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The strength of conclusions about the adoption of different categorization strategies—and their impli-
cations for theories about the cognitive and neural bases of category learning—depend heavily on the
techniques for identifying strategy use. We examine performance in an often-used “information-
integration” category structure and demonstrate that strategy identification is affected markedly by the
range of models under consideration, the type of data collected, and model-selection techniques. We use
a set of 27 potential models that represent alternative rule-based and information-integration categori-
zation strategies. Our experimental paradigm includes the presentation of nonreinforced transfer stimuli
that improve one’s ability to discriminate among the predictions of alternative models. Our model-
selection techniques incorporate uncertainty in the identification of individuals as either rule-based or
information-integration strategy users. Based on this analysis we identify 48% of participants as
unequivocally using an information-integration strategy. However, adopting the standard practice of
using a restricted set of models, restricted data, and ignoring the degree of support for a particular
strategy, we would typically conclude that 89% of participants used an information-integration strategy.
We discuss the implications of potentially erroneous strategy identification for the security of conclusions
about the categorization capabilities of various participant and patient groups.
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Perceptual category learning refers to the process by which we
learn to organize different perceptual objects into distinct groups.
The cognitive machinery underpinning this ability has been the
focus of extensive research, and a large part of this effort has
involved attempts to develop computational models that can ac-
count for our capacity to categorize (Pothos & Wills, 2011). Often,
alternative models are fitted to classification data in an attempt to
identify the categorization strategy used across different conditions
of testing and by different populations of subjects, such as younger
versus older adults, or patients with different neurological disor-
ders. We argue here that such identification would benefit from
improvements in the type of data used to fit models, the procedures
for fitting and selecting among those models, and the range of
models under consideration. This reevaluation of data, models and
methods has significant implications for theories of category learn-

ing and for the security of conclusions about the categorization
capabilities of various participant groups.

We illustrate and demonstrate the value of our approach by
examining some of the evidence presented in support of one the
most influential models of perceptual categorization: COVIS
(Competition between Verbal and Implicit Systems; Ashby,
Alfonso-Reese, Turken, & Waldron, 1998). According to COVIS,
categories can be acquired via a verbal system that generates and
tests simple verbalizable hypotheses, or rules, and depends on
structures in the anterior cingulate, the prefrontal cortices, the
medial temporal lobe, and the head of the caudate nucleus (Ashby
& Ell, 2001; Ashby & Spiering, 2004; Nomura & Reber, 2008). In
addition, categories can be learned via a procedural system that
learns to associate a response with regions of perceptual space
based on reinforcement (Ashby, Paul, & Maddox, 2011) and
depends on neural structures in the tail of the caudate nucleus
(Ashby et al., 1998; Nomura & Reber, 2008).

Two types of category tasks are typically used to index the
hypothesized differential engagement of these systems in category
learning. In “rule-based” (RB) tasks, optimal performance can be
achieved via the use of sets of logical rules for partitioning the
objects into categories. In implementing such logical rules, the
observer makes separate decisions about the values of objects
along their component dimensions and then combines those deci-
sions to determine which rule has been satisfied. For example,
lines varying in their length and orientation might be assigned to
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Category A only if they are sufficiently long and sufficiently steep
(i.e., a conjunctive rule). We provide examples of a wide variety of
such RB strategies in the modeling-analysis section of our article.
Because such rules are generally readily verbalizable, COVIS
theorists hypothesize that these RB strategies are learned by the
verbal categorization system.

In contrast, in “information-integration” (II) tasks, optimal per-
formance requires that information from more than one dimension
be perceptually integrated before any categorization decisions are
made (Ashby et al., 1998). For example, one might compare the
overall similarity of an object to the prototypes of alternative
categories and classify the object into the category with the nearest
prototype. Again, there is a wide variety of potential II strategies
and we provide numerous examples in the modeling-analysis
section. Because the different II strategies are often difficult to
verbalize, COVIS theorists hypothesize that II strategies are
learned via the procedural system.

There is an extensive literature that has demonstrated a variety
of experimental dissociations between performance on RB and II
tasks. These dissociations have been taken as evidence in support
of the idea that RB and II tasks are generally learned by the
separate systems hypothesized in the COVIS theory. However, the
interpretation of these dissociations has been the subject of con-
siderable recent debate (e.g., Dunn, Newell, & Kalish, 2012;
Newell, Dunn, & Kalish, 2010, 2011; Nosofsky, Stanton, & Zaki,
2005; Zaki & Kleinschmidt, 2014). This debate is important for a
number of reasons, but not least because in recent years II and RB
tasks have been used as “diagnostic tools” to examine how cate-
gory learning is affected by various neurological conditions (e.g.,
Ell, Marchant, & Ivry, 2006; Huang-Pollock, Maddox, & Tam,
2014; Maddox et al., 2011; Schnyer et al., 2009). Many of these
studies are inspired by the neurobiological bases of the COVIS
model and seek to find evidence that damage to brain regions
hypothesized to underpin the verbal and procedural systems lead to
characteristic detriments in category learning. For example, Ell et

al. (2006) predicted and found that patients with a focal lesion to
the basal ganglia due to stroke were impaired relative to controls
in learning an RB task but that both groups performed equally on
an II task.

However, as Ell et al. (2006) and other authors (Maddox et al.,
2011; Schnyer et al., 2009) emphasize, raw performance accuracy
(e.g., proportion correct) is but one, relatively crude measure of
how participants might differ in learning these tasks. A much
richer assay of performance can be gleaned via the application of
model-based strategy analyses. As stated by Maddox, Pacheco,
Reeves, Zhu, and Schnyer, (2010, p.2999): “models provide im-
portant insights onto the cognitive processes and strategies being
utilized by participants to solve each task. Importantly, this infor-
mation cannot be garnered from an examination of performance
accuracy alone, as qualitatively different strategies often yield the
same performance level.”

In most cases, the standard practice for model fitting in these
studies involves comparing the fit of a single II model to the fits of
two types of RB models to data from II and RB tasks. To illustrate
this practice, consider the stimulus structure shown in the left panel
of Figure 1. This category structure, introduced by Maddox, Filo-
teo, Hejl, and Ing (2004), provides the stimuli for an information-
integration task with four separate regions of perceptual space,
each constituting a different category (A, B, C, & D). The stimuli
themselves are lines that differ in length and orientation. The
rule-based version of this category structure is a rotated version of
this space wherein the category boundaries are vertical and hori-
zontal rather than diagonal (see Maddox et al., 2004). These
structures have been used in numerous recent studies, including the
Ell et al. (2006) one described above, as well as the Maddox et al.
(2010) study of age-related decline in category learning, and the
Schnyer et al. (2009) study of patients with damage to the ventral
prefrontal cortex.

