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THEORETICAL REVIEW

The structure of short-term memory scanning: an investigation
using response time distribution models

Chris Donkin & Robert M. Nosofsky

# Psychonomic Society, Inc. 2012

Abstract A classic question in cognitive psychology con-
cerns the nature of memory search in short-term recognition.
Despite its long history of investigation, however, there is
still no consensus on whether memory search takes place
serially or in parallel or is based on global access. In the
present investigation, we formalize a variety of models
designed to account for detailed response time distribution
data in the classic Sternberg (Science 153: 652–654, 1966)
memory-scanning task. The models vary in their mental
architectures (serial exhaustive, parallel self-terminating,
and global access). Furthermore, the component processes
within the architectures that make match/mismatch deci-
sions are formalized as linear ballistic accumulators
(LBAs). In fast presentation rate conditions, the parallel
and global access models provide far better accounts of the
data than does the serial model. LBA drift rates are found to
depend almost solely on the lag between study items and
test probes, whereas response thresholds change with mem-
ory set size. Under slow presentation rate conditions, even
simple versions of the serial-exhaustive model provide
accounts of the data that are as good as those of the parallel

and global access models. We provide alternative interpre-
tations of the results in our General Discussion.

Keywords Short term memory. Response time models .

Mathmodeling andmodel selection . Serial position functions

In this article, we revisit and examine from a new perspective
the Sternberg (1966) short-term memory-scanning paradigm,
perhaps the most venerable of all recognition memory re-
sponse time (RT) tasks. In the Sternberg paradigm, partici-
pants are presented with a brief list of study items (thememory
set), followed by a test item (the probe). The task is to judge, as
rapidly as possible while minimizing errors, whether the probe
is a member of the memory set. Sternberg’s classic result was
that mean RT was an approximately linearly increasing func-
tion of memory set size. Furthermore, the slope of the mean
RT function for positive probes (i.e., probes that are members
of the memory set) was equal to the slope for negative probes.
This pattern of results led Sternberg to suggest his classic
serial-exhaustive model of short-term memory search.

Sternberg’s (1966) article set into motion the modern study
of memory-based information processing. Since the publica-
tion of his article, the original paradigm and variants of the
paradigm have been tested innumerable times, and a wide
variety of different mathematical models have been developed
to account for performance in the task (for a review ofmany of
these models, see Townsend & Ashby, 1983).

Despite the wide variety of different formal models of
short-term memory search that have been considered, it is
surprising that there have been relatively few attempts to
contrast them by considering their ability to account for RT
distribution data. Indeed, we are not aware of any studies
that have engaged in competitive testing of fully parameter-
ized versions of the models with respect to their ability to
account for detailed forms of RT distribution data in the
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Sternberg task. In light of major advances in the field in the
development of formal RT models and methods for evalu-
ating them, our main aim in the present research was to fill
that gap. As is described more fully below, in addition to
considering some of the major classes of models, a closely
related goal was to determine the types of parameter varia-
tion within the models that seem crucial to capturing per-
formance in the task.

Beyond evaluating the models in terms of their overall
quantitative fit to the detailed RT distribution data, our goal
was also to evaluate them with respect to their ability to
account for focused qualitative effects in the data, such as
how RT changes with set size or the serial position of a
target within the memory set. Much past work has also
conducted such focused, analytic contrasts to distinguish
between alternative models of memory search. In general,
however, such contrasts often pertained to relatively simple,
baseline versions of the candidate models. In the present
investigation, for purposes of generality and psychological
plausibility, we tend to grant the models more parametric
freedom. As will be seen, under these conditions, some of
the previous qualitative tests that have been applied to
distinguish the models are no longer diagnostic. Therefore,
the complete RT distributions take on great importance,
because they provide considerable constraint on the models’
predictions. Thus, we adopt a dual-route attack in this re-
search, by examining both focused qualitative predictions
from the models and their quantitative fits to complete RT
distributions.

