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• Mean RT and stimulus strength are often related by a power law.
• Historically, this has been thought to reflect scaling of stimulus strength.
• Proposed that it may be a result of the architecture of the decision-making process.
• We show that at least sometimes the power law is a result of scaling, and not just decision-making.
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a b s t r a c t

Piéron’s Law, the power relation between mean RT and stimulus intensity or discriminability, has histor-
ically been understood to reflect a non-linear scaling between objective intensity and perception. More
recently, Piéron’s Law was demonstrated to arise out of the architecture of rise-to-threshold decision-
makingmodels (Stafford andGurney, 2004). Herewe explicitly testedwhether such an explanationwould
suffice to fit humandata, orwhether additional assumptions about the nature of perceptual processing are
required.We fitted a simple rise-to-thresholdmodel to full RT distributions and choice probabilities from
three data sets that show Piéron’s Law. Themodel assumed that accumulation rate was linearly related to
perceptual processing, leaving only the architecture of the model to produce Piéron’s Law. For two data
sets, this linear rate model is unable to account for the data, suggesting that Piéron’s Law sometimes re-
flects additional perceptual scaling information. For the third data set, however, Piéron’s Law does appear
to simply arise out of the rise-to-threshold architecture of decision-making models. Our results suggest
that it is important to fit models to data in order to draw inference about the causes underlying Piéron’s
Law.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Piéron’s Law (Luce, 1986; Piéron, 1952) refers to the long estab-
lished empirical regularity that the mean time taken to respond to
a stimulus is a power function of its physical intensity, such that
mean response time (RT) is

RT = R0 + kI−β

where R0 is an intercept parameter, k andβ are scaling parameters,
and I is stimulus intensity.

Piéron (1914) originally proposed the law to account for the
relationship between intensity (or luminance) and the average
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time taken to detect an item, though it has been extended to
other forms of detection (e.g., odor, Overbosch, de Wijk, de Jonge,
& Koester, 1989; taste, Bonnet, Zamora, Buratti, & Guirao, 1999;
motion, Burr, Fiorentini, & Morrone, 1998; the influence of glare,
Aguirre, Colombo, & Barraza, 2008). Piéron’s Law has also been
observed beyond simple detection. For example, Pins and Bonnet
(1996) showed that Piéron’s Law persists when stimulus intensity
is manipulated in two-choice tasks. Stafford, Ingram, and Gurney
(2011) demonstrated the law’s persistence as a function of color
saturation in a Stroop task (see also Servant, Montagnini, & Burle,
2014). Palmer, Huk, and Shadlen (2005) showed that a power-law
relationship exists between mean RT and the coherence of mov-
ing dots in a random-dot kinematogram (see also Reddi, Asrress, &
Carpenter, 2003), and Van Maanen, Grasman, Forstmann, andWa-
genmakers (2012), also found Piéron’s Lawwhenmanipulating the
discriminability between response options in a moving dots task.

Piéron’s Law has historically been considered as a theory of
stimulus scaling, capturing the relationship between physical
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changes in stimulus strength and psychological discriminabil-
ity (Nachmias & Kocher, 1970). However, the commonality of
Piéron’s Law across so many paradigms has lead researchers
(e.g., Stafford & Gurney, 2004; VanMaanen et al., 2012) to propose
that Piéron’s Law is unrelated to stimulus scaling, but is a result
of the architecture of the response selection (or decision making)
process.

Stafford and Gurney (2004) demonstrated that Piéron’s Law
naturally arose out of rise-to-threshold accumulation models of
decision making (e.g. Ratcliff’s Diffusion model, Ratcliff, 1978).
They showed that as the intensity of a stimulus increased linearly,
the increase in the average time taken to respond followed a
power function. In addition, Van Maanen et al. (2012) showed
that Piéron’s Law also occurs in Bayesian ideal observer models
of evidence accumulation in detection and two-alternative forced
choice tasks. In particular, they showed that as the difficulty of
a motion discrimination task increases (by reducing the angular
distance between the directions of motion being discriminated),
the ideal observer model predicts that mean RTs will follow a
power function. Importantly, both sets of authors (Van Maanen
et al., and Stafford & Gurney, 2004) showed that Piéron’s Law held
across a range of parameter values, andwas due to the architecture
of the decision making process rather than specific parameter
settings in the models.