In the Schnyer et al. (2009) study the authors found that al-
though there was an overall accuracy detriment when comparing

Figure 1. The training (left) and transfer (right) stimuli used in our experiment plotted as a function of the
length and orientation of each line. The colors used for training stimuli indicate the category to which they
belong (A � black, B � red, C � green, D � violet). The transfer stimuli belonged to no category. The diagonal
lines drawn with the training stimuli reflect approximately optimal II classification boundaries. See the online
article for the color version of this figure.
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patients to controls on both II and RB tasks, model-based analyses
revealed that better performance of control participants was due to
controls adopting the optimal strategy in a task (e.g., using an II
strategy in an II task). Similarly, Maddox et al. (2010) used
model-based analyses to argue that age-related deficits on an II
task were due to younger adults more consistently applying an II
strategy compared to older adults. Likewise, Ell et al. (2006)
concluded that the impairments in learning an RB task—especially
in the early trials—shown by the basal ganglia patients was due to
control participants showing more optimal use of RB strategies in
RB tasks.

Naturally, the strength of conclusions about the adoption of
different strategies—and their implications for theories about the
cognitive and neural bases of category learning—depend heavily
on the techniques used to identify strategy adoption. For example,
in the studies just outlined, many of the conclusions rely on control
participants being reliably identified as using the appropriate II
strategy in an II task. Our contention is that existing studies fall
short in exploring the range of possible strategies that participants
could adopt in these tasks. If our contention is correct, the concern
raises potential questions about the security of various conclusions
regarding the categorization abilities of different groups of partic-
ipants.

We focus our experimental and modeling analysis on the II
structure presented in the left panel of Figure 1. We chose this
structure because of its prevalence in recent studies (as discussed)
and because it affords a wide range of potential strategies. Al-
though an II strategy is optimal, a variety of alternative RB
strategies could yield similar levels of performance. Failure to
consider this full spectrum of RB strategies may lead to overesti-
mates of the number of participants adopting II strategies.

We see two reasons why such incorrect identification of strat-
egies may have occurred in previous studies using this and similar
II structures. First, in the standard experiments using these tasks
participants are given a series of training trials in which stimuli are
repeated across blocks (e.g., six blocks of 100 trials in which each
of the 100 stimuli are presented once per block). While this
procedure provides a good index of learning, the absence of
transfer trials, in which novel and—crucially—nonreinforced
stimuli are presented limits conclusions about the types of strate-
gies that participants adopt. For example, a participant given the
structure in the left panel of Figure 1 might generate four orthog-
onal boundaries. Each category would correspond to an extreme
value along each dimension, marked by those boundaries (i.e., far
to the left, far to the right, far up, or far down). The application of
such a strategy would leave relatively few stimuli for which
responding would be ambiguous (i.e., different rules point to
different responses). The limitation of the standard designs is that
there are too few data points to sharply discriminate between such
a RB strategy and the assumed II strategy. That is, the participant
is almost never asked to classify a stimulus for which the II and RB
models make sharply divergent predictions.

Our solution to this problem is to introduce a block of transfer
trials following standard training (cf. McKinley & Nosofsky,
1996). The right panel of Figure 1 shows the areas of the stimulus
space from which these transfer stimuli are drawn. As can be seen,
the stimuli occupy those regions of the space that are underrepre-
sented (or absent) in the training trials. As we soon demonstrate,
these transfer stimuli occupy regions of the stimulus space that

sharply contrast the potential RB and II strategies for classifying
the training stimuli. As explained in detail in the Method and
Procedure sections, we withheld corrective feedback on these
transfer trials to prevent any learning about these stimuli, thereby
gaining a pure measure of the boundaries participants adopt as a
result of training.

The second reason for possible misidentification of strategy use is
simply the limited number of potential models fit to the data in
previous experiments. Many papers (e.g., Schnyer et al., 2009) com-
pare the fits of only two variants of an RB model and one version of
an II model. We include these models in our own analyses but embed
them in a much wider range of both RB and II variants. We investi-
gate this extended set of models in recognition of the fact that there are
many ways a participant can represent the stimulus space depicted in
Figure 1 and still achieve satisfactory performance. Finally, as will be
seen, in drawing conclusions about strategy use, our model-selection
methods will incorporate uncertainty in evaluating the extent to which
competing models account for the data.

In summary, we conducted an experiment in which participants
were given stimuli generated by the II structure shown in Figure 1.
They learned to classify these stimuli across 400 training trials and
then completed a further 249 transfer trials. We then fit a variety
of RB and II models to individual data profiles. Our aim was to
gain greater insight than has previously been provided into the
ways participants solve this information-integration task.

Method

Participants

Sixty-two first-year psychology students from UNSW partici-
pated in return for course credit. (We chose to collect data for 4
days and the 62 subjects were those who agreed to participate
during this time span.)

Design and Stimuli

Participants classified black lines of varying length and orien-
tation, presented on a white background, into four categories. In
the first phase of the experiment, participants completed four
blocks of 100 training trials. Each of the 100 stimuli shown in the
left panel of Figure 1 was presented once per block during training.
The lengths and orientations of the lines were taken directly from
the bottom right panel of Figure 1 in Schnyer et al. (2009). The
color used to represent each stimulus in the left panel of Figure 1
reflects the category to which the line belongs (category A stimuli
are shown in black, category B in red, C in green, and D in violet).
In the second phase of the experiment, participants completed a
further 249 test trials. Of the test trials, half (124) were the familiar
training stimuli, with each of the 100 training stimuli presented
once and a random sample of 24 training stimuli (without replace-
ment) presented for a second time. On the remaining 125 trials,
participants were presented with the transfer stimuli shown in the
right panel of Figure 1. The transfer stimuli did not belong to any
category, and so are all plotted using a square symbol.

The transfer stimuli were chosen to help identify the strategy
participants were using to classify stimuli during the first phase of
the experiment. In particular, we first outlined rectangles in the
four corners and in the center of the stimulus space, the dimensions
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of which are given in Table 1 (see also the right panel of Figure 1).
These large rectangles were then divided evenly into 25 smaller
rectangles, and a random combination of length and orientation
was sampled from within each small rectangle to create a single
transfer stimulus. The same set of transfer (and training) stimuli
was presented to all participants, and these are shown in Figure 1.

Procedure

Trials began with the presentation of the stimulus in the center
of the screen, where it remained until a response was made. The
participant was asked to respond as to which category, A, B, C, or
D, they believed the stimulus belonged using the response keys Q,
P, D, or K, respectively. After the response, if the participant was
presented with one of the training stimuli then they were told
whether their response was correct or incorrect, and the correct
category was presented in the center of the screen for 1 second. If
the item was a transfer stimulus, then the participant was simply
given the feedback “Okay” for 1 second. After feedback the screen
turned blank for 500 ms before the next trial began.

At the beginning of the experiment, participants were instructed
that they would be classifying lines into four categories. They were
told to place their index fingers on the D and K keys and middle
fingers on Q and P. Participants were given further instruction at
the beginning of each of the two test blocks, and were told that on
the upcoming trials there would be some trials on which they
would only receive the feedback “Okay,” but that they would
continue to receive the usual feedback on other trials.

Results

Trials with response times shorter than 200 ms or longer than
5,000 ms were excluded from analysis for being either unrealisti-
cally fast or slow, respectively, which led to 2.85% of the data
being censored.

