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Using Alien Coins to Test Whether Simple Inference Is Bayesian
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Reasoning and inference are well-studied aspects of basic cognition that have been explained as
statistically optimal Bayesian inference. Using a simplified experimental design, we conducted
quantitative comparisons between Bayesian inference and human inference at the level of individ-
uals. In 3 experiments, with more than 13,000 participants, we asked people for prior and posterior
inferences about the probability that 1 of 2 coins would generate certain outcomes. Most partici-
pants’ inferences were inconsistent with Bayes’ rule. Only in the simplest version of the task did the
majority of participants adhere to Bayes’ rule, but even in that case, there was a significant
proportion that failed to do so. The current results highlight the importance of close quantitative
comparisons between Bayesian inference and human data at the individual-subject level when
evaluating models of cognition.
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Bayesian inference is a mainstay of modern statistical analysis,
but it has also become influential as a description of human
cognition. Bayesian-belief updating involves two elements: a
prior, which represents belief states before observing data, and a
likelihood function, which links observed evidence with beliefs by
assigning probabilities. The likelihood function and the prior belief
are combined (via Bayes’ rule) to give an updated belief, the
posterior. Among other aspects of human cognition, Bayesian
models have provided compelling explanations for language ac-
quisition (Griffiths & Kalish, 2007), language evolution (Maurits
& Griffiths, 2014; Rafferty, Griffiths, & Klein, 2014), word learn-
ing (Xu & Tenenbaum, 2007), speech recognition (Norris & Mc-
Queen, 2008), reading (Norris, 2006), causal learning (Griffiths &
Tenenbaum, 2009), cultural transmission (Kalish, Griffiths, &
Lewandowsky, 2007), future prediction (Griffiths & Tenenbaum,
2006, 2011; Lewandowsky, Griffiths, & Kalish, 2009), and visual
working memory (Brady & Tenenbaum, 2013).

Despite—or perhaps, because of—their success, Bayesian mod-
els have sparked some criticism. Specific models have been crit-
icized for complexity, which may reduce their explanatory power.
Mozer, Pashler, and Homaei (2008) demonstrated how a model
based on Bayesian inference was not necessary to account for
participants’ behavior on a future prediction task (Griffiths &
Tenenbaum, 2006). Mozer et al.’s (2008) simplified heuristic
model performed with commensurate success to that of the Bayes-
ian model, questioning the necessity of the substantial addition of
theory (however, Lewandowsky et al., 2009, identified important
problems with the simplified model).

Similar results in other paradigms have led to more general
debates about the role of Bayesian models in human cognition (cf.
Bowers & Davis, 2012a; Bowers & Davis, 2012b; Chater et al.,
2011; Eberhardt & Danks, 2011; Griffiths, Chater, Norris, &
Pouget, 2012; Griffiths, Vul, & Sanborn, 2012; Jones & Love,
2011; Marcus & Davis, 2013). These debates have included the
value of normative models, with philosophical arguments about
the role of explanations posed at Marr’s algorithmic versus com-
putational levels. More tangibly, the choice of prior and likelihood
functions have been criticized as conferring undue model flexibil-
ity. In a Bayesian model of cognition, changes in the prior belief
lead to changes in the model’s predictions. This can be problematic
because there are situations in which the prior function that par-
ticipants really use is difficult or impossible to ascertain (however,
see Hemmer, Tauber, & Steyvers, 2015). The degree to which
Bayesian models of cognition are quantitatively tested against
human data has also been highlighted as a limiting factor (Hemmer
et al., 2015).
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Our research was designed to overcome this problem and others
by designing the experimental paradigm to allow easy communi-
cation and measurement of prior and posterior beliefs. We quan-
titatively examined the degree to which human behavior approx-
imated Bayesian inference at the level of the individual subject,
using the well-studied paradigm of simple probabilistic inference.
Although previous research has demonstrated some agreement
between posterior probability distributions from Bayesian infer-
ence and from people, these tests have most frequently been
applied at the group level (Griffiths & Tenenbaum, 2006, 2009,
2011; Lewandowsky et al., 2009; Shi, Griffiths, Feldman, & San-
born, 2010). When these investigations have been applied at the
level of individuals, the comparison between human and Bayesian
inference has been largely qualitative (e.g., Williams & Griffiths,
2013); that is, analysis questions are frequently of the type, “Do
the participants’ responses move in the direction predicted by
Bayesian inference?” Our experimental paradigm reduced the in-
ference task to a level that allowed the Bayesian model of cogni-
tion to be quantitatively compared with individual participants’
behavior. We manipulated the difficulty of a simple prediction
about an alien who was flipping coins. Participants were asked
about the nature of a coin (i.e., fair or biased) both before and after
seeing a sequence of outcomes. We recruited a sufficiently large
number of participants that the full ranges of prior and posterior
beliefs were sampled, and also enough that we were able to
analyze important subsets of the data. The participants’ inferences
were mostly inconsistent with Bayes’ rule. However, as the pre-
diction scenario became simpler, more participants responded in a
manner that was consistent with Bayesian inference.