Before turning to the candidate models and describing
the key issues in greater detail, we first provide a brief
review of some previous studies that did involve analysis
of RT distribution data in the Sternberg task.

Previous examples of memory-scanning RT distribution
data

The example that is perhaps closest to the present effort
comes from Ratcliff’s (1978) seminal article in which he
introduced his multiple-channel diffusion model. In appli-
cation to the Sternberg paradigm, Ratcliff assumed that
presentation of the test probe evoked a set of parallel diffu-
sion processes, with one diffusion process per memory set
item. If any individual process reached a “match” criterion,
the set of parallel diffusion processes would self-terminate,
and the observer would respond that the probe was “old.”
By contrast, in cases in which all of the individual diffusion
processes reached a “nonmatch” criterion, the observer
would respond “new” following exhaustive processing of
all the items on the list. Ratcliff demonstrated that the
diffusion model was capable of yielding accurate quantita-
tive fits to his rich sets of individual-participant RT

distribution data. In the present article, we address several
questions that were not part of Ratcliff’s seminal study.
First, Ratcliff did not contrast the quantitative fits of his
model with any major competitors. Second, the version of
the diffusion model that he fitted had a very large number of
free parameters. For example, he allowed a separate drift
rate parameter for each unique combination of set size and
serial position of the positive probes. Questions therefore
arise about whether more parsimonious accounts of the data
may be available. Third, his evaluation of the model focused
on its quantitative fit. There was little systematic evaluation
of the extent to which the model accurately captured funda-
mental qualitative effects in the data.

In a second example, Hockley (1984) collected RT dis-
tribution data in a wide variety of cognitive tasks. Included
in his battery was the Sternberg memory-scanning para-
digm. Hockley’s primary aim was to characterize how the
overall form of the RT distributions changed with manipu-
lations of fundamental variables such as memory set size.
Hockley observed some major differences in the form of the
RT distributions that arose across the different cognitive
tasks. In his memory search task, for example, there was
little change in the leading edge of the RT distributions (i.e.,
the shortest RTs) associated with different memory set sizes.
This result posed problems, for example, for certain versions
of serial-processing models. On the other hand, there were
big changes in the leading edge in paradigms that involved
visual search. Although Hockley’s experiment provided
valuable information for helping to constrain models, fully
parameterized versions of the models were not considered in
terms of their ability to account for the RT distribution data.

Another study that collected detailed RT distribution data
in a memory-scanning task was that of Ashby, Tein, and
Balakrishnan (1993). The goal of their study was to charac-
terize a variety of nonparametric properties of the distribu-
tions that place strong constraints on alternative models.
Following Ashby et al., a major goal of the present article
is to consider many of these properties as well. In our view,
a limitation of the Ashby et al. study regards its generality
and the extent to which their task was representative of the
standard memory-scanning paradigm. In particular, in their
paradigm, the members of the memory set were presented
simultaneously on the computer screen, whereas in the
standard paradigm, the items are presented in sequential
fashion. Under simultaneous-presentation conditions, there
is little control over the types of strategies and processes that
participants may use to encode the members of the memory
set. Indeed, under Ashby et al.’s experimental conditions,
items in the final spatial position of each study list often had
the longest mean RTs (see Ashby et al., 1993, Fig. 5). By
contrast, when there are serial-position effects in sequential-
presentation versions of the task, items in the final serial
position almost always have the shortest mean RTs (see the
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Overall Research Plan section). Possibly, the eccentricity of
the final items in Ashby et al.’s simultaneous-display para-
digm led to less efficient visual encoding of those items.

Finally, Nosofsky, Little, Donkin, and Fific (2011) re-
cently reported detailed RT distribution data in a memory-
scanning task. They showed that a version of a “summed-
similarity” exemplar model (an extended version of the
exemplar-based random-walk [EBRW] model of Nosofsky
& Palmeri, 1997) gave good quantitative accounts of the
data. However, as was the case in Ratcliff’s (1978) study,
the aim was not to conduct comparisons with competing
models. In addition, Nosofsky et al. evaluated only a few
qualitative properties of their RT distribution data, and more
in-depth analyses are needed.

