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Theories of choice response time (RT) provide insight into 
the psychological underpinnings of simple decisions. Evidence 
accumulation (or sequential sampling) models are the most suc-
cessful theories of choice RT. These models all have the same 
“scaling” property—that a subset of their parameters can be 
multiplied by the same amount without changing their predic-
tions. This property means that a single parameter must be fixed 
to allow the estimation of the remaining parameters. In the pres-
ent article, we show that the traditional solution to this problem 
has overconstrained these models, unnecessarily restricting their 
ability to account for data and making implicit—and therefore 
unexamined—psychological assumptions. We show that versions 
of these models that address the scaling problem in a minimal 
way can provide a better description of data than can their over-
constrained counterparts, even when increased model complex-
ity is taken into account.

Many psychological experiments involve a choice be-
tween two alternatives. Despite their apparent simplicity, 
there are many complicated empirical regularities associ-
ated with the speed and accuracy of such choices. Response 
time (RT) distributions take on characteristic shapes that 
differ systematically, depending on whether the associated 
response is correct or incorrect, and depending on any 
number of experimental manipulations of stimulus prop-
erties or of instructions to the participants. A range of theo-
ries have been proposed to account for both choice prob-
ability and RT when making simple decisions (for reviews, 
see Luce, 1986; Ratcliff & Smith, 2004). Over the past 40 
years, evidence accumulation (or “sequential sampling”) 
models have dominated the debate about the cognitive pro-
cesses underlying simple decisions (see, e.g., Busemeyer 
& Townsend, 1993; Ratcliff, 1978, Ratcliff & Smith, 2004; 
Smith, 1995; Stone, 1960; Usher & McClelland, 2001; Van 
Zandt, Colonius, & Proctor, 2000).

More recently, evidence accumulation models have 
been applied more widely, for example, as general tools 
to measure cognition in the manner of psychometrics 
(Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007; 
Vandekerckhove, Tuerlinckx, & Lee, 2009; Wagenmakers, 
van der Maas, & Grasman, 2007), and as models for the 
neurophysiology of simple decisions (see, e.g., Forstmann 
et al., 2008; Ho, Brown, & Serences, 2009; Smith & Rat-

cliff, 2004). In light of this growing influence, it is espe-
cially important that users of these models are not misled 
by implicit—and hence unexamined—assumptions.

Evidence accumulation models all share a basic frame-
work wherein, when making a decision, people repeat-
edly sample evidence from the stimulus. This evidence is 
accumulated until a threshold amount is reached, which 
triggers a decision response. These models naturally pre-
dict the response made (depending on which response has 
accumulated the most evidence) and the latency of the 
response (depending on how long the evidence took to ac-
cumulate). We illustrate these models using the example 
of a lexical decision task, in which a participant must de-
cide whether a string of letters is a valid word (e.g., dog) 
or not (e.g., dxg). The participant samples information 
from the stimulus repeatedly and finds some evidence that 
suggests that the stimulus is a word, and other evidence 
to suggest that the stimulus is not a word. The participant 
accrues this information, waiting until there is enough evi-
dence for one of the two options before responding. His 
or her choice corresponds to the response with the most 
evidence, and the time taken for this evidence to be ac-
cumulated is the response latency.

Over the past four or five decades, dozens of evidence 
accumulation models have been proposed, and all of them 
share a mathematical “scaling property”: One can multiply 
a subset of their parameters by an arbitrary amount, without 
changing any of the model’s predictions. To avoid compli-
cations arising from the scaling property, just one parameter 
of the model must be constrained arbitrarily. We show that 
the conventional approaches—which have been universally 
applied to solve the scaling problem—have actually over-
constrained the models by fixing more than one parameter. 
This overconstraint has been largely unrecognized by the 
field, so it is equivalent to making a tacit, untested, psycho-
logical assumption. Furthermore, we show that this tacit 
assumption can sometimes have important consequences: 
When the scaling problem is solved in a minimal way, the 
models can sometimes provide a better account for data.

