that, when stimuli are
composed of separable dimensions, there is no interference in the
filtering task, i.e., participants classify objects in the filtering task
as rapidly as they classify stimuli in the control task. By contrast,
when stimuli are composed of integral dimensions, there is inter-
ference. One interpretation is that, when stimuli are composed of
separable dimensions, participants are able to attend selectively to
the single relevant dimension and to “filter” the irrelevant one.
Thus, from a psychological standpoint, there are only two stimuli
in the filtering task, defined by the values on the single relevant
dimension. By contrast, such filtering cannot be achieved in cases
involving integral-dimension stimuli.

The question arises, however, in the case of integral-dimension
stimuli, why should classification of the four stimuli in the filtering

Figure 11. Schematic diagram showing increased perceptual variance
(representing increased stimulus uncertainty) in the filtering task relative to
the control task.

Figure 9. Schematic illustration of the category structure with stimuli
displaying “mean-shift” integrality.

Figure 10. Garner’s (1974; Garner & Felfoldy, 1970) control and filter-
ing conditions. The circles represent isoprobability contours for the per-
ceptual distribution of each stimulus.
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task be any slower than classification of the two stimuli in the
control task? It is worth noting that, in and of itself, the coactive
rule-based model does not provide an explanation of the result.
Presumably, in both tasks, the observer would establish a single
rule-based boundary, such as illustrated in Figure 10. Because the
perceptual distributions are the same distance from the boundary in
the control and filtering tasks, the random-walk process that gov-
erns decisions along that relevant dimension would finish equally
quickly in both tasks.

In a previous attempt to use decision-bound theory to explain
such results, Ashby and Maddox (1994) offered the following idea.
They suggested that because of increased stimulus uncertainty in
the filtering task, the perceptual distributions may have increased
variances in the filtering task relative to the control task, as we
illustrate schematically in Figure 11. They combined this idea with
their RT-distance hypothesis, which we described earlier in this
article. According to that hypothesis, RT is a nonlinearly decreas-
ing function of the distance of a percept from the decision bound-
ary. As can be seen in the right panel of Figure 11, with the
increase in variance, many more percepts will lie very close to the
decision bound in the filtering task compared to the control task.
And because of the nonlinear relation between RT and distance,
the overall mean RT will be slowed in the filtering task compared
with the control task.4

Nosofsky and Palmeri (1997a) criticized that interpretation.
They noted that although the model could predict a slowing of the
mean RTs, it failed to predict the properties of the complete RT
distributions. In particular, as can be seen in Figure 11, although
more percepts are very close to the rule-based boundary in the
filtering task compared to the control task, it is also the case that
more percepts are farther away. Therefore, according to the RT-
distance hypothesis, the fastest individual-trial RTs in the filtering
task should be as fast as or faster than the fastest individual-trial
RTs in the control task. Nosofsky and Palmeri (1997a) collected
detailed RT-distribution data that falsified that prediction.

In light of our newly developed logical-rule models framework, it
is worth noting that the alternative random-walk processing approach
does not have this same problem as does the RT-distance hypothesis.
According to the present approach, multiple percepts from a stimulus
distribution are sampled on each trial, and each sampled percept
drives the random walk to either one category criterion or the other
(see also Ashby, 2000). Each step of the random walk is the same size,
and its direction is decided only by the side of the decision boundary
to which the sampled percept falls. Therefore, the random-walk pro-
cess would predict slowed mean RTs in the filtering task, because an
increased proportion of the stimulus distributions would fall to the
wrong side of the rule-based decision boundary. However, as just
explained, it would not make the same incorrect distributional pre-
dictions as did the RT-distance hypothesis. In a nutshell, by combin-
ing Ashby and Maddox’s (1994) increased-variance idea with the
present logical-rule processing approach, a rigorous and comprehen-
sive explanation of the filtering interference may be forthcoming.

We offer this possibility only as a single example, and numerous
other converging operations that distinguish between integral and
separable dimensions remain to be explained. In view of the highly
successful accounts of speeded rule-based classification performance
obtained by the logical-rule models in the present study (involving
integral-dimension stimuli) and the previous studies of Fifić et al.

(2010) and Little et al. (2011; involving separable-dimension stimuli),
we are now primed to pursue this ambitious goal.

4 Ashby and Maddox (1994) also considered mean-shift integrality,
illustrated in our Figure 9, as another possible explanation of filtering
interference.
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Fifić, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-
processing architectures in multidimensional classification: A validation
test of the systems-factorial technology. Journal of Experimental Psy-
chology: Human Perception and Performance, 34, 356 –375. doi:
10.1037/0096-1523.34.2.356

Garner, W. R. (1974). The processing of information and structure. Po-
tomac, MD: LEA.