Overall research plan

In this research, we decided to consider three main candi-
date models defined by different information-processing
architectures. Within each architecture, a variety of different
parametric assumptions were considered. The goal was both
to investigate whether some architectures provided superior
quantitative accounts of the RT distribution than did others
and to evaluate the parsimony of the alternative accounts. To
help interpret the resulting quantitative fits, we also evaluated
them on a battery of their qualitative predictions.

The three main candidate models included a parallel self-
terminating model, a serial-exhaustive model, and what can
be described as a global-familiarity model. We chose these
initial candidates for reasons of generality and historical
influence and because all have received considerable sup-
port in various past applications.1 The parallel self-
terminating architecture is motivated directly by Ratcliff’s
(1978) seminal contribution. In addition, various researchers
have suggested that qualitative aspects of their memory-
scanning data best supported some version of a parallel
self-terminating model or something closely akin to
Ratcliff’s model (e.g., Ashby et al., 1993; Hockley, 1984;
McElree & Dosher, 1989). Of course, the serial-exhaustive
model is strongly motivated by Sternberg’s (1966, 1969)
results. Finally, in recent work, Nosofsky et al. (2011) found
that a summed-similarity exemplar model provided good
accounts of a wide variety of memory-scanning data,

including good fits to detailed RT distribution data. The
exemplar model is in the same general family as the
global-familiarity model that we will evaluate in this work.

Importantly, we implement each of the information-
processing architectures by explicitly modeling each of the
elementary match/mismatch decisions that take place within
that architecture. For example, recall that in Ratcliff’s
(1978) approach, a separate diffusion process was used to
model whether the probe matched or mismatched each
individual item of the memory set. We used an analogous
approach to implement the present parallel self-terminating,
serial-exhaustive, and global-familiarity models.

In our view, combining the information-processing archi-
tectures with an explicit model of the elementary match/
mismatch processes is a crucial step. For example, this form
of integration provides a principled approach to constraining
the assumed shapes of the elementary RT distributions as-
sociated with comparisons of the test probe with each indi-
vidual item in the memory set. Given constraints on the
form of these elementary distributions, it then becomes
easier to contrast the alternative architectures on their pre-
dictions of the shapes of the overall composite RT distribu-
tions that arise from searching the entire memory set. For
example, in a serial-exhaustive model, the composite distri-
butions arise by summing the individual-item comparison
times. By contrast, in a parallel model, in cases involving
correct “no” responses to negative probes, the composite
distributions arise from the maximum (slowest) of the indi-
vidual item comparisons. This integration also makes prin-
cipled predictions of error rates and speed–accuracy trade-
offs in the memory-scanning task.

As is explained in detail in the next section, we chose to
use a linear ballistic accumulator (LBA) approach (Brown &
Heathcote, 2008), rather than a diffusion approach, for mod-
eling the elementary match/mismatch decisions. Both
approaches to modeling elementary decision processes have
received considerable support in the literature, and we do
not believe that our main conclusions are influenced by this
specific choice. Because there is now a good deal of con-
sensus that the LBA approach provides a reasonable de-
scription of the time course of elementary decision
processes, it serves as a suitable building block for the
information-processing architectures that we will investi-
gate. Furthermore, simple analytic expressions are available
for computing the likelihood of RT distributions predicted
by the LBA model, thereby easing considerably the compu-
tational burden in the present investigations.