As shown in Figure 2, the proportion of correct responses
changed across the blocks of the experiment (BF � 1 � 1056),
initially increasing across the four training blocks from 0.60 to
0.83 (BF � 7 � 1020), but then decreased to 0.78 (BF � 2.9 �
105) in the final test block.1

Figure 3 shows the proportion of responses made for each
category for training stimuli (left panel), transfer stimuli (center
panel), and for all stimuli simultaneously (right panel). Each
location in the plot represents an individual stimulus. For each
stimulus, there are up to four colored circles. The color of each circle
represents the category response given to that stimulus. The size of

each circle represents the proportion of times that a particular
response was chosen, aggregated across participants and trials. For
example, the stimuli with the shortest length were almost unani-
mously classified into category A, and so the circles for those
stimuli are large and black. The stimuli toward the center of the
stimulus space, with moderate orientation and length, were clas-
sified less consistently, and so there are up to four smaller circles
of different colors.

Looking at the left panel of Figure 3, we see that on average
participants were relatively accurate, particularly for stimuli that
were further from the center of the stimulus space (i.e., the circles
are large and of the appropriate color). On the other hand, re-
sponses to the transfer stimuli were more variable. There are
relatively few transfer stimuli that were consistently classified into
a single category by all participants. The right panel of the figure,
which plots all stimuli together, suggests that the diagonal bound-
aries of an II classification strategy may have been utilized. How-
ever, this result does not necessarily imply that all participants
used this strategy, as the figure plots the average classification of
all participants. We now turn to a model-based analysis of our data
to investigate the classification strategies of individuals.

Model-Based Analysis

We fit a range of variants of both II and RB models to the data
from our experiment. The RB model variants were chosen to

1 Bayes Factors were calculated using Richard Morey’s BayesFactor
package, using JZS default priors (see Rouder, Speckman, Sun, Morey, &
Iverson, 2009; Rouder, Morey, Speckman & Province, 2012).

Table 1
Coordinates in Stimulus Space Used to Construct
Transfer Stimuli

Location in
stimulus space

Dimension

Length1 Length2 Orientation1 Orientation2

Bottom left 10 90 5 40
Top left 10 90 75 110
Center 120 200 45 70
Bottom right 200 280 5 40
Top right 200 280 75 110

Figure 2. Proportion correct responses for training stimuli as a function
of block number. Blocks 1 to 4 were training blocks, while the fifth block
was a test block containing these training stimuli and additional transfer
stimuli. The average of all participants is plotted in black and individual
participant performance is plotted in gray.
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represent the various rules by which participants may have clas-
sified the stimuli from our experiment, and we describe each of
these below. We also fit a number of II model variants so as to
avoid having to commit to one of the many possible II strategies
that might be employed.

Rule-based models. All RB models assume that stimuli are
represented using bivariate normal distributions, with mean equal to
the stimulus location, and standard deviation determined by free
parameters sX and sY. On any given trial, the stimulus is perceived to
be in the location that corresponds to a random sample from this
normal distribution. A rule is implemented by assuming that vertical
and horizontal response boundaries divide the stimulus space into
regions that correspond to different category responses. Then, on any
given trial, whichever region the stimulus appears to be in on that trial
determines the response the participant makes.

So, for example, one rule may dictate that any stimulus with
length smaller than X1 is a member of category A, regardless of the
orientation Y. Now consider a stimulus with true location (x � a,
y � b). The probability that the participant makes a category A
response to that stimulus is determined by the area under a bivari-
ate normal distribution with mean (a,b) and standard deviation
(sX,sY) in the region x � X1.

In the first set of RB models (RB1), we assumed that the
participant would have a simple rule for classifying extreme stim-
uli on one dimension, and a more complex rule for intermediate
stimuli. In RB Model 1a, we assumed that any stimulus2 with
length shorter than X1 or longer than X2 would be classified as
belonging to either category A or C, respectively. Any stimulus
with length between X1 and X2 was given the category B or D
label, depending on whether the orientation of the line was steeper
than Y2 or flatter than Y1, respectively. Any stimulus that falls
within the center of the stimulus space (i.e., between both X1 and
X2, and Y1 and Y2) is randomly assigned a category label. In RB
Model 1b, we assumed that now the orientation dimension was
given priority, and that any stimulus with orientation steeper than
Y2 or flatter than Y1 would be classified into category B or D,
respectively. Intermediate stimuli are placed into categories A or C

depending on whether they are shorter than X1 or longer than X2,
respectively. Finally, in RB Model 1c, we assumed that partici-
pants would use a mixture of the strategies applied in Models 1a
and 1b. On half of trials, participants would prioritize the length
dimension, and on the other half of trials, participants prioritize
orientation. This could be considered as a mixture of two rules.

In the second set of RB models (RB2), we assume that partic-
ipants do not prioritize any given dimension, but instead divide the
space so that any stimulus with length shorter than X1 or longer
than X2 would be classified as A or C, and any stimulus with
orientation steeper than Y2 or flatter than Y1 would be classified as
B or D. However, this leaves four regions of space that lead to
contradictory classifications. For example, any stimulus shorter
than X1 and steeper than Y2 should be called either A or B. We
assume that participants guess between these two options when-
ever a stimulus falls into this region of the space. Again, we
assume that any stimulus that falls into the center of the space is
randomly assigned one of the four category labels.

In a third set of RB models (RB3), we assumed that one
dimension was given priority, and hence a simple rule, and that the
remainder of the space was divided into the three remaining
categories. So, in RB Model 3a, we assume that any stimulus
shorter than X (since X1 � X2 in this set of models) is given the
label A. Any stimulus longer than X is called B if it has orientation
steeper than Y2, C if it has orientation between Y1 and Y2, and D if
its orientation is flatter than Y1. There were four versions of RB3:
3a corresponds to the simple rule being applied to stimuli being
shorter than X, 3b to stimuli being steeper than Y, 3c to stimuli
being longer than X, and 3d to stimuli being flatter than Y.

The RB Models 1a–1c and 2 require that the participant some-
times guess between two or more responses. We also fit a second
version of these models in which we assumed that participants
might be biased to respond with certain category labels over

2 Throughout this section, the term stimulus denotes the perceived stim-
ulus, not the objective one.

Figure 3. Proportion of responses for each category (colors: A � black, B � red, C � green, D � violet)
plotted as circles of different sizes for each of the training (left panel), transfer (center), and all stimuli (right).
See the online article for the color version of this figure.
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others. To incorporate this idea, we estimated three additional
parameters – bA, bB, and bC, setting bD to be 1 (without loss of
generality). The overall level of bias, Bi, toward category i was

given by Bi �
bi

bA�bb�bc�1
. Then, whenever a guess was re-

quired between categories j � A, B . . . the bias toward a particular

category was given by
Bi

�jBj
. So, for example, if a guess was

required between category A and B, then the probability that a

category-A response was made was given by
BA

BA�BB
.

