Journal of Experimental Psychology: Learning, Memory, and Cognition

Using Alien Coins to Test Whether Simple Inference Is Bayesian

Peter Cassey, Guy E. Hawkins, Chris Donkin, and Scott D. Brown
Online First Publication, October 12, 2015. http://dx.doi.org/10.1037/xIm0000188

CITATION
Cassey, P., Hawkins, G. E., Donkin, C., \& Brown, S. D. (2015, October 12). Using Alien Coins to Test Whether Simple Inference Is Bayesian. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. http://dx.doi.org/10.1037/xIm0000188

RESEARCH REPORT

Using Alien Coins to Test Whether Simple Inference Is Bayesian

Peter Cassey
University of Newcastle

Guy E. Hawkins
University of Amsterdam

Chris Donkin
University of New South Wales

Scott D. Brown
University of Newcastle

Abstract

Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we asked people for prior and posterior inferences about the probability that 1 of 2 coins would generate certain outcomes. Most participants' inferences were inconsistent with Bayes' rule. Only in the simplest version of the task did the majority of participants adhere to Bayes' rule, but even in that case, there was a significant proportion that failed to do so. The current results highlight the importance of close quantitative comparisons between Bayesian inference and human data at the individual-subject level when evaluating models of cognition.

Keywords: Bayesian inference, inference, prior knowledge

Bayesian inference is a mainstay of modern statistical analysis, but it has also become influential as a description of human cognition. Bayesian-belief updating involves two elements: a prior, which represents belief states before observing data, and a likelihood function, which links observed evidence with beliefs by assigning probabilities. The likelihood function and the prior belief are combined (via Bayes' rule) to give an updated belief, the posterior. Among other aspects of human cognition, Bayesian models have provided compelling explanations for language acquisition (Griffiths \& Kalish, 2007), language evolution (Maurits \& Griffiths, 2014; Rafferty, Griffiths, \& Klein, 2014), word learning (Xu \& Tenenbaum, 2007), speech recognition (Norris \& McQueen, 2008), reading (Norris, 2006), causal learning (Griffiths \& Tenenbaum, 2009), cultural transmission (Kalish, Griffiths, \& Lewandowsky, 2007), future prediction (Griffiths \& Tenenbaum, 2006, 2011; Lewandowsky, Griffiths, \& Kalish, 2009), and visual working memory (Brady \& Tenenbaum, 2013).

[^0]Despite-or perhaps, because of-their success, Bayesian models have sparked some criticism. Specific models have been criticized for complexity, which may reduce their explanatory power. Mozer, Pashler, and Homaei (2008) demonstrated how a model based on Bayesian inference was not necessary to account for participants' behavior on a future prediction task (Griffiths \& Tenenbaum, 2006). Mozer et al.'s (2008) simplified heuristic model performed with commensurate success to that of the Bayesian model, questioning the necessity of the substantial addition of theory (however, Lewandowsky et al., 2009, identified important problems with the simplified model).

Similar results in other paradigms have led to more general debates about the role of Bayesian models in human cognition (cf. Bowers \& Davis, 2012a; Bowers \& Davis, 2012b; Chater et al., 2011; Eberhardt \& Danks, 2011; Griffiths, Chater, Norris, \& Pouget, 2012; Griffiths, Vul, \& Sanborn, 2012; Jones \& Love, 2011; Marcus \& Davis, 2013). These debates have included the value of normative models, with philosophical arguments about the role of explanations posed at Marr's algorithmic versus computational levels. More tangibly, the choice of prior and likelihood functions have been criticized as conferring undue model flexibility. In a Bayesian model of cognition, changes in the prior belief lead to changes in the model's predictions. This can be problematic because there are situations in which the prior function that participants really use is difficult or impossible to ascertain (however, see Hemmer, Tauber, \& Steyvers, 2015). The degree to which Bayesian models of cognition are quantitatively tested against human data has also been highlighted as a limiting factor (Hemmer et al., 2015).