That Piéron’s Law could be a simple artifact of the response se-
lection mechanism is an attractive prospect. For one, Piéron’s Law
arises elegantly and naturally from the rise-to-threshold archi-
tecture of decision-making models. Further, the models were not
developed to account for this regularity. However, the question re-
mains as to whether the response mechanism is solely responsible
for Piéron’s Law, or if the scaling of stimulus strength is also under-
lying the empirical observation of Piéron’s Law.

Our aim in this paper is to provide a strict test of whether it
is possible to use only on the architecture of a response selection
mechanism to account for empirical data that shows Piéron’s Law.
We will use a simple version of the Linear Ballistic Accumulator
(LBA, Brown & Heathcote, 2008) to test whether the architecture
of the model alone can fit a number of benchmark data sets. We
begin with a brief introduction to the LBA model, and show that
Piéron’s Law falls from the architecture of the model. Next, the
LBA model is applied to three sets of data, one from a luminance
discrimination task (Ratcliff & Rouder, 1998), and two that used
motion discrimination (Mulder, Wagenmakers, Ratcliff, Boekel, &
Forstmann, 2012; VanMaanen et al., 2012). To foreshadow,we find
that the rise-to-threshold architecture does not always suffice to
explain Piéron’s Law as present in observed data.

2. Piéron’s Law and the LBA model

The LBA model falls into the class of rise-to-threshold evidence
accumulation models mentioned earlier. We chose to use the
LBA because it is the simplest complete model of choice RT, and
thus allows for a clear test of the assumption that empirical
Piéron’s Law functions can be accounted for by the rise-to-
threshold architecture (Brown & Heathcote, 2008). While other
choice RT models are simpler (e.g., Carpenter & Williams, 1995;
Wagenmakers, van der Maas, & Grasman, 2007), we needed a
model that could account for the full suite of fast and slow errors
found in the Ratcliff and Rouder (1998) data.

In the LBA, evidence for each potential response is collected in
its own accumulator. On each trial, t , evidence for responses is ac-
crued at a linear rate, dt (and without noise, hence, ballistic) un-
til one accumulator reaches a threshold amount of evidence, b, at
which time a decision is made. The activation at the start of each
trial, at , is a random draw from a uniform distribution with mini-
mum set to zero (without loss of generality) and maximum deter-
mined by parameter A. The rate at which evidence accumulates on
each trial is a draw from a normal distribution with mean v and
standard deviation s. The time taken to make a decision on trial t ,
therefore, is given by

DTt = (bi − ait)/dit

where i indicates the accumulator first to reach threshold. The ob-
served response time for that trial is then

RTt = DTt + Ter

where Ter is a constant representing the time taken for non-
decision aspects of response time, such as stimulus encoding and
motor execution.

Evidence for a response accumulates quicklywhen the stimulus
provides a lot of evidence for that response. For example, in a detec-
tion task, evidence accumulates quickly for the ‘‘stimulus present’’
response when the stimulus is very intense. Decreasing the inten-
sity of a stimulus, however, will lead to a decrease in the average
accumulation rate, vpresent . Since the decision time is inversely pro-
portional to accumulation rate, responses will slow down as accu-
mulation rate decreases.

Fig. 1 displays examples of two LBA accumulators, and pro-
vides intuition forwhy rise-to-threshold accumulatormodels yield
Piéron’s law. In the figure, the values of a and b have been arbitrar-
ily set at 0 and 1, respectively, to simplify the demonstration. In
the LBA accumulator on the left of Fig. 1, the accumulation rates
for the two example trials are relatively fast. In the first accumu-
lator, the rate of accumulation, d1, is 1, and this yields a decision
time of (1 − 0)/1 = 1 s. The second accumulator, d2, is 0.2 lower,
at 0.8, and has a decision time of (1 − 0)/0.8 = 1.25 s. In this
first example, when accumulation rate was fast, a decrease in ac-
cumulation rate of 0.2 caused a slowdown of 0.25 s. In the LBA on
the right side of Fig. 1, the accumulation rates for the two trials are
now relatively slow. The rates for the two accumulators were set
at d1 = 0.65 and d2 = 0.45, yielding decision times of 1.54 s and
2.22 s, respectively. Note that even though the decrease in accumu-
lation rate from d1 to d2 remains 0.2, decision times are now 0.68 s
longer in the slower accumulator.