Finally, we fit a pair of RB4 models equivalent to the models
fit by Schnyer et al. (2009), and are typically used as represen-
tatives of the RB class of models by Maddox and colleagues for
data from this type of experiment (e.g., Maddox et al., 2004).
The rule used in RB Model 4a is that any stimulus shorter than
X1 or longer than X2 is called A or C, respectively. Any line of
intermediate length is either called B or D, depending on
whether its orientation is steeper or flatter than Y, respectively.
In RB Model 4b, the rules are simply reversed for length and
orientation: Any stimulus steeper than Y2 or flatter than Y1 is
called B or D, and lines in between are either A or C if they are
longer or shorter than X. Note that these models are a special
case of RB Models 1a and 1b, where either Y1 � Y2 or X1 � X2,
respectively.

Figure 4 provides schematic illustrations of prototypical exam-
ples from each main set of RB models. The color of each region
represents the category into which the stimulus would be placed.
Regions with two overlapping colors represent regions in which a
guess (possibly biased) must be made between the two categories
corresponding to those labels. Finally, white regions represent
regions in which a participant must guess (sometimes biased)
among all four categories.

The RB models from Sets 1 and 2 without response bias require
six free parameters (sX, sY, X1, X2, Y1, and Y2). The models from
these sets that included response bias estimated a further three
parameters, for a total of 9 (sX, sY, X1, X2, Y1, Y2, bA, bB, bC). The
RB models from Sets 3 and 4 each used five free parameters (sX,
sY, and either X1, X2, and Y, or Y1, Y2, and X).

Information-integration models. We also fit a number of
models from two sets of II models: prototype and exemplar. These
II models all make the approximate prediction shown by the
diagonal lines in Figure 1. However, for completeness, we also fit
the diagonal-lines II model to the data.

In formalizing the prototype and exemplar models, we fol-
lowed the development provided by Nosofsky (1986, 1987). In
the prototype models, participants are assumed to make cate-
gorization decisions on the basis of the similarity between a
presented stimulus and the prototypical member of each cate-
gory. We assumed that the prototype for each category was the
average of all of the items from that category. Note that pro-
totypes were defined by the correct responses and not the
participant’s responses. The psychological distance, d, between
stimulus i and the prototype from category J is given by
diJ � ��m wm��xim � xJm��r�1 � r, where wm is the attention paid
to stimulus dimension m. We fit two versions of the model, one
which set r to be 1, corresponding to the city-block distance
metric, and another which assumed that r was 2, using the
Euclidean distance metric. The distances were converted to
similarities by taking siJ � e�cdiJ, where c is a sensitivity
parameter. Finally, the probability of responding category J for

stimulus i is given by Pr�J�i� �
siJ

�JsiJ

.

We also fit versions of the prototype model that assumed par-
ticipants would be biased toward particular responses. To do this,

Figure 4. Schematic illustration of three of the four main sets of RB models we fit to data. The color of the
region defines the category into which a stimulus from that region would be classified (A � black, B � red, C �
green, D � violet). Model Set 1 has three main versions: 1a is shown, 1b is achieved by having the orientation
dimension have the simple rule, and 1c is an equal mixture of 1a and 1b. Model Set 2 has only a single main
version, depicted in the figure. Both Model Sets 1 and 2 also have subversions with and without biased guessing
(see text). Model Set 3 has four versions: 3a is shown, with the others having the other three categories defined
by the simple rule. Models 4a and 4b are equivalent to Models 1a and 1b, but with no central guessing area. See
the online article for the color version of this figure.
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we again assumed three additional free parameters bA, bB, and bC,
and set bD to be 1, such that the bias for category J was BJ �

bJ

bA�bB�bC�1
. Now, the probability that category J was the re-

sponse made for stimulus i was given by Pr�J�i� �
BJsiJ

�JBJsiJ

.

For reasons explained later in our article, we also fitted an
extension of the prototype model that included a background-noise
parameter (e.g., Stanton & Nosofsky, 2013). In this extended
model, the probability of responding category J for stimulus i is

given by Pr�J�i� �
siJ�back

�J�siJ�back�
. In brief, the background-noise

parameter makes allowance for the possibility that observers will
exhibit guessing behavior in regions of the stimulus space that are
distant from the prototypes of all categories: When similarity to all
prototypes is low, the background-noise constant dominates the
response rule, yielding guessing behavior in those regions of the
space. To avoid an explosion of different II models, we investi-
gated the potential role of the background-noise parameter only for
the case of the unbiased, city-block prototype model.

The exemplar-based models were very similar to the prototype
models, except that instead of comparing the similarity between
stimulus i and the prototype for category J, the classification is
based on the summed similarity between stimulus i and all of the
individual members, j, of category J. As such, the probability of

responding with category label J is given by Pr�J�i� �
SJ

�JSJ

,

where SJ is the sum of the similarity between stimulus i and all of
the individual members of category J. All of the previous formulae
for distance and similarity are the same for the exemplar-based
model, except that now they are calculated between stimulus i and
category member j (i.e., not the prototype). Also, like the prototype
models, we fit exemplar-based models that assumed city-block and
Euclidean distance metrics, and which did and did not assume
response bias. Finally, we also fit a version of the exemplar-based
model that assumed an extra � parameter, which allowed the
model to be more or less deterministic, by having the probability

of responding be Pr�J�i� �
SJ

�

�JSJ
�

(Nosofsky & Zaki, 2002). Two

versions of this � exemplar-based model, either with or without
response bias, were fit to the data.

The prototype and exemplar models without response bias had
just two free parameters (w and c), and adding the background-
noise parameter yielded a three-parameter model. The models that
included response bias had an additional three parameters (bA, bB,
and bC). The � version of the exemplar-based model had one
additional � parameter.

For completeness, we also fitted the “diagonal-lines” II model to
our data (which is typically the sole II representative in the past
studies that have attempted to identify RB vs. II strategy use).
According to that model, the observer partitions the stimulus space
using diagonal lines of the form illustrated in the left panel of
Figure 1. However, the slope and y-intercept of each line are
allowed to be free parameters. As in the RB models, each stimulus
is represented by a bivariate normal distribution, and the proba-
bility that a stimulus is classified into a category is given by the
proportion of its distribution that falls in the category region

defined by the diagonal lines. For simplicity in computing the
predictions from the model, we assumed that the standard devia-
tions of the stimulus distributions were the same along dimensions
x and y (sX � sY). However, to provide the model with appropriate
flexibility, the stimulus locations along dimension x were scaled by
a free parameter. The diagonal-lines II model has six free param-
eters: the slope and y-intercept of each diagonal line boundary, a
perceptual standard deviation parameter, and the dimension-x
location-scaling parameter. We should note that the diagonal-lines
II model is closely related to the Euclidean prototype models, but
grants those models additional flexibility. According to the Eu-
clidean prototype models, a stimulus will tend to be classified into
the category that has the closest prototype. Assuming a Euclidean
distance metric, these closest-distance relations are depicted by
drawing diagonal lines through the stimulus space. That is, all
stimuli that are closer to Prototype A will fall to the A side of a
dividing diagonal line, whereas all stimuli that are closer to Pro-
totype B will fall to the other side of that diagonal line. However,
whereas in the prototype model the locations of those diagonal
lines are determined by the coordinates of the prototypes, in the
present diagonal-lines II model the locations are given by freely
estimated parameters.