Overview of the Models
There are two major classes of evidence accumula-

tion models: single accumulator models (Busemeyer & 
Townsend, 1993; Ratcliff, 1978; Ratcliff & Rouder, 1998; 
Ratcliff & Tuerlinckx, 2002; Smith, 1995; Stone, 1960) 
and models that have one accumulator for each possible 
response (Brown & Heathcote, 2005, 2008; Smith & Van 
Zandt, 2000; Smith & Vickers, 1988; Townsend & Ashby, 
1983; Usher & McClelland, 2001; Van Zandt et al., 2000; 
Vickers, 1970). The customary method for solving the 
scaling problem differs between the two classes of models, 
even though the principle is the same. To simplify our dis-
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these are not important for our purposes, so we will delay 
their introduction until later. When experimental condi-
tions differ only in stimulus characteristics that vary ran-
domly from trial to trial, all parameters except the drift 
rate are conventionally assumed constant over conditions 
(Ratcliff, Gomez, & McKoon, 2004).

The LBA is a multiple accumulator model, meaning that 
it assigns a separate evidence accumulator to each pos-
sible response: For example, in lexical decision, one ac-
cumulator gathers evidence in favor of the word response, 
and the other gathers evidence for the nonword response, 
as is illustrated in Figure 1. The activity level in each ac-
cumulator begins at a value that is randomly sampled 
(separately for each accumulator) from the interval [0, A]. 
Evidence accumulation is noiseless (“ballistic”) and lin-
ear, with a slope that we again call the “drift rate,” v. When 
the evidence accumulated for either response reaches a 
threshold, b, a response is made. Like the diffusion model, 
the LBA assumes that nondecision processing takes fixed 
time, Ter. The drift rates are assumed to vary from trial to 
trial according to normal distributions, with means vW for 
the word accumulator and vNW for the nonword accumula-
tor, and a common standard deviation, s.

Scaling Properties
Consider just one of the evidence accumulators from 

the LBA. The accumulator begins a trial with some ac-
tivity, say x0, between 0 and A, and increases at a rate of 
v units/sec (v is the drift rate for this accumulator). Evi-
dence accumulation ends when the threshold b is reached, 
which will take (b2x0)/v seconds. If all of these model 
parameters were multiplied by a common amount, the 
predicted RT would remain unchanged; for example, if 
the parameters were doubled, then the evidence accumula-
tion process would travel twice as quickly, but would also 

cussion, we choose a specific model from each class: the 
single accumulator diffusion model (Ratcliff & Tuerlinckx, 
2002) and the multiple accumulator linear ballistic model 
(LBA; Brown & Heathcote, 2008). We have chosen these 
two models largely for convenience, since both have easy-
to-implement computer code that is freely available (see 
Donkin, Averell, Brown, & Heathcote, 2009, and Voss & 
Voss, 2007). The general point that we make, however, ap-
plies to all evidence accumulation models.

Continuing the lexical decision example, the diffusion 
model assumes that participants sample evidence from the 
stimulus continuously, and that evidence stream updates 
an evidence total, say, x, illustrated as a function of time 
by the irregular line in Figure 1. The accumulator begins 
the decision process in some intermediate state, say, x 5 z. 
Evidence that favors the response “word” decreases the 
value of x, and evidence that favors the other response 
(“nonword”) increases the value of x. The evidence ac-
cumulation process continues until sufficient evidence 
favors one response over the other, causing the total (x) 
to reach one of its two boundaries (the horizontal lines 
at x 5 0 and x 5 a in Figure 1). The choice made by 
the model depends on which boundary is reached (a for 
a nonword response or 0 for a word response), and the 
RT equals the accumulation time plus a constant, Ter, that 
represents the time taken by nondecision processes, such 
as encoding the stimulus and producing the response.