The full LBA model is more complex than that in Fig. 1, as it
allows for trial-to-trial variability in parameters. Thus, we now
report the results of a simulation study that shows that the full LBA
produces Piéron’s Law.

2.1. Simulation study to show that the LBA produces Piéron’s Law

One thousand data sets were simulated from the LBA, and we
examined the relationship between accumulation rate and mean
RT. The simulated data were intended to represent data from an
experiment in which there were 20 different levels of stimulus
intensity or discriminability. As such, we set the mean accumu-
lation rate in the correct accumulator, v, at 20 equally-spaced
values between 0.6 and 2.Mean accumulation rate for the incorrect
accumulator was set at oneminus themean rate for the correct ac-
cumulator (as is standard, Donkin, Brown, & Heathcote, 2009). The
remaining parameters were assumed to be constant across the 20
conditions, and were randomly chosen for each data set from the
range of reasonable parameters outlined in Donkin, Brown, Heath-
cote, and Wagenmakers (2011).

For each simulated data set, we fit a power function to themean
RTs and accumulation rates. For each data set, R2 was calculated to
indicate how well the power function described the relationship
between accumulation rate and the simulated mean RTs.

Themean R2 was 0.996, with a standard deviation of 0.002, con-
firming that the LBA does indeed produce a power-law decrease in
meanRT as accumulation rates increase linearly. Since Piéron’s Law
was originally observed in simple detection tasks, we repeated the
simulations assuming just one accumulator. The results are very
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Fig. 1. Example of how Piéron’s Law arises out of a rise-to-threshold model, such as the LBA.
Fig. 2. Mean RT for correct responses as a function of the proportion of white or black pixels in the display. The data are taken from Ratcliff and Rouder (1998). Solid lines
are the best fitting power function.
similar, with an average R2 of 0.992 and a standard deviation of
0.04. Thus, in principle the LBAmodel can account for Piéron’s Law-
like behavioral patterns based on a linear relation between accu-
mulation rate and stimulus intensity or discriminability. However,
the question remains whether this finding is supported by fits to
data that exhibit Piéron’s Law.

3. Model application to data

For each of the following three data sets, we will assess the
inherent ability of the LBAmodel’s architecture to account for data
that shows Piéron’s Law. To do so, we will fit a model that assumes
a linear relationship between stimulus strength and accumulation
rate. If Piéron’s Law is entirely the result of the rise-to-threshold
architecture of the decision-making process, then this LBA model
should be able to fit these data.

3.1. Ratcliff and Rouder (1998)

The first set of data we fit was from Experiment 1 in Ratcliff
and Rouder (1998). In their experiment, participants had to decide
whether a stimulus made up of black and white pixels was ‘‘high’’
or ‘‘low’’ in luminance. There were 33 equally spaced proportions
of black andwhite pixels from 0% to 100% (i.e., from no black pixels
to all black pixels). Feedback in the task was probabilistic, such
that stimuli made up of more black than white pixels were more
often to be labeled ‘‘low’’ in luminance.1 In all of the analyses that
follow,we collapsed over corresponding ‘high’ and ‘low’ luminance
conditions, excluding the equal black and white pixels condition,
leaving 16 luminance conditions.

3.1.1. Piéron’s Law
We first verify that the mean RTs in Ratcliff & Rouder’s (1998)

data follow a power function of luminance (i.e., Piéron’s Law). Fig. 2
shows that for all participants,mean RT increases as the proportion
of black and white pixels became closer to 50%. The solid line in

1 Ratcliff and Rouder alsomanipulated whether the participants were to respond
quickly (speed emphasis) or accurately (accuracy emphasis) in alternating blocks
of 204 trials. A power-law relationship between proportion of pixels and mean
RT was not readily apparent in the speed emphasis condition, and so here we
focus on the accuracy emphasis data. It is important to note that we fit the LBA
to both emphasis conditions simultaneously, allowing response threshold only to
change with emphasis, and the conclusions about the linearity of the accumulation
rate is unchanged. In other words, despite not observing Piéron’s Law in mean RT,
accumulation rate was still strongly non-linear.
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Fig. 3. Model fits and accumulation rates for the Ratcliff and Rouder (1998) data. Left column: Quantile-probability plots showing data (filled squares) and predictions
(connected triangles) from the linear rate model. Right column: Accumulation rates estimated from the free rate model plotted as a function of the proportion of black or
white pixels. The best-fitting power function through those accumulation rates is represented by the solid line. (Subj = Subject).
Fig. 2 shows the best-fitting power function, which appears to de-
scribe well the change in mean RT with stimulus luminance. How
well mean RT follows Piéron’s Law is also summarized in the figure
in the form of R2.