Experiment 1

Method

Participants. For each experiment reported, we collected data
from 4,000–5,000 participants because this provided sufficient
resolution to calculate the density of responses in a 17 � 17 grid
of prior versus posterior probabilities. For Experiment 1, 4,033
U.S.-based participants were recruited online via Amazon’s Me-
chanical Turk (MTurk). The experiment took an average of 3 min
to complete and participants were paid $0.50.

Procedure. At the start of the experiment, participants were
told to imagine that they were on an alien planet called “Cointo-
pia,” where only two types of coins existed. One type of coin was
unbiased, like our earth coin (called a “zonk”). The other type of
coin was biased such that there was a 70% chance of heads and a
30% chance of tails (called a “zlink”).

Participants were next told that they had met a local of Cointo-
pia, an alien called “Zed,” who was holding a coin, but they did not
know what type of coin. Participants were instructed to move a
slider to indicate the probability (in percent) that Zed was holding
a zonk. The slider was bounded at 0 and 100. A description of what
a response of 0, 50, and 100 meant was provided above the slider,
e.g., “A slider all the way to the left (0) indicates that you believe
there is 0% probability that Zed has a zonk. This means that that
you believe there is 100% probability that Zed has a zlink.” For
convention, all analyses reported applied the 0–1 probability scale
rather than percentages.

Participants then saw the result of four coin flips. Participants were
randomly allocated to one of five outcome conditions: zero, one, two,
three, or four tails. In each condition, participants randomly saw one
of all possible orders of outcomes. For example, participants in the
one-tail condition saw either T, H, H, H or H, T, H, H or H, H, T, H
or H, H, H, T. After this, participants were instructed to move the
same slider to indicate the probability that Zed was holding a zonk.
The same descriptions of what each slider point (i.e., 0, 50, and 100)
meant were provided. This was where participants provided their
posterior probabilities.

Results

Any participant who took less than 1 min or more than 15 min to
complete the experiment was removed from analysis due to consid-
erations of engagement. These criteria removed 10% of participants.

The top row of Figure 1 plots participants’ posterior-probability
estimates against their prior-probability estimates. For this figure, both
prior and posterior-probability estimates were binned into 17 ranges,
and the number of participants falling into each bin is indicated by the
size of the square in the plot. Just over half of the participants (55%)
provided a prior probability of exactly .5, with 61% of participants
giving a prior probability between .45 and .55.

The solid black lines in Figure 1 indicate, for any given prior, the
Bayesian posterior. If participants had updated their priors in light of
the coin-flip outcomes exactly according to Bayes’ rule, then all data
would lie on the black lines. That is, for any prior (x-axis value) the
only square would be centered on the black line, and all other regions
would be empty. To allow for some noise, we defined a posterior-
probability estimate as “Bayes optimal” if it was within 10 percentage
points of the actual Bayesian posterior. These regions are illustrated
by dashed lines in Figure 1. In Experiment 1 (top row), it is clear that
many participants gave posterior-probability estimates that were in-
consistent with Bayes’ rule. Indeed, across Experiment 1, only 33% of
participants provided posterior estimates that were within �10% of
the Bayesian value. This is a very low proportion, given that random
uniform responses would lead to 20% (or just under, due to edge
effects).