Our research was designed to overcome this problem and others by designing the experimental paradigm to allow easy communication and measurement of prior and posterior beliefs. We quantitatively examined the degree to which human behavior approximated Bayesian inference at the level of the individual subject, using the well-studied paradigm of simple probabilistic inference. Although previous research has demonstrated some agreement between posterior probability distributions from Bayesian inference and from people, these tests have most frequently been applied at the group level (Griffiths \& Tenenbaum, 2006, 2009, 2011; Lewandowsky et al., 2009; Shi, Griffiths, Feldman, \& Sanborn, 2010). When these investigations have been applied at the level of individuals, the comparison between human and Bayesian inference has been largely qualitative (e.g., Williams \& Griffiths, 2013); that is, analysis questions are frequently of the type, "Do the participants' responses move in the direction predicted by Bayesian inference?" Our experimental paradigm reduced the inference task to a level that allowed the Bayesian model of cognition to be quantitatively compared with individual participants' behavior. We manipulated the difficulty of a simple prediction about an alien who was flipping coins. Participants were asked about the nature of a coin (i.e., fair or biased) both before and after seeing a sequence of outcomes. We recruited a sufficiently large number of participants that the full ranges of prior and posterior beliefs were sampled, and also enough that we were able to analyze important subsets of the data. The participants' inferences were mostly inconsistent with Bayes' rule. However, as the prediction scenario became simpler, more participants responded in a manner that was consistent with Bayesian inference.

Experiment 1

Method

Participants. For each experiment reported, we collected data from $4,000-5,000$ participants because this provided sufficient resolution to calculate the density of responses in a 17×17 grid of prior versus posterior probabilities. For Experiment 1, 4,033 U.S.-based participants were recruited online via Amazon's Mechanical Turk (MTurk). The experiment took an average of 3 min to complete and participants were paid $\$ 0.50$.

Procedure. At the start of the experiment, participants were told to imagine that they were on an alien planet called "Cointopia," where only two types of coins existed. One type of coin was unbiased, like our earth coin (called a "zonk"). The other type of coin was biased such that there was a 70% chance of heads and a 30% chance of tails (called a "zlink").

Participants were next told that they had met a local of Cointopia, an alien called "Zed," who was holding a coin, but they did not know what type of coin. Participants were instructed to move a slider to indicate the probability (in percent) that Zed was holding a zonk. The slider was bounded at 0 and 100. A description of what a response of 0,50 , and 100 meant was provided above the slider, e.g., "A slider all the way to the left (0) indicates that you believe there is 0% probability that Zed has a zonk. This means that that you believe there is 100% probability that Zed has a zlink." For convention, all analyses reported applied the $0-1$ probability scale rather than percentages.

Participants then saw the result of four coin flips. Participants were randomly allocated to one of five outcome conditions: zero, one, two, three, or four tails. In each condition, participants randomly saw one of all possible orders of outcomes. For example, participants in the one-tail condition saw either T, H, H, H or H, T, H, H or H, H, T, H or H, H, H, T. After this, participants were instructed to move the same slider to indicate the probability that Zed was holding a zonk. The same descriptions of what each slider point (i.e., 0,50 , and 100) meant were provided. This was where participants provided their posterior probabilities.

Results

Any participant who took less than 1 min or more than 15 min to complete the experiment was removed from analysis due to considerations of engagement. These criteria removed 10% of participants.

The top row of Figure 1 plots participants' posterior-probability estimates against their prior-probability estimates. For this figure, both prior and posterior-probability estimates were binned into 17 ranges, and the number of participants falling into each bin is indicated by the size of the square in the plot. Just over half of the participants (55\%) provided a prior probability of exactly .5 , with 61% of participants giving a prior probability between .45 and .55 .