3.1.2. LBA model fitting
We fit each participant’s data with the LBA. In the model, all

parameters except accumulation rates were set equal across lumi-
nance conditions (i.e., one s, A, b and Ter parameter for all 16 con-
ditions). Accumulation rate for the correct response was assumed
to follow a linear relationship with luminance, so that

vi = x0 + x1pi

where pi was the ith proportion of either black or white pixels. Re-
call that this model will naturally produce Piéron’s Law. Accumu-
lation rates for incorrect responses were set at 1 − vi. This linear
rate LBA model had 6 free parameters.

The likelihood of themodel parameters given a chosen response
at a particular time is given by Eqs. (1)–(3) in Brown and
Heathcote (2008). We used the simplex algorithm with multiple
start points to obtain maximum likelihood estimates of the best-
fitting parameters for the model, and these are reported in Table 1.

The left column of Fig. 3 plots the fits of the linear rate model
in the form of quantile-probability (QP) plots. QP plots are an
efficient way of displaying the important information from a set of
Table 1
Best-fitting parameter estimates for the linear rate model fit to Ratcliff & Rouder’s
(1998; RR98), Van Maanen et al.’s (2012; VM12), and Mulder et al.’s (2012; M12)
data. Individual participant parameters are shown for the first two data sets, and
theminimum,median, andmaximum parameters are reported for theMulder et al.
data. For the RR98 data, x0 and x1 are in units of proportion of pixels. For VV12, the
units are degrees of angular separation. For M12, the units are proportion of dot
coherence.

Data set Participant s A b Ter x0 x1

1 .25 .34 .62 .16 0.20 0.84
RR98 2 .44 .46 .72 .14 −0.96 3.03

3 .30 .28 .49 .13 0.07 1.23

1 .33 .19 .28 .11 0.58 .004
2 .47 .33 .46 .13 0.80 .003

VM12 3 .29 .48 .76 .10 0.58 0.0007
4 .26 .33 .60 .23 0.53 0.003
5 .27 .32 .56 .09 0.53 0.002
6 .47 .43 .43 .40 0.78 0.008

Minimum .13 .09 .32 .12 0.47 0.38
M12 Median .20 .27 .20 .14 0.52 0.70

Maximum .37 .56 .74 .39 0.63 2.15

choice RT data — the horizontal axis contains accuracy information
and the vertical axis contains RT distribution information. Each
set of horizontally aligned points in the plots represent the RT
distributions in a single experimental condition. The horizontal
position of a set of points represents the proportion of responses



26 C. Donkin, L. Van Maanen / Journal of Mathematical Psychology 62–63 (2014) 22–32
Fig. 4. Mean RT for correct responses as a function of the angular separation between response alternatives in the dot motion task. The data are taken from Van Maanen
et al. (2012). Solid lines are the best fitting power function.
making up that RT distribution. As points move to the right of the
plot, responses were more accurate, coming from conditions in
which the proportion of black or white pixels is closer to 1. The
position of points on the vertical axis are determined by the five
quantile estimates (.1, .3, .5, .7 and .9). The .1 quantile estimate
corresponds to the value below which .1, or 10%, of the RT values
in the distribution fall. Therefore, the five quantile values together
summarize the RT distribution.

Model predictions in Fig. 3 are represented by the joined open
triangles, while the observed RTs are indicated by filled squares.
The agreement between the squares and the triangles on both the
horizontal and vertical axes reflects the quality of the model’s fit.
It is clear from the figure that the linear rate model cannot account
for the data. The main failure of the model is that it predicts far
too high accuracy when the proportion of black or white pixels
approached 0.5, as evidenced by the open triangles situated too far
to the right of the plot.