Possible explanations for the suboptimal inferences we observed
are that participants were confused by the task, or inadequately
engaged in the task. To investigate these, we examined a subset of
participants who seemed least likely to be disengaged; those who gave
prior-probability estimates close to 50% (we defined “close” as within
the interval [.45, .55]). These participants actively moved the prior-
probability slider away from its random starting point, to indicate no
strong prior beliefs about coins on an alien planet. We also addressed
the possibility that some participants might have mixed up the polarity
of the slider, despite the reminders, by reassigning the posterior
estimate of any participant who moved his or her posterior in the
opposite direction from his or her prior estimate compared with the
Bayesian posterior. These posterior estimates were reassigned using
p��1 � p� . We return to the issue of participant engagement in the
discussion.

The resulting distributions of posterior-probability estimates are
shown in Figure 2. The gray regions capture responses that were
within �10% of the Bayesian posterior corresponding to a prior of .5.
The percentage of participants within 10% of the Bayesian posterior
is displayed above each panel. Around 47% of participants gave
posterior-probability estimates within 10% of the Bayesian posterior.
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However, even uniform random responding would lead to 30% of
participants falling within 10% of the Bayesian posterior by chance
(more than 20%, due to the generous reassignment p��1 � p� for any
participant who updated his or her prior in the wrong direction). Thus,
the performance of the participants in Experiment 1 was certainly
different from Bayesian inference, even when we made consider-
ations for confusion about the scale polarity, or lack of engagement
with the task.

Discussion

Overall, inferences in Experiment 1 were inconsistent with
Bayes’ rule. Although some participants shifted their beliefs in the
wrong direction, the inconsistency with Bayes’ rule was still
evident, even when all responses from these participants were
given the benefit of the doubt, and was interpreted as response–
polarity confusions. The results also cannot be explained by the
well-known phenomenon of conservatism in belief updating, that
is, the idea that people shift their beliefs more slowly, or by a lesser
amount, than is optimal. In Experiment 1, two of the five outcome

conditions led to the opposite of conservatism; there was overad-
justment of beliefs when participants saw either one of four tails,
or two of four tails (see the second and third panels from left in the
top row of Figures 1 and 2).

Experiment 2

Experiment 2 replicated Experiment 1, but with one new ele-
ment: Before providing posterior-probability estimates, partici-
pants were reminded of the prior-probability estimate they had
given. We reasoned that this might help to reduce confusion and
memory load.

Method

Participants. 5,015 U.S.-based participants were recruited
online via MTurk. The experiment took on average 3 min to
complete and participants were paid $0.50.

Procedure. We used the identical procedure to Experiment 1
in all aspects, except that when we provided the posteriors, we

Figure 1. Posterior probability (y axis) as a function of prior probability (x axis). Larger squares indicate
greater numbers of participants. Solid lines indicate the Bayesian optimal response conditioned on the prior
probability. Dashed lines indicate posteriors that are within �10% of the Bayesian posterior. The three rows
correspond to three experiments, and the five columns correspond to the different coin flip outcomes (one tail,
two tails, etc.) that participants observed.
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reminded participants of their priors with the following text: “The
value the slider is already on indicates your belief about
the probability that Zed had a zonk before you saw the results of
the coin flips.”

Results

Following the same time latency exclusions as Experiment 1,
4% of participants were removed from analyses. The results of
Experiment 2 are shown in the middle row of Figure 1. The results,
shown in the middle row of Figure 2, were restricted to those
participants who provided prior probabilities in the interval [.45,
.55], with allowance given for polarity confusion. In both analyses,
the results of Experiment 2 were very similar to the results from
Experiment 1. Only 47% of participants provided a posterior-
probability estimate that was within �10% of the Bayesian pos-
terior, even when considering only those participants who pro-
vided a prior near 50%, and allowing for confusion about slider
polarity for any participant who moved the posterior probability in

the opposite direction from their prior, compared with the Bayes-
ian optimal posterior probability.