The solid black lines in Figure 1 indicate, for any given prior, the Bayesian posterior. If participants had updated their priors in light of the coin-flip outcomes exactly according to Bayes' rule, then all data would lie on the black lines. That is, for any prior (x-axis value) the only square would be centered on the black line, and all other regions would be empty. To allow for some noise, we defined a posteriorprobability estimate as "Bayes optimal" if it was within 10 percentage points of the actual Bayesian posterior. These regions are illustrated by dashed lines in Figure 1. In Experiment 1 (top row), it is clear that many participants gave posterior-probability estimates that were inconsistent with Bayes' rule. Indeed, across Experiment 1, only 33\% of participants provided posterior estimates that were within $\pm 10 \%$ of the Bayesian value. This is a very low proportion, given that random uniform responses would lead to 20% (or just under, due to edge effects).

Possible explanations for the suboptimal inferences we observed are that participants were confused by the task, or inadequately engaged in the task. To investigate these, we examined a subset of participants who seemed least likely to be disengaged; those who gave prior-probability estimates close to 50% (we defined "close" as within the interval $[.45, .55])$. These participants actively moved the priorprobability slider away from its random starting point, to indicate no strong prior beliefs about coins on an alien planet. We also addressed the possibility that some participants might have mixed up the polarity of the slider, despite the reminders, by reassigning the posterior estimate of any participant who moved his or her posterior in the opposite direction from his or her prior estimate compared with the Bayesian posterior. These posterior estimates were reassigned using $p \mapsto(1-p)$. We return to the issue of participant engagement in the discussion.

The resulting distributions of posterior-probability estimates are shown in Figure 2. The gray regions capture responses that were within $\pm 10 \%$ of the Bayesian posterior corresponding to a prior of .5 . The percentage of participants within 10% of the Bayesian posterior is displayed above each panel. Around 47% of participants gave posterior-probability estimates within 10% of the Bayesian posterior.

Figure 1. Posterior probability (y axis) as a function of prior probability (x axis). Larger squares indicate greater numbers of participants. Solid lines indicate the Bayesian optimal response conditioned on the prior probability. Dashed lines indicate posteriors that are within $\pm 10 \%$ of the Bayesian posterior. The three rows correspond to three experiments, and the five columns correspond to the different coin flip outcomes (one tail, two tails, etc.) that participants observed.

However, even uniform random responding would lead to 30% of participants falling within 10% of the Bayesian posterior by chance (more than 20%, due to the generous reassignment $p \mapsto(1-p)$ for any participant who updated his or her prior in the wrong direction). Thus, the performance of the participants in Experiment 1 was certainly different from Bayesian inference, even when we made considerations for confusion about the scale polarity, or lack of engagement with the task.

Discussion

Overall, inferences in Experiment 1 were inconsistent with Bayes' rule. Although some participants shifted their beliefs in the wrong direction, the inconsistency with Bayes' rule was still evident, even when all responses from these participants were given the benefit of the doubt, and was interpreted as responsepolarity confusions. The results also cannot be explained by the well-known phenomenon of conservatism in belief updating, that is, the idea that people shift their beliefs more slowly, or by a lesser amount, than is optimal. In Experiment 1, two of the five outcome
conditions led to the opposite of conservatism; there was overadjustment of beliefs when participants saw either one of four tails, or two of four tails (see the second and third panels from left in the top row of Figures 1 and 2).

Experiment 2

Experiment 2 replicated Experiment 1, but with one new element: Before providing posterior-probability estimates, participants were reminded of the prior-probability estimate they had given. We reasoned that this might help to reduce confusion and memory load.

Method

Participants. 5,015 U.S.-based participants were recruited online via MTurk. The experiment took on average 3 min to complete and participants were paid $\$ 0.50$.

Procedure. We used the identical procedure to Experiment 1 in all aspects, except that when we provided the posteriors, we

Figure 2. Distributions of posterior-probability estimates for Experiments 1-3 (rows), restricted to those participants who provided a prior in the interval [.45, .55]. Any participant who moved their posterior in the opposite direction from their prior estimate compared with the Bayesian posterior was reassigned using $p \mapsto(1-p)$. Solid black line indicates the Bayesian optimal posterior given a prior of 50%. Shaded gray area indicates the optimal region, defined as 10% on either side of the true posterior. Values above each panel indicate the percentage of participants who reported a posterior within $\pm 10 \%$ of the Bayesian value. Columns show N-tail conditions.
reminded participants of their priors with the following text: "The value the slider is already on indicates your belief about the probability that Zed had a zonk before you saw the results of the coin flips."