Model analysis. In total, there were 14 RB models, 12 II
models, and one baseline “biased-guess” model, which simply
assumed that participants would give a potentially biased guess
among the four categories for all stimuli. This final model esti-
mated three free parameters (bA, bB, bC; and bD was set at 1). The
probability of a category J response for any stimulus in this model

was simply Pr�J� �
bJ

�JbJ

.

Each model produced a set of predicted probabilities that a
particular category was chosen for each stimulus. These predicted
probabilities give the likelihood of each response made to each
stimulus. The overall likelihood of the model is then found by
computing the product of these individual-response likelihoods.
Each model was fit to data by conducting a computer search for the
parameter values that maximized this overall likelihood. Best-
fitting parameters were found via a SIMPLEX search, with each
search started from multiple start-points.

We began by fitting each of the 27 models to all of the data from
each individual’s final test block, that is, both the training and
transfer trials. For each model’s fit to each individual’s data we
calculated a Bayesian Information Criterion (BIC) score using
BIC � k log N � 21, where k is the number of free parameters in
the model, N is the number of data points fit by the model, and l
is the (maximum) log-likelihood of the model given the data. BIC
is smaller as the fit of the model improves, but increases as the
model becomes more complex. As such, the model with the
smallest BIC value is said to give the most parsimonious expla-
nation of the data.

Table 2 contains the BIC values for the best fitting model from
each of the RB and II model classes. Inspection of the table reveals
that there are many participants for which a member of one of the
two classes of models provides a clearly better account of the data
than does the other model class. However, there are a reasonable
number of cases (Participants 31 to 45) for which the difference
between the best-fitting RB and II models is small (i.e., less than
5 BIC points).
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Table 2 also reports each participant’s average accuracy for
training stimuli in the final block of trials. The average proportion
of correct responses for participants identified as using the correct
strategy (II) was 0.79 (SD � 0.12). Participants identified as using
rules performed less well on average (M � 0.76, SD � 0.14). The
difference in accuracy, however, is inconclusive according to the
results of a default Bayesian t test, with the Bayes factor suggest-
ing that the difference is only 2.5 times more likely under the
alternative than the null hypothesis (Rouder, Speckman, Sun,
Morey, & Iverson, 2009). As we speculated earlier, it seems that
RB strategies provided a viable means of learning to categorize the
stimuli from this II structure.

The size of the difference between two BIC scores reflects the
degree to which one model fits better than another model. Rather
than simply consider which model had the smallest BIC, we can
instead take the size of the difference between BIC scores into
account. Wagenmakers and Farrell (2004) outline a method by
which BIC scores can be turned into BIC weights. These weights
can be interpreted as the probability that a particular model gen-
erated the observed data. First, we calculated the difference be-
tween the BIC for each model and the best-fitting model, �BIC.
Then, the relative likelihood for the ith model is calculated via

L�Mi�data� � e�
1
2

	BIC. Finally, the BIC weights, wi, are calculated

using wi �
L�Mi�D�

�L�Mi�D�
.

Figure 5 contains a heat map of all of the model probabilities for
each of the 27 models (columns) for each individual participant
(rows). White cells correspond to a model probability of 1, red
cells correspond to a model probability of 0, and the closer the
color of the cell is to white, the closer the probability of the model
is to 1. The left 14 columns of the figure correspond to RB models,
the next 12 columns correspond to II models, and the final column
corresponds to the biased-guess model.

Figure 5 shows that there are considerable individual differences
in which model gives the best account of data. Although the
majority of participants are best fit by II models, many are best fit
by an RB model. There were two particularly successful RB
models: the RB Model 2 with bias, and the RB Model 3a. Also
interesting is that only one participant was best fit by an RB model
from Set 4, that is, those that are usually applied to data from this
task (e.g., Schnyer et al., 2009). Of the II models, there is much
less certainty as to whether any one or two models give the best
account of behavior. Instead, model probabilities are divided

Table 2
BIC Values for the Best Fitting RB and II Model

Participant

RB II

Acc Participant

RB II

AccBIC Model BIC Model BIC Model BIC Model

1 250 2-b 191 P-e 0.91 32 254 1b-b 251 P-B-cb 0.84
2 232 2-b 182 P-B-e 0.93 33 238 2-b 235 P-e 0.89
3 260 4a 210 P-B-e 0.86 34 277 2-b 275 P-e 0.85
4 250 2-b 202 P-B-e 0.91 35 191 4a 190 P-e 0.86
5 270 4a 221 E-B-cb 0.85 36 313 1c-b 312 P-B-cb 0.85
6 262 2-b 222 P-e 0.91 37 319 2-b 319 P-B-e 0.82
7 245 2-b 206 P-B-e 0.89 38 424 1a 423 P-e 0.57
8 322 1b 287 P-e 0.84 39 355 1a-b 354 E-B-cb 0.77
9 243 2-b 208 P-e 0.87 40 251 2-b 250 P-e 0.87

10 186 2-b 154 P-B-e 0.89 41 258 2-b 259 P-e 0.85
11 296 2-b 264 E-B-cb 0.82 42 406 3a 407 P-B-e 0.68
12 450 3a 420 diag 0.71 43 205 2-b 207 E-B-e-g 0.92
13 270 2-b 241 P-e 0.86 44 247 2-b 250 P-e 0.87
14 250 4a 224 E-B-cb 0.81 45 257 3a 262 P-e 0.77
15 294 1c 268 P-e 0.81 46 308 1c-b 313 P-back 0.8
16 268 4a 246 E-B-cb 0.88 47 273 2-b 280 diag 0.82
17 464 4a 447 P-cb 0.48 48 199 4a 220 P-B-e 0.82
18 278 1c-b 260 P-B-e 0.86 49 584 3a 607 diag 0.36
19 417 1b 399 P-B-e 0.66 50 330 2-b 351 E-B-cb 0.68
20 273 2-b 257 P-e 0.88 51 223 3a 255 E-B-cb-g 0.84
21 332 4a 316 E-B-cb 0.76 52 273 3a 309 diag 0.83
22 358 1a 344 P-cb 0.6 53 518 1a-b 556 diag 0.55
23 244 2-b 229 diag 0.87 54 244 2-b 290 E-B-cb 0.8
24 389 1a 375 diag 0.53 55 293 3a 343 diag 0.74
25 286 1a 275 P-cb 0.62 56 272 2-b 329 diag 0.76
26 301 2-b 290 E-B-cb 0.8 57 452 2-b 513 diag 0.54
27 309 2-b 300 P-B-cb 0.8 58 210 2-b 275 E-B-e 0.83
28 457 1a 452 E-B-cb 0.52 59 249 3a 347 diag 0.74
29 261 2-b 256 E-B-cb 0.82 60 169 3a 298 diag 0.78
30 281 1c-b 276 E-B-e 0.77 61 160 3a 287 diag 0.84
31 205 4a 201 P-e 0.85 62 417 1a-b 498 diag 0.55

Note. Participants are sorted based on how much better they were fit by II models. The best-fitting model is bolded in cases where participants are clearly
favored by one model. Average accuracy for training stimuli in the final, 5th block is reported under the heading ‘Acc’. Rule-based models are defined
in text. II models are defined using: P � prototype model; E � exemplar model; diag � diagonal bound model; B � bias; e � Euclidean distance metric;
cb � city-block distance metric; g � gamma; back � background noise.
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among many of the II models. It is also worth noting that no
participant in our study was identified as guessing randomly,
which is contrary to what is usually observed (e.g., Maddox et al.,
2010; Schnyer et al., 2009).