Discussion

The results from the first two experiments were extremely
similar, as shown in the top and middle rows of Figures 1 and
2. The two experiments even showed the same pattern of
conservative belief updating for participants who saw four tails
from four coin flips, and the opposite pattern for participants
who saw one or two tails from four coin flips. These patterns
suggest that the over- and underupdating of beliefs is a robust
pattern in this paradigm, and not explained by simple effects,
such as anchoring due to the initial position of the slider used
to indicate posterior probability. This slider was positioned at
the prior-probability estimate in Experiment 2, but not in Ex-
periment 1, which might have been expected to induce greater
conservatism in Experiment 2.

Figure 2. Distributions of posterior-probability estimates for Experiments 1–3 (rows), restricted to those
participants who provided a prior in the interval [.45, .55]. Any participant who moved their posterior in the
opposite direction from their prior estimate compared with the Bayesian posterior was reassigned using
p��1 � p�. Solid black line indicates the Bayesian optimal posterior given a prior of 50%. Shaded gray area
indicates the optimal region, defined as 10% on either side of the true posterior. Values above each panel indicate
the percentage of participants who reported a posterior within �10% of the Bayesian value. Columns show N-tail
conditions.
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Experiment 3

Given the suboptimal inferences made by participants in Exper-
iments 1 and 2, we wondered if optimal inference might be elicited
if the inference problem was made very easy. In the first two
experiments, the hypotheses (coins) were asymmetrical: One was
50/50, the other 70/30. This might present a more difficult infer-
ence problem, because most observable evidence patterns are more
likely under the unbiased coin than the biased coin. Experiment 3
made the inference problem easier by using symmetrical coins.

Method

Participants. 5,116 U.S.-based participants were recruited
online via MTurk. The experiment took on average 3 min to
complete and participants were paid $0.50.

Procedure. In Experiment 3, the procedure was identical to
Experiment 2 in all aspects except that the head/tail probabilities of
the coins in Experiment 3 were symmetrical. When participants
received the initial scenario, they were told that one type of coin
(the zonk) was biased such that for any coin toss, there was a 30%
chance of getting a head and a 70% chance of getting a tail. The
other type of coin (the zlink) was biased such that for any coin toss,
there was a 70% chance of getting a head and a 30% chance of
getting a tail.

Results

Following the same time-latency exclusions as Experiments 1
and 2, 5% of participants were removed from analyses. The bottom
row of Figure 1 displays raw data from Experiment 3. Participants’
prior-probability estimates were closer to 50% than in Experiments
1 and 2, with 78% of participants providing a prior probability in
the interval [.45, .55]. The bottom row of Figure 2 shows the
posterior-probability estimates from Experiment 3 with the same
data filtering as before, i.e., restricted to participants who gave a
prior probability between 45% and 55%, and also giving the
benefit of the doubt to any participant who updated his or her
posterior in the wrong direction, and thus may have been confused
about the response slider’s polarity. This time, around 63% of
participants provided posterior-probability estimates within �10%
of the Bayesian optimal posterior. (The chance level for this
analysis is 25%, due to boundary restrictions on the four-tail and
zero-tail conditions). When participants were shown symmetrical
outcomes (i.e., two heads and two tails), 89% provided posterior
probabilities within �10% of the Bayesian optimal value. This is
perhaps unsurprising, because if one’s prior-probability estimate is
50%, and the data observations contain 50% heads versus tails,
then the appropriate posterior probability is also 50%. Across the
other four-heads-four-tails conditions, performance was much
poorer, and closer to that observed in Experiments 1 and 2, with
fewer than 55% of participants providing near-Bayesian posterior
probabilities.