Results

Following the same time latency exclusions as Experiment 1, 4% of participants were removed from analyses. The results of Experiment 2 are shown in the middle row of Figure 1. The results, shown in the middle row of Figure 2, were restricted to those participants who provided prior probabilities in the interval [.45, .55], with allowance given for polarity confusion. In both analyses, the results of Experiment 2 were very similar to the results from Experiment 1. Only 47% of participants provided a posteriorprobability estimate that was within $\pm 10 \%$ of the Bayesian posterior, even when considering only those participants who provided a prior near 50%, and allowing for confusion about slider polarity for any participant who moved the posterior probability in
the opposite direction from their prior, compared with the Bayesian optimal posterior probability.

Discussion

The results from the first two experiments were extremely similar, as shown in the top and middle rows of Figures 1 and 2. The two experiments even showed the same pattern of conservative belief updating for participants who saw four tails from four coin flips, and the opposite pattern for participants who saw one or two tails from four coin flips. These patterns suggest that the over- and underupdating of beliefs is a robust pattern in this paradigm, and not explained by simple effects, such as anchoring due to the initial position of the slider used to indicate posterior probability. This slider was positioned at the prior-probability estimate in Experiment 2, but not in Experiment 1, which might have been expected to induce greater conservatism in Experiment 2.

Experiment 3

Given the suboptimal inferences made by participants in Experiments 1 and 2, we wondered if optimal inference might be elicited if the inference problem was made very easy. In the first two experiments, the hypotheses (coins) were asymmetrical: One was $50 / 50$, the other $70 / 30$. This might present a more difficult inference problem, because most observable evidence patterns are more likely under the unbiased coin than the biased coin. Experiment 3 made the inference problem easier by using symmetrical coins.

Method

Participants. 5,116 U.S.-based participants were recruited online via MTurk. The experiment took on average 3 min to complete and participants were paid $\$ 0.50$.

Procedure. In Experiment 3, the procedure was identical to Experiment 2 in all aspects except that the head/tail probabilities of the coins in Experiment 3 were symmetrical. When participants received the initial scenario, they were told that one type of coin (the zonk) was biased such that for any coin toss, there was a 30% chance of getting a head and a 70% chance of getting a tail. The other type of coin (the zlink) was biased such that for any coin toss, there was a 70% chance of getting a head and a 30% chance of getting a tail.

Results

Following the same time-latency exclusions as Experiments 1 and $2,5 \%$ of participants were removed from analyses. The bottom row of Figure 1 displays raw data from Experiment 3. Participants' prior-probability estimates were closer to 50% than in Experiments 1 and 2 , with 78% of participants providing a prior probability in the interval [.45, .55]. The bottom row of Figure 2 shows the posterior-probability estimates from Experiment 3 with the same data filtering as before, i.e., restricted to participants who gave a prior probability between 45% and 55%, and also giving the benefit of the doubt to any participant who updated his or her posterior in the wrong direction, and thus may have been confused about the response slider's polarity. This time, around 63% of participants provided posterior-probability estimates within $\pm 10 \%$ of the Bayesian optimal posterior. (The chance level for this analysis is 25%, due to boundary restrictions on the four-tail and zero-tail conditions). When participants were shown symmetrical outcomes (i.e., two heads and two tails), 89% provided posterior probabilities within $\pm 10 \%$ of the Bayesian optimal value. This is perhaps unsurprising, because if one's prior-probability estimate is 50%, and the data observations contain 50% heads versus tails, then the appropriate posterior probability is also 50%. Across the other four-heads-four-tails conditions, performance was much poorer, and closer to that observed in Experiments 1 and 2, with fewer than 55% of participants providing near-Bayesian posterior probabilities.