Depending on the stimulus, evidence tends to accumu-
late more toward one boundary or another, and the average 
rate of this accumulation is called the “drift rate,” which 
we will label v. The evidence accumulation process also 
varies randomly from moment to moment during the ac-
cumulation process, and the amount of this variability is 
another parameter of the model, s. Recent applications of 
the diffusion model include three extra parameters, but 
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Figure 1. Graphical representations of a single decision made by the diffusion model and the 
linear ballistic accumulator (LBA) model.
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ditions, or, in the LBA, one could set the sum of the drift 
rates equal to 1 in just one of the five conditions.

However, these are not the constraints that have been 
used in practice. In all of the studies that we have reviewed 
(including our own), researchers have constrained “scaling 
parameters” independently in all conditions. To continue 
our example, they have either fixed s for all five condi-
tions (in single accumulator models, like the diffusion) or 
fixed the sum of the drift rates for all five conditions (in 
multiple accumulator models). Avoiding estimation prob-
lems that are the result of scaling properties requires fix-
ing just one parameter value, but researchers have always 
fixed one parameter value per experimental condition.

These so-called “scaling parameters” (i.e., s or the sum 
of drift rates) have also come to be treated quite differ-
ently from the other model parameters, as “fixed, not free” 
(Ratcliff & Tuerlinckx, 2002, p. 440). Mathematically, 
dealing with scaling parameters entails two independent 
decisions: (1) that one model parameter is arbitrarily se-
lected for constraint, and (2) that this parameter can be 
(and always has been) held to its fixed value across all ex-
perimental conditions. The first decision has no theoreti-
cal consequence, because constraints on different types 
of parameters are mathematically equivalent. The second 
decision can have a theoretical consequence. Suppose, for 
example, that one had decided to fix the boundary separa-
tion parameter to solve the scaling problem. Keeping this 
parameter fixed across conditions that differ in instruc-
tions that emphasize the speed or accuracy of responses is 
clearly inappropriate. In practice, however, it seems that 
the second decision has automatically followed the first: 
that choosing a scaling parameter has predetermined its 
role as fixed across experimental conditions.

Our central message is that the parameter type chosen 
as a scaling parameter can vary across conditions while 
still satisfying the scaling constraint property. As we will 
now demonstrate, this can be important, since using mini-
mal constraints changes two things: the predictions and 
the psychological interpretations of the models. By re-
analyzing previously published data, we will show that 
allowing parameters that have been previously treated in 
the conventional scaling manner to vary across conditions 
can have a substantial, and sometimes useful, effect. We 
will show that when a minimal rather than a conventional 
scaling solution is used, the resulting improvement in fit 
is sufficient to justify the extra parametric freedom, even 
when a very strict complexity penalty is employed. We 
will then briefly address the psychological implications 
of our proposal.

Reanalysis of Gould, Wolfgang,  
and Smith’s (2007) Data

Gould, Wolfgang, and Smith (2007) investigated the 
effect of cuing and localization in a stimulus detection 
task. We focused on one of their cuing conditions—the 
one providing the greatest challenge for evidence accu-
mulation models. Gould et al. manipulated the difficulty 
of stimulus detection by varying contrast over five levels. 
Doing this resulted in 10 different RT distributions—one 

have to travel twice as far. This scaling property is true of 
all evidence accumulation models: All parameters that af-
fect evidence accumulation can be multiplied by any fixed 
amount without altering the model’s predictions.

The scaling property makes it impossible to estimate 
unique model parameters from data unless the value of 
one parameter is fixed arbitrarily. In single accumulator 
models, including Ratcliff ’s diffusion, this has always 
been done by fixing the variability of the diffusion process 
at either s 5 0.1 or s 5 1 (see, e.g., Ratcliff, 1978; Rat
cliff & Rouder, 1998; Ratcliff & Tuerlincx, 2002; Smith & 
Ratcliff, 2004; Van Zandt et al., 2000; Voss, Rothermund, 
& Voss, 2004). In fact, the diffusion coefficient is usually 
referred to as the “scaling parameter” of the model, even 
though any other parameter could equally well be fixed to 
avoid scaling problems.