Discussion

The reduction in apparent complexity of Experiment 3 resulted
in more participants providing near-Bayesian optimal inferences,
particularly in the very easiest condition. Across the conditions,
however, nearly one participant in three deviated by more than

10% from Bayesian optimality, and this held even after generous
data filtering was applied in favor of observing optimality. Further,
a comparison of the top two rows of Figure 1 against the bottom
row shows that participants were mostly insensitive to the impor-
tant difference in the hypotheses being compared. In all conditions
except for the two-head-two-tail condition, participants drew very
similar inferences in Experiment 3 as in Experiments 1 and 2, even
though this was not justified. (Note the differences between the
Bayesian predictions.)

General Discussion

Bayesian inference has been proposed as an analogy for human
cognition in some paradigms. However, there has been recent and
growing debate about the framework in general. Rather than en-
gage in such general debates, we opted for a specific quantitative
test of the correspondence between human experimental data and
the predictions that come from belief updating via Bayes’ rule. We
used a simple inference task in which participants judged what
type of coin was likely to have generated a given series of out-
comes. A key advance of our task was that it supported precise
quantitative comparisons between the posterior probabilities pro-
vided by Bayesian inference and those provided by participants.
With more than 13,000 participants across three experiments,
inferences were mostly inconsistent with Bayes’ rule.

It is well-documented that humans have a propensity to discount
the value of initial information in favor of novel information.
Regarding probabilities, it has been shown that people often un-
derweigh initial beliefs and overweigh new information, a phe-
nomenon termed base-rate neglect, or insensitivity to the prior
(Bar-Hillel, 1980; Tversky & Kahneman, 1974). The opposite
phenomenon has also been observed in probability judgments,
namely, overweighing prior beliefs, and updating them more
slowly than demanded by data (for review, see Weber, 1994). On
their own, neither of these phenomena can explain the results of
any of our three experiments, because we observed both over- and
underweighing of the prior probabilities across different condi-
tions. The two opposing phenomena could, together, explain the
results, but only in a rather unsatisfying, post hoc manner.

In contrast to our results, basic human inference has previously
been framed as statistically optimal Bayesian inference. Williams
and Griffiths (2013) used a task with many similarities to ours, but
found evidence in favor of a Bayesian interpretation of cognition.
They presented participants with a sequence of coin-flip outcomes
that were generated by one of two coins differing in probability
(just like our experiments). Knowing what these probabilities
were, participants were asked to indicate which of the two coins
generated the sequence, and their responses agreed overwhelm-
ingly with the optimal Bayesian response.

Our experiments are similar to Williams and Griffiths’s (2013),
but our results are apparently very different: Most of our partici-
pants deviated substantially from Bayesian optimal responses. The
key to explaining this difference is our use of a more fine-grained
response measure, and hence a more fine-grained comparison
between current participants and Bayes, than did Williams and
Griffiths. Our participants provided a quantitative indication of
their degree of belief in one coin over the other as opposed to a
qualitative preference between two coins, whereas Williams and
Griffiths’ participants provided only a qualitative indication of
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which coin was more likely. We confirmed that this difference in
the response measure was a likely cause of the difference in results
by making discrete our data to match the qualitative nature of
Williams and Griffiths’s data. We inferred each participants’ pref-
erence for the two coins by assuming that a posterior greater than
.5 indicated a preference for a zonk, and a posterior less than .5
indicated a preference for a zlink (if they were to make a forced,
two-alternative choice). These inferred choices overwhelmingly
matched the Bayesian optimal choices, just as Williams and Grif-
fiths found: The match rate was 90% for Experiments 1 and 2, and
96% for Experiment 3. This analysis highlights the importance of
testing cognitive theories at a quantitative level. The Bayesian
theory of cognition, which is apparently successful when tested at
a qualitative level, fails when tested quantitatively.