As a further test of this hypothesis, we also fit a free accumula-
tion rate model, in which a rate parameter, vi, is estimated freely
for each of the 16 conditions. The free rate model is fit to these
data to determine the degree to which accumulation rates are lin-
ear when estimated without restriction. The freely estimated ac-
cumulation rates are plotted as filled squares in the right column
of Fig. 3. It is clear from the figure that the change in rates is non-
linear with respect to the proportion of black and white pixels. A
best-fitting straight line is drawn through the accumulation rates
to highlight this non-linearity.

3.2. Van Maanen et al. (2012)

Van Maanen et al. (2012) manipulated the difficulty of a
discrimination decision in a random dot motion task. Participants
were presented with random dot motion stimuli in which 25%
of the dots moved coherently in one of two directions. The
participants’ task was to indicate the direction in which the dots
were moving on that trial. The difficulty of this discrimination was
manipulated by changing the angular separation between the two
alternative motion directions. Seven different degrees of angular
distancewere used (11.5◦, 16◦, 22.5◦, 32◦, 45◦, 64◦, and 90◦), which
varied across trials. Each participant completed 1470 trials, with
210 trials in each angular distance condition providing enoughdata
to fit full RT distributions.

3.2.1. Piéron’s Law
Van Maanen et al. (2012) showed that a power function pro-

vides a good account of the change in mean RT with angular sep-
aration between response alternatives. Fig. 4 plots their mean RT
data, and shows the best-fitting power function. Piéron’s Law is ap-
parent for all but Participant 3.
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Fig. 5. Model fits and accumulation rates for the Van Maanen et al. (2012) data set. The format of the figure is the same as in Fig. 3.
3.2.2. LBA model fitting
We fit each individual participant with the linear rate LBA

model. For the Van Maanen et al. (2012) data, angular separation
was manipulated, and all parameters except accumulation rate
were fixed as constant across those conditions. The parameteriza-
tion of the accumulation rates for correct and incorrect responses
was exactly the same as for the Ratcliff and Rouder (1998) data set,
but now pi represents the angular distance between response alter-
natives, in degrees. The best-fitting parameters for each individual
are shown in Table 1.

The left panel of Fig. 5 shows the fit of the linear rate model for
each participant. These plots are of the same format as Fig. 3. The
linear model is unable to account for the full distribution of choice
and response times for Participants 1, 2, and 6. However, the fit
to Participants 3, 4, and 5 is more reasonable (though recall that
Participant 3 does not show Piéron’s Law). In general, the fit of the
linear rate model is better than it was for the Ratcliff and Rouder
(1998) data.

We also fit an LBAmodel in which the accumulation rates were
estimated separately for each level of angular separation. We plot-
ted these accumulation rates in the right panel of Fig. 5. Consis-
tent with the quality of the fits of the linear model, a straight line
provides a poor approximation of the estimated accumulation
rates for Participants 1, 2, and 6, but it is better for the remaining
participants.

3.3. Mulder et al. (2012)

Mulder et al. (2012) had 24 participants perform a random-dot
motion task. Unlike the Van Maanen et al. (2012) version of the
task, difficulty was manipulated by varying the proportion of dots
moving in the same direction. The dot motion coherence was ma-
nipulated across the levels 0, 10, 20, 40 and 80 percent, and partic-
ipants completed 40 trials at each level. The angular separation in
this task was held constant at 180°.

3.3.1. Piéron’s Law
Fig. 6 plots the mean RT for correct responses as a function of

dot motion coherence for each participant. The best fitting power-
law function is shown by solid curves. Note that relative to Figs. 2
and 4, the relationship between mean RT and stimulus strength
(motion coherence) for the Mulder et al. (2012) data appears to be
generally less well fit by a power-law function.
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Fig. 6. Mean RT for correct responses as a function of the dot motion coherence. The data are taken fromMulder et al. (2012). Solid lines are the best fitting power function.
Note that no good-fitting power function could be found for Participant 4.
3.3.2. LBA model fitting
We again fit the linear rate LBAmodel to each individual’s data.

Accumulation rates were assumed to be a linear function of dot
motion coherence. All other parameters were held constant across
coherence conditions. Rather than report the best-fitting parame-
ter values for each of the 24 individuals, Table 1 contains the min-
imum, median, and maximum values across those participants.