Discussion

The reduction in apparent complexity of Experiment 3 resulted in more participants providing near-Bayesian optimal inferences, particularly in the very easiest condition. Across the conditions, however, nearly one participant in three deviated by more than
10% from Bayesian optimality, and this held even after generous data filtering was applied in favor of observing optimality. Further, a comparison of the top two rows of Figure 1 against the bottom row shows that participants were mostly insensitive to the important difference in the hypotheses being compared. In all conditions except for the two-head-two-tail condition, participants drew very similar inferences in Experiment 3 as in Experiments 1 and 2, even though this was not justified. (Note the differences between the Bayesian predictions.)

General Discussion

Bayesian inference has been proposed as an analogy for human cognition in some paradigms. However, there has been recent and growing debate about the framework in general. Rather than engage in such general debates, we opted for a specific quantitative test of the correspondence between human experimental data and the predictions that come from belief updating via Bayes' rule. We used a simple inference task in which participants judged what type of coin was likely to have generated a given series of outcomes. A key advance of our task was that it supported precise quantitative comparisons between the posterior probabilities provided by Bayesian inference and those provided by participants. With more than 13,000 participants across three experiments, inferences were mostly inconsistent with Bayes' rule.

It is well-documented that humans have a propensity to discount the value of initial information in favor of novel information. Regarding probabilities, it has been shown that people often underweigh initial beliefs and overweigh new information, a phenomenon termed base-rate neglect, or insensitivity to the prior (Bar-Hillel, 1980; Tversky \& Kahneman, 1974). The opposite phenomenon has also been observed in probability judgments, namely, overweighing prior beliefs, and updating them more slowly than demanded by data (for review, see Weber, 1994). On their own, neither of these phenomena can explain the results of any of our three experiments, because we observed both over- and underweighing of the prior probabilities across different conditions. The two opposing phenomena could, together, explain the results, but only in a rather unsatisfying, post hoc manner.

In contrast to our results, basic human inference has previously been framed as statistically optimal Bayesian inference. Williams and Griffiths (2013) used a task with many similarities to ours, but found evidence in favor of a Bayesian interpretation of cognition. They presented participants with a sequence of coin-flip outcomes that were generated by one of two coins differing in probability (just like our experiments). Knowing what these probabilities were, participants were asked to indicate which of the two coins generated the sequence, and their responses agreed overwhelmingly with the optimal Bayesian response.

Our experiments are similar to Williams and Griffiths's (2013), but our results are apparently very different: Most of our participants deviated substantially from Bayesian optimal responses. The key to explaining this difference is our use of a more fine-grained response measure, and hence a more fine-grained comparison between current participants and Bayes, than did Williams and Griffiths. Our participants provided a quantitative indication of their degree of belief in one coin over the other as opposed to a qualitative preference between two coins, whereas Williams and Griffiths' participants provided only a qualitative indication of
which coin was more likely. We confirmed that this difference in the response measure was a likely cause of the difference in results by making discrete our data to match the qualitative nature of Williams and Griffiths's data. We inferred each participants' preference for the two coins by assuming that a posterior greater than .5 indicated a preference for a zonk, and a posterior less than .5 indicated a preference for a zlink (if they were to make a forced, two-alternative choice). These inferred choices overwhelmingly matched the Bayesian optimal choices, just as Williams and Griffiths found: The match rate was 90% for Experiments 1 and 2, and 96% for Experiment 3. This analysis highlights the importance of testing cognitive theories at a quantitative level. The Bayesian theory of cognition, which is apparently successful when tested at a qualitative level, fails when tested quantitatively.