Garner, W. R., & Felfoldy, G. L. (1970). Integrality of stimulus dimensions
in various types of information processing. Cognitive Psychology, 1,
225–241. doi:10.1016/0010-0285(70)90016-2

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008).
A rational analysis of rule-based concept learning. Cognitive Science,
32, 108–154. doi:10.1080/03640210701802071

Goodwin, G. P., & Johnson-Laird, P. N. (2011). Mental models of Boolean
concepts. Cognitive Psychology, 63, 34 –59. doi:10.1016/j
.cogpsych.2011.04.001

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2002). Quantile maximum

18 LITTLE, NOSOFSKY, DONKIN, AND DENTON



likelihood estimation of response time distributions. Psychonomic Bul-
letin & Review, 9, 394–401. doi:10.3758/BF03196299

Lafond, D., Lacouture, Y., & Cohen, A. L. (2009). Decision-tree models of
categorization response times, choice proportions, and typicality judg-
ments. Psychological Review, 116, 833–855. doi:10.1037/a0017188

Little, D. R. (in press). Numerical predictions for serial, parallel, and
coactive logical rule-based models of categorization response time.
Behavior Research Methods.

Little, D. R., Nosofsky, R. M., & Denton, S. (2011). Response time tests
of logical-rule-based models of categorization. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 37, 1–27. doi:10.1037/
a0021330

Maddox, W. T., & Ashby, F. G. (1996). Perceptual separability, decisional
separability, and the identification-speeded classification relationship.
Journal of Experimental Psychology: Human Perception and Perfor-
mance, 22, 795–817. doi:10.1037/0096-1523.22.4.795

Miller, J. O. (1982). Divided attention: Evidence for coactivation with
redundant signals. Cognitive Psychology, 14, 247–279. doi:10.1016/
0010-0285(82)90010-X

Nomura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., Gitelman, D. R.,
Parrish, T. B., . . . Reber, P. J. (2007). Neural correlates of rule-based
and information-integration visual category learning. Cerebral Cortex,
17, 37–43. doi:10.1093/cercor/bhj122

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology: Gen-
eral, 115, 39–57. doi:10.1037/0096-3445.115.1.39

Nosofsky, R. M. (1987). Attention and learning processes in the identifi-
cation and categorization of integral stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 13, 87–108. doi:
10.1037/0278-7393.13.1.87

Nosofsky, R. M., & Palmeri, T. J. (1996). Learning to classify integral-
dimension stimuli. Psychonomic Bulletin & Review, 3, 222–226. doi:
10.3758/BF03212422

Nosofsky, R. M., & Palmeri, T. J. (1997a). Comparing exemplar-retrieval
and decision-bound models of speeded perceptual classification. Per-
ception & Psychophysics, 59, 1027–1048. doi:10.3758/BF03205518

Nosofsky, R. M., & Palmeri, T. J. (1997b). An exemplar-based random
walk model of speeded classification. Psychological Review, 104, 266–
300.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological Review, 101,
53–79. doi:10.1037/0033-295X.101.1.53

Nosofsky, R. M., & Stanton, R. D. (2005). Speeded classification in a
probabilistic category structure: Contrasting exemplar-retrieval,
decision-boundary, and prototype models. Journal of Experimental Psy-
chology: Human Perception and Performance, 31, 608–629.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas.
Journal of Experimental Psychology, 77, 353–363. doi:10.1037/
h0025953

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive
Psychology, 3, 382–407.

Rosch, E. (1973). On the internal structure of perceptual and semantic
categories. In T. E. Moore (Ed.), Cognitive development and the acqui-
sition of language (pp. 111–144). New York, NY: Academic Press.

Rossel, R. A. V., Minasny, B., Roudier, P., & McBratney, A. B. (2006).
Colour space models for soil science. Geoderma, 133, 320–337. doi:
10.1016/j.geoderma.2005.07.017

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461–464.

Schweickert, R. (1992). Information, time, and the structure of mental
events: A twenty-five year review. In D. E. Meyer & S. Kornblum
(Eds.), Attention and performance. Vol. 14: Synergies in experimental
psychology, artificial intelligence, and cognitive neuroscience: A silver
jubilee (pp. 535–566). Cambridge, MA: MIT Press.

Shepard, R. N. (1964). Attention and the metric structure of the stimulus
space. Journal of Mathematical Psychology, 1, 54–87. doi:10.1016/
0022-2496(64)90017-3

Shepard, R. N. (1987). Toward a universal law of generalization for
psychological science. Science, 237, 1317–1323. doi:10.1126/
science.3629243

Shepard, R. N., & Chang, J.-J. (1963). Stimulus generalization in the
learning of classifications. Journal of Experimental Psychology, 65,
94–102. doi:10.1037/h0043732

Shepard, R. N., Hovland, H. L., & Jenkins, H. M. (1961). Learning and
memorization of classifications. Psychological Monographs, 75 (13,
Whole Number 517).

Speckman, P. L., & Rouder, J. N. (2004). A Comment on Heathcote,
Brown, and Mewhort’s QMLE method for response time distributions.
Psychonomic Bulletin & Review, 11, 574 –576. doi:10.3758/
BF03196613

Sternberg, S. (1969). Memory scanning: Mental processes revealed by
reaction-time experiments. American Scientist, 57, 421–457.