Fig. 7 shows the fit of the linear rate model to each individual
in the Mulder et al. (2012) data set. The linear rate model seems
to provide a much better account of these data than it did to the
previous two data sets. To seek further evidence for the adequacy
of the linear ratemodel, we plot the freely estimated accumulation
rates for each individual in Fig. 8. The solid lines in the figure rep-
resent the best-fitting straight lines through those accumulation
rates. Unlike the two previous data sets, the accumulation rates in
the Mulder et al. (2012) experiment are approximately linear for
the majority of participants.
4. General discussion

Stafford and Gurney (2004) showed that Piéron’s Law emerges
out of a rise-to-threshold decision-making process. Their demon-
stration implies that Piéron’s Law may not reflect anything about
the underlying scaling properties of objective stimulus magni-
tudes.Weprovided a rigorous empirical test of this claim, assessing
the ability of a linear rate model to account for empirical data. In
this model, only the architecture of the decision making process
could produce Piéron’s Law.

4.1. Sometimes Piéron’s Law is not just an artifact of the decision-
making process

We found that in two data sets in which Piéron’s Law was ob-
served, the linear rate model was unable to account for empirical
RT distributions and choice probabilities. As such,we conclude that
Piéron’s Law is not always simply the result of the rise-to-threshold
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Fig. 7. Fits of the linear rate model to the Mulder et al. (2012) data set. The figure of these quantile-probability plots are the same as in the right column of Figs. 3 and 5.
architecture of the decision-making process. Instead, our results
suggest that Piéron’s Law is sometimes reflective of a non-linear
relationship between the evidence extracted from a stimulus and
the strength of that stimulus. In other words, Piéron’s Law some-
times reflects a non-linear scaling between objective and subjec-
tive representations of stimuli.

Much of the existing literature on Piéron’s Law has assumed
that Piéron’s Law reflects an effect of changing stimulus strength
on the processes underlying perception (e.g., Felipe, Buades, & Ar-
tigas, 1993;Murray&Plainis, 2003). Our evidence that Piéron’s Law
is not simply due to the rise-to-threshold of the decision-making
mechanism fits well into this literature. Our results are also con-
sistent with those from Carpenter, Reddi, and Anderson (2009),
who showed that freely estimated accumulation rates in the LATER
model (Carpenter & Williams, 1995) were non-linearly related to
contrast (see also Carpenter, 2004; Taylor, Carpenter, & Anderson,
2006).

4.2. Sometimes Piérons Law is just an artifact of the decision-making
process

Interestingly, we found that the linear rate model provided a
good fit to most participants in a third data set. These data are
consistent with Stafford and Gurney’s 2004 suggestion that
Piéron’s Law is a result of the rise-to-threshold architecture of the
decision-making process. These results are also consistent with
those of Palmer et al. (2005), who also analyzed the relationship
between stimulus strength, response time, and accuracy using an
evidence-accumulation model. As in Mulder et al. (2012), Palmer
et al. used the random dot motion paradigm, and their resultant
mean RTs closely followed Piéron’s Law. Palmer et al. fit the mean
RT and proportion correct data from this experiment with a simple
version of a diffusion model (Stone, 1960). They also found that a
linear rate model was capable of simultaneously fitting both mean
RT and proportion correct, consistent with the claims of Stafford
and colleagues (Stafford & Gurney, 2004; Stafford et al., 2011),
and Van Maanen et al. (2012).

Thus we observe situations in which Piéron’s Law is and is not
due to only the decision-making architecture. This result high-
lights the importance of model fitting when determining whether
Piéron’s Law reflects the scaling properties underlying the percep-
tion of stimuli.We can see no clear reason for the difference in con-
clusions across experiments, except that perhaps Piéron’s Law is
weaker in the Mulder et al. (2012) data set. Future work consisting
of a series of careful studies is needed to progress our understand-
ing of these differences.

4.3. Identifiability, evidence accumulation, and stimulus scaling

A fundamental assumption in our linear rate model is that the
unit of evidence being accumulated in the decision-making model
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Fig. 8. Freely estimated accumulation rates are plotted as a function of coherence for each individual from the Mulder et al. (2012) data set. The best-fitting linear function
is drawn through each set of rates.
is stimulus strength (or linearly related to stimulus strength).
Without this assumption, it is impossible to draw any conclusions
about stimulus scaling from Piéron’s Law. In fact, the assumption
of a linear mapping between stimulus strength and the unit of
evidence accumulation is also crucial to the claims of Stafford and
Gurney (2004) and Van Maanen et al. (2012).