A key advance of our research was the ability to make precise and quantitative comparisons of posterior-probability estimates against Bayes-optimal posterior probabilities, at a singleparticipant level. This advance was made possible by restricting the inference problem given to participants to a very simple situation with just two possible hypotheses: The alien could be holding one of only two coin types that were available. This restriction allowed an individual person's prior and posterior probabilities to be conveyed by just one number, i.e., the probability that the alien was holding one of the two coin types. We hoped that this representation of the problem in our experiments' procedures agreed with participants' internal representation of the problem, but this may not have been the case. For example, an alternative assumption is that participants represented the problem as a hierarchical statistical problem, in which case their priors might have been better imagined as a distribution over all probabilities in the unit interval. The distinction between this assumption and our procedure can be made clearer by an example. Our procedure assumed that a participant might represent his or her prior knowledge with a statement like "There is a 53% probability that the alien holds a zlink coin." The hierarchical version might instead state, "There is an 8% probability that the probability that the alien holds a zlink coin is somewhere between 0% and 10%, and a 21% probability that the alien holds a zlink coin is somewhere between 10% and $20 \% \ldots$. ." It is not clear, to us at least, how to approach the problem of deciding which statistical framework the participants were using, and so we have chosen to base our analyses on the simplest assumption.

For all our experiments, we used data collection through the online labor market place of MTurk. The viability of online data collection has been a subject of investigation for more than a decade (e.g., Reips, 2001; Stanton, 1998; Topp \& Pawloski, 2002). There is evidence to suggest that there is little difference between the quality of data collected on MTurk and the quality of data collected in a laboratory setting (Buhrmester, Kwang \& Gosling, 2011; Gosling, Vazire, Srivastava, \& John, 2004; Paolacci, Chandler, \& Ipeirotis, 2010). In addition, numerous benchmark findings have been replicated using MTurk across varied paradigms and research domains (Berinsky, Huber, \& Lenz, 2012; Crump, McDonnell, \& Gureckis, 2013; Paolacci et al., 2010; see Rand, 2012, for a review).

Notwithstanding the above reassurances, the issue of participant engagement is pertinent in the experiments reported here. One basic indicator of engagement is the participants' experimentcompletion times. Our experiment was very simple, and could be
reasonably completed in a matter of minutes; in fact the average completion time was 3 min . However, we considered completion times of less than a minute unreasonable, as the participant would not have had time to read all the necessary instructions. Likewise participants who took longer than 15 min were likely not to have been solely engaged in the task from start to finish. These criteria removed only 6% of participants, with no impact on our results or conclusions.

In addition to response-latency considerations of engagement, the above replication of Williams and Griffiths' (2013) analyses is telling. Our current analysis indicated that over 90% of our participants provided responses that were qualitatively consistent with Bayesian optimality (even though quantitatively, they were not). This agreement would be very unlikely if there was large-scale disengagement with the task.

As a final point, it is worth noting that the issue of engagement as it relates to optimal Bayesian decision making is more complex than first glance may suggest. Our exclusion criteria targeted people who behaved randomly. As such, some of the participants in our experiment may have been using relatively little cognitive effort to update their beliefs in light of the data. However, theories of Bayesian decision making posit that the optimality occurs automatically. In one sense, this must be true, because people are demonstrably poor at yielding optimal Bayesian solutions to problems they are asked to solve more analytically (e.g., Hawkins, Hayes, Donkin, Pasqualino, \& Newell, 2014). It may be that stricter exclusion criteria would yield a greater proportion of optimal responses, but then one need posit an inverted U-shaped relationship between cognitive effort and the production of optimal responses. We leave the testing of such a hypothesis to future researchers.

Conclusion

In three experiments, most people provided inferences that were inconsistent with a Bayesian account of cognition. In all but the easiest condition of the easiest experiment, fewer than two thirds of participants provided a near-Bayesian posterior probability, even after applying data-filtering methods that favored the observation of optimality. In the easiest condition of the easiest experiment, nearly 90% of participants provided near-Bayesian inferences (after filtering). More generally, these results open questions about the extent to which previous evidence in favor of Bayesian accounts of cognition was biased, either by the use of very easy inference problems, or by the absence of close quantitative comparisons between Bayesian inference and human data at the individual-subject level.