For the LBA and other multiple accumulator models, 
problems that are the result of the scaling property have 
been avoided by fixing the sum of the drift rates for the 
two accumulators to a constant (Brown & Heathcote, 
2005, 2008; Forstmann et al., 2008; Ho et al., 2009; Rat
cliff & Smith, 2004; Smith & Van Zandt, 2000; Townsend 
& Ashby, 1983; Usher & McClelland, 2001). For exam-
ple, in the aforementioned word versus nonword model, 
one might fix vW 1 vNW 5 1. Mathematically speaking, 
any other parameter constraint would do just as well to 
solve the scaling problem; for example, the boundary 
separation or one of the drift rates could be fixed. It is 
simply a matter of convention that the field has settled on 
the sum-of-drift-rates constraint for multiple accumulator 
models, and on the diffusion-noise constraint for single 
accumulator models.

The scaling properties just described are simple and 
well understood. However, the situation is complicated in 
practice because evidence accumulation models are almost 
never used to analyze just one experimental condition in 
isolation. Instead, data are collected from multiple experi-
mental conditions, which are analyzed together.1 Doing 
this allows some parameters to be fixed across experimen-
tal conditions, depending on what psychological assump-
tions one is willing to make. For example, when experi-
mental conditions differing only in stimulus properties are 
randomly ordered from trial to trial, parameters that are 
assumed to be under the strategic control of the participant 
(such as boundary separation) are often fixed. This is justi-
fied by the notion that such parameters take time and effort 
to change, and that such changes are unlikely to occur be-
tween stimulus onset and the response (Ratcliff, 1978).

When parameters are fixed across conditions, changes 
in parameters for one condition naturally alter the predic-
tions for other conditions. So, when multiple conditions 
are analyzed simultaneously, the scaling properties of the 
models can be constrained by fixing a single parameter 
in only one of the conditions. For example, suppose one 
conducts an experiment with five different levels of dif-
ficulty defined by different stimuli. In this design, scaling 
problems are avoided if a single parameter is constrained 
in only one of the five conditions. If Ratcliff ’s diffusion 
model is used, one can set s 5 1 in just one of the five con-
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easiest condition. In most previous studies, it has been 
observed that the fastest decision times change by at most 
30 msec across the range of a QP plot (see, e.g., Ratcliff 
et al., 2004; Ratcliff & Smith, 2004).

Model fits: Conventional scaling. Figure 2 shows 
the fits of the diffusion and LBA models when employ-
ing the overconstrained conventional solution to the scal-
ing problem (i.e., fixing one parameter across all experi-
mental conditions). To fit both models, we followed the 
usual convention of assuming that only drift rate varies 
between conditions, and that all other parameters were 
equal across all conditions. A constant nondecision time 
(Ter) assumes that encoding time and response production 
time do not vary across conditions. The constancy of the 
strategic parameters is justified because stimulus condi-
tions varied randomly from trial to trial. We also assumed 
that responding was unbiased; for the diffusion model, this 
means evidence accumulation begins halfway between the 
bounds (z 5 a/2), and that response boundaries are equal 
in the LBA.

The simple diffusion model described earlier would fit 
these data with five free parameters. However, in prac-
tice, the diffusion model uses another three free parameter 
types related to trial-to-trial variation: The starting point 
of the evidence accumulation process varies according to 
a uniform distribution on [z2sz, z1sz]; the drift rate var-
ies according to a normal distribution N(v,η); and nonde-
cision time (Ter) varies according to a uniform distribu-
tion on [Ter2sT, Ter1sT]. These additions make a total of 
10 free parameters (Ter, sT, a, η, sz, v1, v2, v3, v4, v5), since 
they are assumed to be the same across conditions. The 
LBA fits also used 10 free parameters for each participant 
(Ter, sT, A, b, s, v1, v2, v3, v4, v5). This is one more param-
eter than has previously been used in applications of the 
LBA, since nondecision time, Ter, is usually assumed to be 
fixed (i.e., sT 5 0). We allowed nondecision time to vary 
here for equivalence with the diffusion model (although sT 
was estimated at about 0 for the LBA). The sum of average 