To see this, consider the Ratcliff and Rouder (1998) experiment.
We observe a power-law relationship between the proportion of
black or white pixels, p, and mean RT (Piéron’s Law). The claim
we test here is that this power-law relationship arises from the
decision-making process. If this claim is true, we should be able
to take an RT model, assume a linear mapping between p and
accumulation rate, and reproduce Piéron’s Law. For the sake of the
example, assume that we were able to successfully account for the
observed Piéron’s Law data with a linear mapping between p and
accumulation rate.

Now consider the case where the evidence accumulated is not,
in truth, linearly related to p. For example, from an information
theory perspective, it may be more sensible to assume that the
evidence accumulated is not p, but log( p

1−p ). If we fit a model
where the unit of evidence accumulation is log( p

1−p ), and this is
mapped linearly onto accumulation rate, then the model will no
longer yield a power-law relationship between mean RT and p. A
serious issue of identifiability arises, however, when we consider
that there exists an inverse transformation that we could use to
map log( p

1−p ) to accumulation rate so that the model will again
yield Piéron’s Law. Such an inverse transformationwill exist for the
vast majority of assumptions we make about the unit of evidence
accumulation.

Let us return to the implications of this issue of identifiabil-
ity on the claims of Stafford and Gurney (2004) and Van Maanen
et al. (2012). If we drop the assumption that the unit of evidence
being accumulated is p, then it becomes irrelevant as to whether
the decision-making process yields a power-lawmean RT function,
as there exists an infinite number of transformations between the
unit of evidence accumulation and accumulation rate that could
yield a linear mapping between p and accumulation rate. As such,
if we drop the assumption that the unit of evidence accumulation
is p, then Piéron’s Law essentially tells us nothing about the per-
ception of p.

4.4. Final comments

In an Appendix, we show that our claims about how well
the linear rate model fits data are supported by rudimentary
model selection methods. We compared the linear rate model to
a non-linear rate model, which assumed a power-law relationship
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Table A.1
∆BIC and BIC weights for the free, linear, power and exponential rate models fit to Ratcliff & Rouder’s (1998; RR98) and
Van Maanen et al.’s (2012; VM12) data.

Participant
Experiment Model 1 2 3 4 5 6

RR98
∆BIC Linear 108 25 134

Non-Linear 0 0 0

w
Linear 0 0 0
Non-Linear 1 1 1

VM12
∆BIC Linear 22 24 0 0 0 19

Non-Linear 0 0 5 5 6 0

w
Linear 0 0 0.94 0.94 0.95 0
Non-Linear 1 1 0.06 0.06 0.05 1
between stimulus strength and accumulation rate. For the Ratcliff
and Rouder (1998) and Van Maanen et al. (2012) data sets, BIC
supports the non-linear rate model over the linear rate model. In
contrast, the majority of participants in the Mulder et al. (2012)
data were preferred by the linear ratemodel. Since we do not want
our conclusions to rest onmodel selectionmethods that fail to take
into account functional form complexity (Myung & Pitt, 1997), the
details of this analysis are presented in an Appendix.

In our linear rate models, stimulus strength had a selective
influence on correct accumulation rates. Mean incorrect accu-
mulation rates were assumed to be one minus the mean cor-
rect accumulation rate. In accumulator models, one can relax this
assumption (Donkin et al., 2009). In an alternative linear rate
model, we could instead assume that incorrect accumulation rates
followed a separate linear function. We fit this alternative model,
and found that the non-linear rate model provided a better ac-
count for the data from Ratcliff and Rouder (1998) and Van Maa-
nen et al. (2012). In yet another alternative model, we dropped the
assumption of selective influence of stimulus strength of accumu-
lation rate, allowing response thresholds to also vary with stimu-
lus strength (cf. Cavanagh et al., 2011, King, Donkin, Korb, & Egner,
2012). Again, this model provided a less parsimonious account of
the data from Ratcliff and Rouder (1998) and Van Maanen et al.
(2012) than did the non-linear rate model.