To seek evidence that participants best fit by an RB model did
indeed appear to be using rules, we plotted the classifications made
by participants against the predictions of the best-fitting RB mod-

els. We chose eight participants who were exemplary of how well
the RB models did indeed fit some participants (see Figure 6). The
top row of participants in the figure are those that were best fit by
an RB model from Sets 1 or 2, and the bottom row are those that
were best fit by an RB model from Set 3.

To take one example, consider the responses produced by the
participant in the top row, leftmost panel of Figure 6. It is straight-

Figure 5. Heat map of BIC model probabilities for each of the models (columns) for each participant (rows).
White implies a model probability of 1 and red a model probability of 0. The models are defined using the same
notation as in Table 2. Participants were sorted as in Table 2. See the online article for the color version of this
figure.
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forward to see why RB Model 2 fit these data so much better than
did the competing II models: Namely, the classifications for stim-
uli in the corners of the stimulus space tend to be unrelated to the
location of these stimuli within these regions, but are instead
distributed randomly. The RB model can handle this pattern,
whereas the II models must predict an orderly relation between
location and categorization: stimuli closer to the prototypical item
from a category (or closer to all other stimuli in that category) are
more likely to receive that particular label. The same pattern holds
for the other participants who are best fit by RB Model 2. Note that
Figure 6 is not intended to reflect the “average” fit of the model,
but simply shows that some participants were clearly employing a
RB strategy.

An II-theorist might argue that once a stimulus is sufficiently far
from the prototypes of all categories, similarity to the prototypes
no longer governs responding, and the observer guesses randomly.
The prototype model with background noise was intended to
formalize that possibility. However, the background-noise model
almost always yielded worse BIC scores than did even the standard
prototype model. The reason is that although responses tend to be
distributed randomly within the corners of the stimulus space for
these subjects, they are always restricted to the two categories
indicated by the two competing rules. By contrast, the background-
noise model predicts that when a stimulus is far from all catego-
ries, guessing will be random among all the categories.

Finally, inspection of the results from the participant in the top
row, rightmost panel of Figure 6, as well as all participants in the
bottom row, reveals that RB Models 1a and 3a neatly partition

these classification response profiles. It is easy to see why the RB
models provided a dramatically better fit to these subjects’ data
than did any of the II models.

Thus far we have focused on which particular model has best fit
an individual, but one may also be interested in the evidence for
the entire class of either RB or II models. We outline two potential
approaches to answering this question, but note that both have their
advantages and disadvantages. One option is to select the best
fitting model from each of the RB and II classes of models and
calculate BIC weights for those two model variants, as we illus-
trated earlier. A potential disadvantage to this approach is that a
class of models with more variants will have a higher probability
of being selected before we observe any data. An alternative
approach could punish classes of models with more variants, by
calculating BIC weights such that the classes have an equal prob-
ability before any data are observed. That is, we define the BIC

weight, wi �
kiL�Mi�D�

�kiL�Mi�D�
, where ki is the number of models in

the model class to which it does not belong divided by the total
number of models. The BIC weights for each model in a given
class are summed to create an overall probability of each class. A
downside to this approach is that one could propose a large number
of unlikely models of a particular class so as to underweight the
evidence for any particular variant from within that class.

As it turned out, for our data, the two approaches yielded the
same conclusions. We report the results based on the second
approach outlined above, but note that all of what follows is

Figure 6. The best fitting RB models for eight exemplary rule-using participants. The category chosen by the
participant for each stimulus is shown by the color of the circle. The corresponding rule boundaries of the
best-fitting RB model is shown by the shaded area. The color of the shaded area corresponds to the category
chosen. When two shaded areas overlap, then the participant had to guess between those two categories. See the
online article for the color version of this figure.
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consistent with the approach where class comparison is based only
on the best-fitting model of each class (the information necessary
to carry out this comparison is reported in Table 2).

The resultant model-class probabilities are plotted for each
participant in the top left panel of Figure 7. The probabilities show
that 40 of the 62 participants were better fit by the II class of
models. One participant was fit better by neither model, leaving 21
participants whom were fit better by an RB model. However, it is

clear from Figure 7 that the evidence for RB and II models was not
always definitive. For example, the probability that the best-fitting
model class was either RB or II was below 0.9 for 14 participants,
or almost a quarter of our sample. Considering only those partic-
ipants for whom model probabilities were greater than 0.9 leaves
18 RB and 30 II participants.

We find a relatively large number of RB participants, despite
using an II category structure. Two aspects of what we have done

Figure 7. Probabilities for the class of RB (black dots) and II (white dots) models for each individual. The
participant numbers are the same as those in Figure 5. The probabilities for each participant sum to 1, because
the guessing model was assigned effectively zero probability for all participants.
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thus far differ from standard approaches: First, we included addi-
tional diagnostic transfer stimuli, and second, we allowed for the
adoption of a much larger range of rule-based strategies for clas-
sifying stimuli. In the next section, we explore the impact of each
of these changes to standard practice.

Alternative Analyses

In previous analyses of the category structure we used, the
standard approach has been to compare an II model to the two RB
models from Set 4. While these models do represent a plausible set
of rules that might be used to classify stimuli from this experiment,
many other possible rules also seem plausible. Indeed, based on
our analyses, it seems clear that many of our participants did
indeed employ some of these alternative rules (see Figure 6). It
seems possible that restricting the range of RB models fit to data
would also reduce the proportion of participants who were cor-
rectly identified as using an RB strategy.

It is also possible that the category structure itself does not
provide the ideal amount of information with which to identify
participants as using an RB strategy. It seems possible that remov-
ing our transfer stimuli and considering only the stimuli that have
been used in previous applications might result in more partici-
pants being classified as using an II strategy.

To test these ideas, we repeated the above analysis but with
some modifications. First, we repeated our model-based anal-
ysis using only the RB Models 4a and 4b, the diagonal II model,
and the random-guess model (i.e., a restricted models analysis).
Second, instead of including both training and transfer stimuli,
we fit the models to the data from the training stimuli in the test
block only (i.e., we excluded the transfer stimuli from analy-
sis—a restricted data analysis). There are, therefore, four pos-
sible analyses we might conduct: restricted models and re-
stricted data, which would be the standard method for analyzing
data from this type of experiment; restricted models but full
data; restricted data but full set of models; and the full set of
models and full data. The results of this final combination have
already been reported, so we now look at the results of the other
three analyses.