for correct responses and one for incorrect responses from 
each of the five contrast levels. In Figure 2, we summa-
rize these 10 distributions using quantile probability (QP) 
plots, with data (averaged across subjects) represented 
as filled circles connected by solid lines. QP plots have 
proven very important in discriminating between mod-
els of choice RT (Brown & Heathcote, 2008; Ratcliff & 
Rouder, 1998; Ratcliff & Smith, 2004). The x-axis mea-
sures response probability, and the y-axis shows the laten-
cies associated with five quantiles of the RT distributions 
(10%, 30%, 50%  [the median], 70%, and 90%).

An example may help to make the QP plot clearer; 
consider just the data from the very easiest stimulus con-
dition. The average response accuracy for this condition 
was 97.3%, so the quantile estimates from the distribu-
tion of correct responses are plotted as five filled circles 
vertically above x 5 .973, and the quantile estimates from 
the distribution of incorrect responses are plotted above 
x 5 .027 (i.e., 1 2 .973). The 10% quantile estimate for 
the correct RT distribution was 409 msec (i.e., 10% of 
correct responses were faster than 409 msec), so the first 
filled circle above x 5 .973 is at y 5 409. The proce-
dure is repeated for the remaining quantile estimates for 
both the correct and incorrect distributions. The resulting 
plot allows one to assess how the RT distribution changes 
with response accuracy and between correct and incor-
rect responses. The solid lines in Figure 2 join each of 
the quantiles across contrast values for correct and error 
responses.

As is typical, correct responses for difficult decisions 
were slower than easy decisions (as we move from the 
right to the center of the plots) at all five quantiles. In-
correct responses were slower still (on the left half of the 
plots), with the possible exception of errors in the easiest 
condition (far left). What is unusual in these data is the 
amount of change in the fastest RTs (the 10% quantile es-
timate). The 10% quantile estimate for correct responses 
was 87 msec slower in the hardest condition than in the 
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Figure 2. Quantile probability plots for Gould et al.’s (2007) data and fits (averaged across participants) 
for the diffusion and linear ballistic accumulator (LBA) models.
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ity, as is indicated by the number of estimated parameters. 
When comparing two models, the model with the smaller 
BIC is considered to have provided a better fit to the data, 
after complexity has been taken into account. We use BIC 
because it imposes a larger complexity penalty than do al-
ternatives such as the Akaike information criterion (AIC), 
so it provides a more stringent test of whether the models 
benefit from the extra parameter variation allowed by im-
posing minimal constraints to solve the scaling problem.

Parameter estimates and BIC values are shown in Ta-
bles 1A and 1B (we focus on averaged data for brevity). 
As Figure 2 shows, both models provided poor accounts 
of the data: The diffusion underpredicts the shift in RT 
distribution across conditions, whereas the LBA fails to 
capture the faster errors that occur in easy conditions. The 
conclusion we draw is that standard applications of both 
models fail to provide convincing accounts of these data.

Model fits: Minimally constrained. For the mini-
mally constrained version of Ratcliff ’s (1978) diffusion 
model, we fixed the diffusion coefficient in the highest 

correct and incorrect drift rates in the LBA was set at 1 for 
all five stimulus contrast levels. The diffusion model was 
constrained by having the diffusion coefficient fixed at 
s 5 1 across all five conditions.