Thomas, R. D. (1996). Separability and independence of dimensions in the
same–different judgment task. Journal of Mathematical Psychology, 40,
318–341. doi:10.1006/jmps.1996.0032

Townsend, J. T. (1984). Uncovering mental processes with factorial ex-
periments. Journal of Mathematical Psychology, 28, 363–400. doi:
10.1016/0022-2496(84)90007-5

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of
elementary perception: An investigation of parallel, serial, and coactive
theories. Journal of Mathematical Psychology, 39, 321–359. doi:
10.1006/jmps.1995.1033

Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel
processing: New capacity measures and predictions for a response time
inequality series. Psychological Review, 111, 1003–1035. doi:10.1037/
0033-295X.111.4.1003

Vigo, R. (2009). Categorical invariance and structural complexity in hu-
man concept learning. Journal of Mathematical Psychology, 53, 203–
221. doi:10.1016/j.jmp.2009.04.009

(Appendix follows)

19RULES AND INTEGRAL DIMENSIONS



Appendix

Logical-Rule Models Applied to Configurations With Mean-Shift Integrality

We conducted simulations of the serial self-terminating, parallel
self-terminating and coactive logical-rule models in cases in which
the stimuli had the mean-shift-integrality structure depicted in
Figure 9. Across different sets of simulations, we modulated the
degree of mean-shift integrality as follows. We started with the
baseline (square) configuration depicted in Figures 2 and 3 and
assumed that adjacent dimension values were separated by unit
distance. Let Oij denote the object that has logical-value i on
dimension x (xi) and logical-value j on dimension y (yj), where the
logical values are 0, 1, and 2. In the mean-shift integrality repre-
sentation, the mean y�value of object Oij would be set equal to
yj� � yj �  � i. Likewise, the mean x� value of object Oij would be
set equal to xi� � xi �  � j. Across different sets of simulations, we
varied the magnitude of the shift parameter  from .00 to .20 in
increments of .05 to vary the degree of mean-shift integrality. We
set the variances along each dimension to be equal to one another
and presumed zero correlation between the x� and y� values within
each individual stimulus distribution.

In all cases, the decision boundaries Dx and Dy were assumed to
be orthogonal to the coordinate axes of the space, as would be
presumed in applying the present types of logical rules. For each
configuration, the values of Dx and Dy were set midway between
the adjacent stimuli from contrasting categories, as depicted, for
example, in Figure 9. (For example, in Figure 9, Dx would be set
equal to the mean x value among x0y1, x0y2, x1y1, and x1y2.) All
other parameters were set at representative values based on results
of fitting the models to the individual-subject data from Experi-
ment 1. The specific parameter settings for each model are re-
ported in Table A1.

For each mean-shift-integrality configuration, the models were
used to simulate data from each of the 90-degree rotations of the
category boundaries, as depicted in Figure 3. That is, across
rotations, the target category occupied either the upper right quad-

rant, upper left quadrant, lower right quadrant, or lower left quad-
rant. The results reported below were based on 50,000 simulated
trials per individual stimulus per condition. For each combination
of mean-shift-integrality () and category-boundary rotation, we
then computed the MIC for the target-category members, and the
value of E1 � E2 � I1 � I2 for the contrast category. (In all cases,
the predicted error rates for each individual stimulus were less than
.10.) Finally, we averaged across the predictions from the four
rotations to yield the predicted average MIC and E1 � E2 � I1 �
I2 values. These predictions are reported in Table A2. As can be
seen, the average predictions from the models in cases involving
mean-shift-integrality are essentially the same as for the square
configuration (i.e., the case in which  � 0). The serial model
predicts an average MIC essentially equal to zero and predicts a
negative value of E1 � E2 � I1 � I2. The parallel model predicts
a negative average MIC and an average value of E1 � E2 � I1 �
I2 essentially equal to zero. Only the coactive model predicts both
a positive MIC and a positive value of E1 � E2 � I1 � I2.
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Table A1
Parameter Values Used in Mean-Shift-Integrality Simulations of
the Logical-Rule Models

Model px 	x 	y A B 
r 	r k R

Serial .50 .75 .75 4 4 5.85 0.16 40 1.5
Parallel .75 .75 4 4 5.85 0.16 40 1.0
Coactive .50 .50 5 5 5.85 0.16 30 1.5

Table A2
Mean Predictions of MIC and E-I Values from Simulations of
the Serial, Parallel, and Coactive Logical-Rule Models Under
Conditions of Mean-Shift Integrality

Model

Shift Parameter 

0.00 0.05 0.10 0.15 0.20

Serial
MIC 0.11 1.11 0.04 0.56 0.66
E-I �114.71 �117.31 �121.80 �128.71 �137.02

Parallel
MIC �42.15 �41.90 �41.73 �43.10 �44.21
E-I 2.99 2.80 3.98 5.29 6.39

Coactive
MIC 51.35 52.72 57.21 62.68 68.90
E-I 26.72 25.86 25.43 25.39 23.69

Note. MIC � mean interaction contrast; E � exterior; I � interior; E-I �
E1 � E2 � I1 � I2. Holding the stimulus configuration fixed, predictions
are averaged across the four 90-degree rotations of the category boundar-
ies.
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