We computed the model class probabilities for each of the three
remaining analyses, and the resultant model-class probabilities are
plotted in Figure 7. When both the models and data were restricted,
only nine of the 62 participants were better fit by the RB class of
models. This number is clearly much smaller than the 21 partici-
pants in the full analysis. The number of RB strategy users de-
creased to just five participants when the full data set was used
with the restricted set of models. This result highlights the poten-
tial danger of considering only a couple of restricted RB models in
the analysis.

Even when the restricted data set is used, it is still useful to
include the full set of RB models. When the full set of models is
used, the number of RB participants is 13, more than the nine RB
participants when the smaller set of models is used. However, that
this final number falls short of the 21 RB participants in the full
analysis is evidence that the combination of a rich data set and a
broader set of RB models has additional benefit when identifying
participant classification strategies. Finally, note that there are still
many participants for whom the probability of the best-fitting

model class falls well short of providing strong evidence (i.e.,
model class probability of less than 0.9).

Discussion

The take-home message from our work is straightforward—the
conclusions about classification-strategy use in experiments that
test the Figure 1 II category structure depend dramatically on the
analysis. Although our work considered only this single category
structure, it is an important one because the Figure 1 four-category
stimulus space is widely considered a benchmark II structure.
Furthermore, it has been used extensively in numerous studies that
investigate the extent to which different participant and patient
groups use RB versus II classification strategies. Beyond this
particular structure, we believe that the implications of our con-
clusions and subsequent recommendations can be generalized to
numerous pursuits to identify the classification strategies of par-
ticipants.

Our analysis led to the conclusion that 30 participants used an II
strategy (48%), more than the 18 using an RB strategy (29%), and
that 14 participants were not clearly preferred by either model
class (23%). This result is reassuring considering that the task we
used was an II task. However, our evidence pales in comparison to
the support for an II strategy when we use the standard approach
(see Maddox et al., 2004, 2010; Schnyer et al., 2009), where 55
participants are identified as II participants (89%), leaving only
seven RB participants (11%). Our approach differs from the stan-
dard one in three important ways—we used a more comprehensive
category space, considered more rules, and used a better technique
for doing model selection. The following discussion will focus on
why each of these factors is important.

Category Space

In the standard approach, only training stimuli are included in
the design. However, for the Figure 1 category structure, this
approach yields very few stimuli that provide sharp contrasts
between the predictions of plausible RB and II models. In our
design, we included nonreinforced transfer stimuli in diagnostic
regions of the stimulus space, thereby allowing clearer discrim-
ination between the alternative models. Inspection of the re-
sponse profiles in these diagnostic regions provided strong
evidence that, despite the use of an II category structure, many
of our participants did indeed use RB strategies rather than II
ones.

We conjecture that many participants used rules in this task only
because the category space made it a viable strategy. If participants
had received feedback for stimuli in both the training and transfer
regions for the whole experiment (with correct answers defined in
terms of an information-integration model), such rule-based strat-
egies would not have yielded near perfect performance. Such
corrective feedback may drive participants to adopt a classification
strategy closer to that of information integration models. There-
fore, our recommendation is that if one wishes to provide convinc-
ing evidence that II strategies are being used, II category spaces
should be designed such that simple rule-based strategies cannot
yield high performance levels.
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Rule-Based Models

Standard practice for this paradigm is to consider two possible
rule-based models for classifying stimuli. We considered 12 other
models implementing alternative rules that we thought were a
priori plausible for this category space. Approximately 30% of our
participants were identified as being highly likely to have utilized
one such rule. When we fit only the standard pair of RB models,
only 6% to 11% of participants (depending on whether the full or
restricted data set was used) were identified as using an RB
strategy. Such a dramatic shift in conclusions makes clear the need
to consider a range of possible rule-based strategies.

It is interesting that not one participant was identified as using
a random-guess strategy. Generally, using the standard approach,
a subset of participants is identified as using a random-guess
strategy (e.g., Maddox et al., 2009). In at least some of these cases,
we suspect that these participants were employing an ineffective
rule-based strategy, and were incorrectly identified as guessing
randomly because that particular RB model was not considered.

Model Selection

Standard practice is to simply count up the number of partici-
pants who were better fit (in terms of a fit statistic such as BIC) by
each model or model class. Our results highlight why this practice
is inappropriate. The issue is that not all differences between
models are equivalent: a BIC difference between two models of 1
provides less evidence than a difference of 10. We recommend
transforming raw BIC scores into BIC weights and model proba-
bilities, as this quantifies the amount of evidence for models
(Wagenmakers & Farrell, 2004). In our data, almost a quarter of
our participants were not clearly identified as using either an II or
RB strategy.

In the analyses presented here, we assigned individuals whose
model probabilities were greater than 0.9 the status of “clear
evidence” for a particular model or model class. A criterion of 0.9
is equivalent to a Bayes factor of 9 (i.e. 0.9

�1�0.9�, indicating that the
data were 9 times as likely under one model than the other. It is
important to note that the aim of this criterion was simply to
provide a reminder that not all evidence is clear, and to highlight
the potential issues with ignoring the degree of support for models.
In practice, the use of such binary criteria reduces the information
we obtain from our data. If participants must be classified as RB
or II users, then we would suggest that this only be done for
participants for whom the evidence for a particular model is strong,
and that the continuous model probabilities be presented alongside
any such classification, so as to avoid reducing the information
present in the data.

Implications for Identifying Categorization Strategy

The implication of our results for the security of conclusions
about categorization capabilities of different patient or participant
groups is clear. The inability to draw inferences on the basis of raw
accuracy data places model-based analysis at the forefront of
theorizing. Thus executing the model-based analyses as carefully
as possible is crucial.

As an example, the Schnyer et al. (2009) paper discussed in the
introduction drew far-reaching conclusions about the role of the

ventromedial prefrontal cortex in learning II and RB tasks. These
conclusions were drawn on the basis of 13 patients and 11 controls
who learned the Figure 1 II structure. Schnyer et al. (2009) argued
for poor strategy selection in patients with lesions, only six of 13
of whom were classified as II users, by contrasting them with the
11 control participants all classified as II users. Our results sug-
gest, however, that many of the control participants may have been
using rules as well. Thus, the better performance of the controls
may suggest that they simply used more effective rules, rather than
that a specialized II neural system was spared. More generally,
given our demonstrations of the difficulties in telling apart RB
from II strategies using standard practice, the sample sizes seem
too small to allow any strong conclusions.

Implications for Multiple Categorization Systems

Although the focus of the present work concerned strategy
identification in RB and II tasks, the results are also relevant to the
issue of “single systems” versus “multiple systems” in categoriza-
tion. A central theme of COVIS theorists has been to argue in favor
of the existence of multiple systems of categorization—specifi-
cally, an explicit system that constructs verbalizable rules and an
implicit system based on procedural learning. By contrast, theo-
rists such as Nosofsky (1986; Nosofsky & Johansen, 2000) have
suggested that a single exemplar-similarity system that makes
allowance for selective-attention processes may be sufficient. The
present results clearly challenge the exemplar-based single-system
view: For many of our participants, RB models provided clearly
better accounts of the patterns of classification responding than did
II models such as exemplar models. Another example of recent
evidence that points strongly to RB forms of classification are
patterns of response-time (RT) data that are well captured by RB
models but not by exemplar models (e.g., Fific, Little, & Nosof-
sky, 2010; Lafond, Lacouture, & Cohen, 2009; Little, Nosofsky, &
Denton, 2011).