Parameters were estimated using the method of quan-
tile maximum probabilities (Heathcote & Brown, 2004). 
Model predictions were evaluated using the LBA code 
provided by Donkin et al. (2009) and the diffusion model 
code provided by Voss and Voss (2007). The Bayesian 
information criterion (BIC) was calculated at the best-
fitting parameters for each participant: The BIC statistic 
for N observations grouped into bins is:

	 BIC 5 22[Σi Npi ln(πi)] 1 M ln(N ),	

where pi is the proportion of observations in the ith bin, 
and πi is the proportion of observations in the ith bin as 
predicted by the model. M is the number of parameters of 
the model used to generate predictions. The BIC is com-
posed of two parts: The first is a measure of misfit, and a 
second part, M ln(N ), penalizes a model for its complex-

Table 1A 
Parameter Estimates and BIC for the Diffusion Model From Fits to Average Data  

From Gould et al.’s (2007) Cued 1 FID Condition 

T a
er

 sa
T  a  ηb  sz  vb

1  vb
2  vb

3  vb
4  vb

5  s2  s3  s4  s5  BIC

.352 .083 1.46 1.76 .000 5.17 4.01 2.61 1.12 .370 – – – – 39,406

.364 .099 1.26 1.59 .046 4.78 3.68 2.36 1.12 .378 1.01 .923 .843 .788 39,305
aParameters whose units are in “seconds.”  bParameters that have units “per second,” whereas other parameters have arbitrary 
units.

Table 1B 
Parameter Estimates and BIC for the Linear Ballistic Accumulator Model From Fits to  

Average Data From Gould et al.’s (2007) Cued 1 FID Condition 

T a
er  sa

T  b  sb  A  vb
1  vb

2  vb
3  vb

4  vb
5  Σvb

2  Σvb
3  Σvb

4  Σvb
5  BIC

.144 .000 .356 .276 .047 .974 .881 .757 .621 .538 – – – – 39,403

.168 .002 .287 .219 .082 .797 .720 .609 .475 .378 .923 .800 .692 .648 39,166
aParameters whose units are in “seconds.”  bParameters that have units “per second,” whereas other parameters have arbitrary 
units.
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Figure 3. Quantile probability plots and fits (averaged over participants) for the minimally constrained 
versions of the diffusion model and the linear ballistic accumulator (LBA) model, for Gould et al.’s (2007) 
data. 
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and our parameter estimates from Gould et al.’s (2007) 
data were consistent with this interpretation. For single 
accumulator models, such as Ratcliff ’s diffusion, the con-
ventional constraints imply that the variability in evidence 
accumulation is independent of the mean rate of accumu-
lation. This assumption might be reasonable if, for exam-
ple, the decision signal arises from one set of processes, 
whereas all decision noise arises from an independent set 
of processes. However, our parameter estimates suggest 
that the diffusion model may better account for the effects 
of decreasing stimulus contrast by assuming some depen-
dence between decision signal and decision noise.

Although we have focused on the diffusion and LBA 
models, the same arguments apply to all evidence accu-
mulation models. Other multiple accumulator models have 
been similarly overconstrained, particularly the many vari-
ants of Usher and McClelland’s (2001) leaky competing 
accumulator model, including the racing diffusion of Rat-
cliff, Cherian, and Segraves (2003) and the ballistic accu-
mulator (Brown & Heathcote, 2005). The Poisson counter 
models (Ratcliff & Smith, 2004; Smith & Van Zandt, 2000; 
Townsend & Ashby, 1983; Van Zandt et al., 2000) have all 
been similarly overconstrained by their own conventional 
solutions for the scaling problem.

General Discussion
The way in which the parameters of evidence accumu-

lation models are constrained across conditions is based 
on careful argument and empirical evidence. For example, 
Ratcliff (1978) proposed that strategic parameters (e.g., 
boundary separation) should not differ among condi-
tions whose order is randomized within blocks of trials. 
In contrast, parameters related to the quality of evidence 
provided by the stimulus (e.g., drift rate) should vary 
whenever stimulus properties change (see also Ratcliff 
& Rouder, 1998; Voss et al., 2004). However, the “scal-
ing parameters” of evidence accumulation models have 
always been fixed across all conditions, even though these 
parameters may most naturally be interpreted as ones in-
fluenced by stimulus properties. A review of the literature 
reveals neither careful argument nor empirical evidence to 
justify this extra constraint; it appears to have been a result 
of misunderstanding the scaling property (this is certainly 
true on our own part). Our results show that this overcon-
straint may not have always been benign; it can restrict the 
models’ ability to account for data, and it makes implicit 
psychological assumptions.