References

Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44, 211-233. http://dx.doi.org/10.1016/0001-6918(80)90046-3
Berinsky, A. J., Huber, G. A., \& Lenz, G. S. (2012). Evaluating online labor markets for experimental research: Amazon.com's Mechanical Turk. Political Analysis, 20, 351-368. http://dx.doi.org/10.1093/pan/ mpr057
Bowers, J. S., \& Davis, C. J. (2012a). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138, 389-414. http://dx .doi.org/10.1037/a0026450

Bowers, J. S., \& Davis, C. J. (2012b). Is that what Bayesians believe? reply to Griffiths, Chater, Norris, and Pouget (2012). Psychological Bulletin, 138, 423-426. http://dx.doi.org/10.1037/a0027750
Brady, T. F., \& Tenenbaum, J. B. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120, 85-109. http:// dx.doi.org/10.1037/a0030779

Buhrmester, M., Kwang, T., \& Gosling, S. D. (2011). Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6, 3-5. http://dx.doi.org/10.1177/ 1745691610393980
Chater, N., Goodman, N., Griffiths, T. L., Kemp, C., Oaksford, M., \& Tenenbaum, J. B. (2011). The imaginary fundamentalists: The unshocking truth about Bayesian cognitive science. [Commentary]. Behavioral and Brain Sciences, 34, 194-196. http://dx.doi.org/10.1017/ S0140525X11000239
Crump, M. J., McDonnell, J. V., \& Gureckis, T. M. (2013). Evaluating Amazon's Mechanical Turk as a tool for experimental behavioral research. PLoS ONE, 8, e57410. http://dx.doi.org/10.1371/journal.pone .0057410
Eberhardt, F., \& Danks, D. (2011). Confirmation in the cognitive sciences: The problematic case of Bayesian models. Minds and Machines, 21, 389-410. http://dx.doi.org/10.1007/s11023-011-9241-3
Gosling, S. D., Vazire, S., Srivastava, S., \& John, O. P. (2004). Should we trust web-based studies? A comparative analysis of six preconceptions about internet questionnaires. American Psychologist, 59, 93-104. http:// dx.doi.org/10.1037/0003-066X.59.2.93

Griffiths, T. L., Chater, N., Norris, D., \& Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012). Psychological Bulletin, 138, 415422. http://dx.doi.org/10.1037/a0026884

Griffiths, T. L., \& Kalish, M. L. (2007). Language evolution by iterated learning with Bayesian agents. Cognitive Science, 31, 441-480. http:// dx.doi.org/10.1080/15326900701326576

Griffiths, T. L., \& Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological Science, 17, 767-773. http://dx.doi .org/10.1111/j.1467-9280.2006.01780.x
Griffiths, T. L., \& Tenenbaum, J. B. (2009). Theory-based causal induction. Psychological Review, 116, 661-716. http://dx.doi.org/10.1037/ a0017201
Griffiths, T. L., \& Tenenbaum, J. B. (2011). Predicting the future as Bayesian inference: People combine prior knowledge with observations when estimating duration and extent. Journal of Experimental Psychology: General, 140, 725-743. http://dx.doi.org/10.1037/a0024899
Griffiths, T. L., Vul, E., \& Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21, 263-268. http://dx.doi.org/10.1177/ 0963721412447619
Hawkins, G. E., Hayes, B. K., Donkin, C., Pasqualino, M., \& Newell, B. R. (2014). A Bayesian latent-mixture model analysis shows that informative samples reduce base-rate neglect. Decision: A Journal for Research on Judgment and Decision Making. Advance online publication. http:// dx.doi.org/10.1037/dec0000024

Hemmer, P., Tauber, S., \& Steyvers, M. (2015). Moving beyond qualitative evaluations of Bayesian models of cognition. Psychonomic Bulletin \& Review, 22, 614-628. http://dx.doi.org/10.3758/s13423-014-0725-z
Jones, M., \& Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34, 169-188, 188-231. http://dx.doi.org/10.1017/S0140525X10003134
Kalish, M. L., Griffiths, T. L., \& Lewandowsky, S. (2007). Iterated learning: Intergenerational knowledge transmission reveals inductive
biases. Psychonomic Bulletin \& Review, 14, 288-294. http://dx.doi.org/ 10.3758/BF03194066