In this article, we investigate the performance of our
integrated models in two main versions of the memory-
scanning task. In the first case, we fitted the models to the
RT distribution data collected recently by Nosofsky et al.
(2011). In Nosofsky et al.’s conditions, the memory set
items were presented at a fairly rapid rate, and there was

1 We note that because the architecture (e.g., serial vs. parallel) and
stopping rule (e.g., exhaustive vs. self-terminating) are independent,
there are a number of logical combinations that we do not consider
here. The particular combinations that we do consider are ones that
have received considerable support in past research on short-term
memory search. Of course, we believe that our RT distribution data
will also be valuable for helping to evaluate modern alternatives that
are not members of these three classes, such as the iterative-resonance
model of Mewhort and Johns (2005) or dual-process accounts of short-
term recognition (Oberauer, 2008).

Psychon Bull Rev

Author's personal copy



only a short interval between presentation of the memory set
and presentation of the test probe. Under such testing con-
ditions, researchers often observe strong serial-position
effects in the data, with shorter RTs associated with more
recently presented test probes (e.g., Corballis, 1967; Forrin
& Morrin, 1969; McElree & Dosher, 1989; Monsell, 1978;
Nosofsky et al., 2011; Ratcliff, 1978). It is well known that
this pattern of results poses challenges to the standard serial-
exhaustive model (although the versions that we investigate
here can, to some degree, predict serial-position effects). To
preview, we do indeed find that despite considerable para-
metric freedom, the serial-exhaustive model fares much
worse in accounting for these data than do the other candi-
date models.

Sternberg (1975) suggested that different processing
strategies might come into play in short-term memory scan-
ning depending on details of the procedure. For example, in
cases involving fast presentation rates and short intervals
between study and test, participants may adopt familiarity-
based strategies. In Sternberg’s original experiments, a
much different procedure was used. In particular, he used
slow presentation rates and a long study–test interval.
Furthermore, participants were required to recall in order
the entire memory set following their recognition judgment
of the probe. Perhaps serial-exhaustive search is more prev-
alent under those types of testing conditions. To investigate
these possibilities, we collected another set of RT distribu-
tion data in which we attempted to replicate, as closely as
possible, the procedures described by Sternberg (1966). To
preview, we find that under these alternative conditions, the
serial-exhaustive model provides as good an account of the
data as the global-familiarity and parallel self-terminating
models (and an arguably more natural one). Before we
present the data, however, we first describe the model archi-
tectures we will be testing.

The modeling framework

To begin, we should emphasize that the aim of our investi-
gation was to discriminate among fairly general versions of
the alternative architectures for short-term memory recogni-
tion. Therefore, the models we develop do not specify
detailed cognitive mechanisms that underlie the overall pro-
cess. For example, we make no specific assumptions about
the ways in which items are maintained or retrieved or by
which similarity comparisons are made. Instead, we adopt a
descriptive approach in which the outcome of these detailed
mechanisms is summarized in the form of the evidence
accumulation parameters of the LBA decision process.
Fast evidence accumulation, for example, would arise because
of some (unspecified) combination of effective maintenance,
retrieval, and similarity comparison. By adopting this approach,

we seek to contrast versions of the information-processing
architectures that are framed at a reasonably general level.

Linear ballistic accumulator

Within each architecture, we model the elementary decision
processes using the LBA model (Brown & Heathcote,
2008).2 The LBA model is based on an evidence accumu-
lation framework, in which evidence for potential responses
is accumulated until a threshold amount is reached. In the
LBA, evidence is accrued at a linear rate and without noise
(ballistically) toward a response threshold. Observed RT is a
combination of the time taken for the decision process and
the time taken for other aspects of RT not involved in the
decision process, such as the time taken for the encoding of
the stimuli and the motor response.