It is possible that experts in the field may have been 
aware of this additional assumption being made when 
scaling parameters were fixed across conditions. For 
example, more than 25 years ago, Weatherburn (1978), 
Pike and Dalgleish (1982), and Weatherburn and Grayson 
(1982) discussed whether or not scaling parameters might 
vary in earlier instances of multiple accumulator models. 
This discussion, however, did not include actually trying 
out such models, and our literature review suggests that 
the implications of their discussion have since gone un-
recognized (we could find no citations of these articles 
in the past 14 years). Our aim was to ensure that the ever-

contrast condition at s1 5 1 and freely estimated diffu-
sion coefficients for the other four contrast conditions (s2, 
s3, s4, s5). For the minimally constrained version of the 
LBA, we fixed the sum of correct and error drift rates to 
be one in the easiest condition, and estimated this sum in 
the other four conditions (i.e., Σv2, Σv3, Σv4, Σv5). Table 1 
reports the estimated parameters and the BIC values for 
the minimally constrained fits, which are shown in Fig-
ure 3. The quality of fit was greatly improved, with both 
models providing a much better account of the data than 
the conventionally constrained versions.

BIC values were better in the minimally constrained 
versions of both models, suggesting that the improvement 
in fit outweighed the cost of adding four additional pa-
rameters. With the use of the methods that were outlined 
by Wagenmakers and Farrell (2004), BIC values can be 
converted to model selection probabilities (see Raftery, 
1995, for a discussion of conventions for interpreting 
such probabilities). The BIC improvement provided very 
strong evidence ( p . .99; Raftery, 1995) favoring both 
minimally constrained models over their conventionally 
constrained counterparts. The improvement in the diffu-
sion model seems to have come from predicting a larger 
shift in RT distribution across conditions and no longer 
predicting such extreme skewness for difficult decisions. 
The minimally constrained LBA was better able to accom-
modate the fast errors. As before, estimated drift rates for 
both models decreased in a sensible manner with decreas-
ing stimulus contrast (Tables 1A and 1B). For both mod-
els, the scaling parameter also decreased with decreasing 
stimulus contrast (the sum of the drift rates for the correct 
and incorrect response accumulators in the LBA, and the 
diffusion variability coefficient in the diffusion model).

Discussion. All evidence accumulation models require 
a “scaling property” to be fixed before parameters can be 
estimated. To this end, researchers must choose a param-
eter to constrain, but this choice is logically independent 
of the subsequent decision of whether to further constrain 
that parameter across experimental conditions. In practice, 
however, these two decisions have never been separated: 
The parameter chosen to satisfy the scaling property has 
always also been constrained across experimental condi-
tions. This is a nontrivial assumption, because the scal-
ing parameters of the models could plausibly be driven 
by stimulus characteristics that often differ between con-
ditions. A reanalysis of one such case, from Gould et al. 
(2007), showed that separating these two decisions was 
justified by improved fits to data for both the LBA and 
diffusion models, even allowing for a very stringent model 
complexity penalty.

For multiple accumulator models, such as the LBA, the 
assumption of a constant sum for correct and incorrect 
drift rates across conditions is that increasing the stimulus 
evidence in favor of one response will equally increase the 
evidence against the other response. However, it seems 
reasonable that some stimulus manipulations could de-
crease the evidence available for both responses. Contrast 
is plausibly one such manipulation: As contrast decreases, 
there may be less evidence supporting either response, 
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NOTE

1. Applications of Wagenmakers et al.’s (2007) EZ estimation tech-
nique, such as that by Schmiedek et al. (2007), are an exception.
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expanding group of researchers who use RT models are 
aware of the implicit assumptions made when fixing the 
scaling parameter constant across conditions.
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