Finally, one might wonder whether the conclusions we draw
here are specific to the particular choice response time model we
chose to use — the LBA. For example, would the same conclusions
be drawn if we had used the popular diffusion model (Ratcliff &
Tuerlinckx, 2002). Donkin et al. (2011) found that the parameters
of the diffusion and LBA models mapped closely onto one another,
and that this was especially the case for the drift rate parameter
(see also Winkel et al., 2012). As such, we expect that the
same analysis using the diffusion model would yield the same
conclusions as we have reached.
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Appendix A. Model selection via BIC weights

In order to test the linearity of the accumulation rates, we also
fit a non-linear accumulation rate model to each of the three data
sets reported in-text. In this non-linearmodelwe assumed that the
accumulation rates were a power function of stimulus strength. In
particular, we assumed that the accumulation rate for the correct
response, v, was related to stimulus strength p by

v = x0 + x1p
x2
i .
The model was otherwise identical to the linear rate model. Also
note that the linear model is nested within the power-law model.

We used Bayesian Information Criterion (BIC) weights (Wagen-
makers & Farrell, 2004) to compare the linear and non-linear mod-
els. BIC was calculated using

BIC = k × log(N) − 2l

where l is the likelihood of the parameters given the data, k is the
number of free parameters in the model, and N is the number of
data points fit by the model. BIC is composed of two terms, −2l,
which becomes smaller as the agreement betweenmodel and data
improves, and k × log(N), which is a penalty term added to the
model as it becomes more complex. As such, the model with the
smallest BIC gives the most parsimonious account of the data.

To aid interpretation, we transform BIC values into BIC weights.
The BIC weight represents the probability that model i is the true
data-generating model, assuming that one of the fitted models is
the true model. The BIC weight for the ith model, wi is calculated
using

wi(BIC) =
e−

1
2 ∆iBIC

k
e−

1
2 ∆kBIC

where ∆iBIC is the difference between the smallest BIC value (for
each participant) and the BIC of the ith model.

Table A.1 contains ∆BIC and BIC weights for the linear and
non-linear rate models for each participant in the Ratcliff and
Rouder (1998) and Van Maanen et al. (2012) data sets. For
the Ratcliff and Rouder (1998) data, all three participants were fit
better by the non-linear model than the linear model. BIC weights
for the three participants were 0 for the linear rate model. The
linear rate model found more support in the Van Maanen et al.
(2012) data. The linear rate model best fit the data from 3 of the
6 participants.

The Mulder et al. (2012) data yields stronger support for the
linear rate model. Twenty out of the 24 participants were better
fit by the linear rate model than the non-linear rate model. The BIC
weight, averaged over participants, for the linear rate model was
0.75, suggesting that the linear rate model was almost three times
as likely to have generated the data fromMulder et al. (2012) than
the non-linear rate model.

One may wonder about the overall quality of the fits of the
linear and non-linear models. We can assess this by comparing the
log-likelihood fits of the linear and non-linearmodels to themodel
in which rate parameters are freely estimated across stimulus
strength conditions. The free rate model is almost a saturated
model, and thus provides a benchmark against which we can
compare the fits of the much simpler linear or non-linear models.
For the Ratcliff and Rouder (1998) data, the log-likelihood values
of the free-rate models were −5185, −4438, and −4205 for the
three participants, respectively. The log-likelihoods for the linear
model are −5246, −4461, and −4282. The log-likelihoods for the
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non-linear model are −5187, −4442, and −4209. Note that the
non-linear model, despite having 13 fewer free parameters, fits
the data almost as well as the free rate model. The log-likelihood
values for the Van Maanen et al. (2012) participants are −3592,
−3388,−2987,−3660,−3833,−3328 for the free rate model; are
−3611, −3408, −2991, −3665, −3841, −3347 for the linear rate
model; and −3596, −3393, −2990, −3664, −3840, and −3334
for the non-linear model. For the Mulder et al. (2012) data set, for
12 of the 24 participants, the linear rate model was within 2 log-
likelihood points of the free rate model, and 8 participants were
within 2 and 4 points. The non-linear rate model was within 2 log-
likelihoodpoints of the free ratemodel for 19 of the 24participants,
and within 4 points for the remaining participants.
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