However, the debate between multiple-system theorists and
single-system theorists is more nuanced than simply whether mul-
tiple systems of categorization exist. A key issue in the debate
concerns what constitutes clear-cut diagnostic evidence that can be
used to discriminate between these contrasting perspectives. For
example, a major vehicle that COVIS theorists have used to
support the multiple-systems thesis involves the demonstration of
a variety of dissociations in which the manipulation of certain
experimental variables has differential effects on performance
involving II versus RB tasks. By contrast, researchers who have
questioned the COVIS theory have raised concerns about various
confounds in these experimental designs and whether the dissoci-
ations are indeed diagnostic of multiple systems (for reviews, see
Dunn, Kalish, & Newell, 2014; Newell, in press; Newell et al.,
2011). Here, we present clear evidence that participants learn to
categorize in more than one particular way, and do not have to rely
on dissociations to do so.

On the other hand, it is not necessarily the case that the existence
of multiple strategies for solving categories necessitates the exis-
tence of two distinct systems for category learning. Further, our
results do not speak to any of the specific assumptions made in
COVIS about those two systems. For example, rule-base strategies
in the COVIS model are assumed to be verbalizable and imple-
mented by participants in an explicit fashion. We provide no
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evidence that all of the rule models we fit are readily verbalizable.
Thus while the present evidence suggests participants adopt a mix
of II and RB strategies when learning an II task, it is agnostic with
regard to the hypothesized markedly different properties of the
system(s) that COVIS theorists propose underlies such learning.

Limitations and Model Recovery Simulation

One of the major advances in the present work was our use of
transfer stimuli to help diagnose the classification strategy
being used by the individual observers. A potential problem
involving the use of transfer stimuli, however, involves the
logical possibility that their introduction may cause an observer
to switch the classification strategy they would otherwise have
used. One reason why we continued to present a high proportion
of training stimuli with feedback during the transfer phase was
to try to maintain consistent response strategies across blocks.
Still, we acknowledge the possibility that strategies may have
changed. To partially address this possibility, we analyzed
results for the training stimuli presented during Blocks 4 and 5.
Averaged across participants, the proportion of cases in which
the response given to a training stimulus during Block 5 was the
same as the response given to that training stimulus during
Block 4 was 0.77. Of course, even if the classification strategy
remained exactly the same, some proportion of responses would
switch across blocks due to noise in the stimulus representa-
tions or the response rule—indeed, the same proportion calcu-
lation was 0.79 when comparing Blocks 3 and 4. This concor-
dance in the proportion of responses that stayed the same is
consistent with the hypothesis that any changes in classification
strategies across the training and transfer blocks were not
dramatic. Nevertheless, future work should address the
strategy-change hypothesis in greater detail. In the meantime,
we maintain our view that our present findings point to the
dangers of assessing classification strategies using standard
practice.3

We used the commonly employed BIC to do our model
selection. There are of course a number of alternative methods.
The closely related Akaike Information Criterion (AIC), for
example, is also often used to decide between models of cate-
gory learning. AIC applies a less severe penalty for extra
parameters than BIC, and as such prefers more complex models.
When we repeat our analyses using AIC instead of BIC, we find
that even more participants are better accounted for by RB
strategies. In particular, we find that the number of people
clearly using an RB strategy increases from 18 to 34. The
number of II users reduces from 30 to 18, leaving 10 people not
clearly preferred by either class of models. We decided to focus
on the BIC results in our main report in order to be conservative
with respect to our conclusions about the use of RB strategies
for the Figure 1 II task.

Both AIC and BIC punish model complexity by counting the
number of free parameters, and can therefore be criticized for
failing to take into account the functional-form complexity of
models (Myung, 2000). In our view, the method we used here is
better than standard practice, as differences in BIC are transformed
into model probabilities, giving more graded evidence for models.
However, future work should look to employ model selection
methods that appropriately take into account model complexity

such as Deviance Information Criterion, Bayes Factors, or Mini-
mum Description Length (Kalish, Newell, & Dunn, 2014; Shiffrin,
Lee, Kim, & Wagenmakers, 2008).

Regardless of whether we use AIC or BIC, neither approach
takes into account that the class of RB models was likely more
flexible than the class of II models. That is, the various RB models
we fit seem more different from one another than the II models, so
the overall number of data patterns that the RB class can produce
is greater than that of the II models.

We conducted a small model-recovery simulation to investigate
whether this unbalanced flexibility is likely to have led to a bias
against selecting the less flexible II models. We simulated 62 data
sets from the Euclidean prototype model with bias. The best-fitting
parameters from each individual were used to simulate the data
sets, and each simulated data set was of the same sample size and
used the same stimuli as the original data.

We then subjected these simulated data sets to the same analysis
as was performed on the real data, fitting all 27 models and
calculating model probabilities. The model class probabilities for
these 62 simulated data sets was such that not one individual was
better fit by the RB model class. In fact, 60 of the 62 participants
have a model probability for the RB models of less than 0.1 (i.e.,
“clear” evidence for the II model). This simulation suggests that
participants using an II strategy, such as that modeled by the
prototype model, were unlikely to have been misidentified as using
an RB strategy.

Despite the results of this model-recovery simulation, we ac-
knowledge that a great deal more work is needed to develop
principled techniques for comparing classes of models. Whereas
measures such as BIC and AIC are often reasonable approxi-
mations for comparing individual models, the complexities of
model comparison grow when the models are embedded in
classes, such as the RB and II classes that we investigated in the
present work. As noted earlier in our article, we considered two
very different approaches, one based on comparing the best
models of each class, and a second based on comparing the
average likelihood of the models in each class. For our present
comparisons, the two approaches yielded identical results. Fur-
thermore, our inspection of the individual response profiles of
the subjects who were well fit by RB models seemed strongly
suggestive of RB behavior. Even so, more sophisticated tech-
niques will likely be needed to make progress in comparing the
classes of RB and II models.

Conclusion

Comparisons between RB and II models of categorization have
played a central role in identifying the classification strategies used
across a wide variety of experimental conditions and by varieties
of patient groups with neurological disorders. We have provided
evidence that many of those comparisons may have been compro-
mised by limitations in a) the diagnosticity of the paradigms used
for comparing the models, b) the range of models considered, and
c) the techniques of model-selection that were used. In drawing

3 Note that a model-based analysis of the difference between Blocks 4
and 5 would be of limited utility. As we have shown, analysis of restricted
data (only the training stimuli) leaves little precision for identifying cate-
gorization strategy.
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inferences about the nature of neurological patient disorders, the
stakes are even higher than in other forms of basic psychological
research. Future work is this highly significant area should prob-
ably focus on the testing of category structures with a smaller
number of plausible model candidates and designs that yield sharp
qualitative distinctions between the predictions from the general
model classes.
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