A key advance of our research was the ability to make precise
and quantitative comparisons of posterior-probability estimates
against Bayes-optimal posterior probabilities, at a single-
participant level. This advance was made possible by restricting
the inference problem given to participants to a very simple
situation with just two possible hypotheses: The alien could be
holding one of only two coin types that were available. This
restriction allowed an individual person’s prior and posterior prob-
abilities to be conveyed by just one number, i.e., the probability
that the alien was holding one of the two coin types. We hoped that
this representation of the problem in our experiments’ procedures
agreed with participants’ internal representation of the problem,
but this may not have been the case. For example, an alternative
assumption is that participants represented the problem as a hier-
archical statistical problem, in which case their priors might have
been better imagined as a distribution over all probabilities in the
unit interval. The distinction between this assumption and our
procedure can be made clearer by an example. Our procedure
assumed that a participant might represent his or her prior knowl-
edge with a statement like “There is a 53% probability that the
alien holds a zlink coin.” The hierarchical version might instead
state, “There is an 8% probability that the probability that the alien
holds a zlink coin is somewhere between 0% and 10%, and a 21%
probability that the alien holds a zlink coin is somewhere between
10% and 20% . . .” It is not clear, to us at least, how to approach
the problem of deciding which statistical framework the partici-
pants were using, and so we have chosen to base our analyses on
the simplest assumption.

For all our experiments, we used data collection through the
online labor market place of MTurk. The viability of online data
collection has been a subject of investigation for more than a
decade (e.g., Reips, 2001; Stanton, 1998; Topp & Pawloski, 2002).
There is evidence to suggest that there is little difference between
the quality of data collected on MTurk and the quality of data
collected in a laboratory setting (Buhrmester, Kwang & Gosling,
2011; Gosling, Vazire, Srivastava, & John, 2004; Paolacci, Chan-
dler, & Ipeirotis, 2010). In addition, numerous benchmark findings
have been replicated using MTurk across varied paradigms and
research domains (Berinsky, Huber, & Lenz, 2012; Crump, Mc-
Donnell, & Gureckis, 2013; Paolacci et al., 2010; see Rand, 2012,
for a review).

Notwithstanding the above reassurances, the issue of participant
engagement is pertinent in the experiments reported here. One
basic indicator of engagement is the participants’ experiment-
completion times. Our experiment was very simple, and could be

reasonably completed in a matter of minutes; in fact the average
completion time was 3 min. However, we considered completion
times of less than a minute unreasonable, as the participant would
not have had time to read all the necessary instructions. Likewise
participants who took longer than 15 min were likely not to have
been solely engaged in the task from start to finish. These criteria
removed only 6% of participants, with no impact on our results or
conclusions.

In addition to response-latency considerations of engagement,
the above replication of Williams and Griffiths’ (2013) analyses is
telling. Our current analysis indicated that over 90% of our par-
ticipants provided responses that were qualitatively consistent with
Bayesian optimality (even though quantitatively, they were not).
This agreement would be very unlikely if there was large-scale
disengagement with the task.

As a final point, it is worth noting that the issue of engagement
as it relates to optimal Bayesian decision making is more complex
than first glance may suggest. Our exclusion criteria targeted
people who behaved randomly. As such, some of the participants
in our experiment may have been using relatively little cognitive
effort to update their beliefs in light of the data. However, theories
of Bayesian decision making posit that the optimality occurs
automatically. In one sense, this must be true, because people are
demonstrably poor at yielding optimal Bayesian solutions to prob-
lems they are asked to solve more analytically (e.g., Hawkins,
Hayes, Donkin, Pasqualino, & Newell, 2014). It may be that
stricter exclusion criteria would yield a greater proportion of
optimal responses, but then one need posit an inverted U-shaped
relationship between cognitive effort and the production of optimal
responses. We leave the testing of such a hypothesis to future
researchers.

Conclusion

In three experiments, most people provided inferences that were
inconsistent with a Bayesian account of cognition. In all but the
easiest condition of the easiest experiment, fewer than two thirds
of participants provided a near-Bayesian posterior probability,
even after applying data-filtering methods that favored the obser-
vation of optimality. In the easiest condition of the easiest exper-
iment, nearly 90% of participants provided near-Bayesian infer-
ences (after filtering). More generally, these results open questions
about the extent to which previous evidence in favor of Bayesian
accounts of cognition was biased, either by the use of very easy
inference problems, or by the absence of close quantitative com-
parisons between Bayesian inference and human data at the
individual-subject level.
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