Lewandowsky, S., Griffiths, T. L., \& Kalish, M. L. (2009). The wisdom of individuals: Exploring people's knowledge about everyday events using iterated learning. Cognitive Science, 33, 969-998. http://dx.doi.org/10 .1111/j.1551-6709.2009.01045.x
Marcus, G. F., \& Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychological Science, 24, 2351-2360. http://dx .doi.org/10.1177/0956797613495418
Maurits, L., \& Griffiths, T. L. (2014). Tracing the roots of syntax with Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America, 111, 13576-13581. http://dx.doi .org/10.1073/pnas. 1319042111
Mozer, M. C., Pashler, H., \& Homaei, H. (2008). Optimal predictions in everyday cognition: The wisdom of individuals or crowds? Cognitive Science, 32, 1133-1147. http://dx.doi.org/10.1080/03640210802353016
Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal Bayesian decision process. Psychological Review, 113, 327357. http://dx.doi.org/10.1037/0033-295X.113.2.327

Norris, D., \& McQueen, J. M. (2008). Shortlist B: A Bayesian model of continuous speech recognition. Psychological Review, 115, 357-395. http://dx.doi.org/10.1037/0033-295X.115.2.357
Paolacci, G., Chandler, J., \& Ipeirotis, P. G. (2010). Running experiments on Amazon Mechanical Turk. Judgment and Decision Making, 5, 411419.

Rafferty, A. N., Griffiths, T. L., \& Klein, D. (2014). Analyzing the rate at which languages lose the influence of a common ancestor. Cognitive Science, 38, 1406-1431. http://dx.doi.org/10.1111/cogs. 12112
Rand, D. G. (2012). The promise of Mechanical Turk: How online labor markets can help theorists run behavioral experiments. Journal of Theoretical Biology, 299, 172-179. http://dx.doi.org/10.1016/j.jtbi.2011.03 . 004
Reips, U. D. (2001). The Web Experimental Psychology Lab: Five years of data collection on the Internet. Behavior Research Methods, Instruments \& Computers, 33, 201-211. http://dx.doi.org/10.3758/BF03195366
Shi, L., Griffiths, T. L., Feldman, N. H., \& Sanborn, A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin \& Review, 17, 443-464. http://dx.doi.org/10 .3758/PBR.17.4.443
Stanton, J. M. (1998). An empirical assessment of data collection using the Internet. Personnel Psychology, 51, 709-725. http://dx.doi.org/10.1111/ j.1744-6570.1998.tb00259.x

Topp, N. W., \& Pawloski, B. (2002). Online data collection. Journal of Science Education and Technology, 11, 173-178. http://dx.doi.org/10 .1023/A:1014669514367
Tversky, A., \& Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124-1131. http://dx.doi.org/10.1126/ science.185.4157.1124
Weber, H. U. (1994). From subjective probabilities to decision weights: The effect of asymmetrical loss functions on the evaluation of uncertain outcomes and events. Psychological Bulletin, 115, 228-242. http://dx .doi.org/10.1037/0033-2909.115.2.228
Williams, J. J., \& Griffiths, T. L. (2013). Why are people bad at detecting randomness? A statistical argument. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1473-1490. http://dx.doi .org/10.1037/a0032397
Xu, F., \& Tenenbaum, J. B. (2007). Word learning as Bayesian inference. Psychological Review, 114, 245-272. http://dx.doi.org/10.1037/0033295X.114.2.245

Received March 30, 2015
Revision received July 8, 2015
Accepted July 19, 2015

[^0]: Peter Cassey, School of Psychology, University of Newcastle; Guy E. Hawkins, Amsterdam Brain and Cognition Center, University of Amsterdam; Chris Donkin, School of Psychology, University of New South Wales; Scott D. Brown, School of Psychology, University of Newcastle.

 This research was supported in part by Australian Research Council Future Fellowship FT120100144. Peter Cassey and Scott D. Brown developed the study concept. All authors contributed to the study design. Testing and data collection were performed by Peter Cassey.

 Correspondence concerning this article should be addressed to Peter Cassey, School of Psychology, University of Newcastle, University Drive, Callaghan, NSW, Australia 2308. E-mail: peter.cassey@newcastle.edu.au