Consider first a single LBA accumulator, as depicted in
Fig. 1a. Evidence in an LBA accumulator begins with a
value randomly sampled from a uniform distribution whose
maximum is set at a parameter A and whose minimum is set
(without loss of generality) at zero. Evidence in that accu-
mulator then increases linearly until a threshold, b, is
reached. The rate of accumulation is sampled from a normal
distribution with some fixed standard deviation, s. The mean
rate of accumulation, however, depends on the stimulus (or
in the case of short-term memory scanning, whether the
probe is a target or a lure). In particular, the mean rate, v,
will be large for an accumulator that corresponds to the
correct response (e.g., for an “old” response when the probe
is a target) and smaller for an incorrect response (e.g., a
“new” response when the probe is a target). In the context of
retrieval from memory, the rate of evidence accumulation
reflects the quality of evidence for a match between the
probe and the contents of memory. Although we take no
stance on the details of the specific retrieval process, one
could think of our process as similar to that assumed by
Ratcliff (1978), but with evidence being accumulated in
separate, independent counters, rather than a single diffusion
process.

Model architecture

There are a variety of ways that LBA accumulators can be
arranged in order to produce a decision (for analogous
issues in the domain of multidimensional classification,
see Fific, Little, & Nosofsky, 2010). We consider the three

2 Our choice to use the LBA instead of other models of RT is unlikely
to influence our results. Donkin, Brown, Heathcote, and Wagenmakers
(2011) showed that the LBA and the diffusion model, for example, are
able to mimic each others’ predictions closely and that parameters that
share interpretation map closely onto each other. Marley and Colonius
(1992) provided further justification for the use of accumulator models
to account for RTs and choice.
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architectures that correspond to the aforementioned models
of short-term memory scanning: global familiarity, parallel
self-terminating, and serial exhaustive. We now discuss each
of the model architectures in turn. Figure 1b, c provide a
visual summary. Note that whereas the present section dis-
cusses only the general architectures, a subsequent Model
Parameterizations section provides more detailed assump-
tions for specifying the accumulation rates and response
thresholds in each architecture.

Global familiarity In a global-familiarity architecture, we
assume that the recognition of a probe item is based on an
overall match, or a global sense of similarity, between the
probe and the representations of all memory set items.
Although our implementation of the global-familiarity ar-
chitecture is not tied to any particular instantiation, we
envision a process that is similar to Nosofsky et al.’s
(2011) EBRW model (see also Donkin & Nosofsky, in
press). In that model, presentation of a probe leads to the
activation of all items in memory in accord with their

strength and their similarity to the probe. Highly activated
items feed into a global evidence accumulation process for
making “old” versus “new” decisions. Here, we model the
global-familiarity process simply by assuming two LBA
accumulators, one that accumulates evidence for a match
between the probe and the items in short-term memory and
another that collects evidence against a match between the
probe and the items in short-term memory. An “old” re-
sponse is triggered when the accumulator collecting positive
evidence for a match is the first to reach threshold, and a
“new” response is triggered when the accumulator collect-
ing evidence against a match is the first to reach threshold.

Parallel self-terminating In a parallel self-terminating archi-
tecture, and unlike the global-familiarity architecture, we
assume that the probe is compared individually with the
memory representation of each of the items in the study list.
All items are compared with the probe at the same time (in
parallel), and a positive response is made immediately if a
match between the probe and any item is detected (self-

Fig. 1 a A single LBA accumulator. b A trial on which the digits 1, 8,
and 3 are presented as study items and then the digit 3 is presented as a
probe item. c The different model architectures for that trial are

detailed: global familiarity (top), parallel self-terminating (middle),
and serial exhaustive (bottom)
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terminating). We assume that the representation of each item
in short-term memory is compared with the probe using two
LBA accumulators, one collecting positive evidence (i.e.,
evidence for a match between the probe and the study item)
and another accumulating negative evidence (i.e., against a
match between the probe and the study item). An “old”
response is triggered when any accumulator collecting pos-
itive evidence reaches threshold before all of the accumu-
lators collecting negative evidence have reached threshold.
A “new” response is triggered only when all of the accu-
mulators collecting evidence against a match reach thresh-
old before any positive accumulator reaches threshold.3 As
is illustrated by the slopes of the arrows in the middle row in
Fig. 1c, the accumulator corresponding to a study item that
is probed will accumulate positive evidence quickly, while
negative evidence will be accumulated quickly for the
remaining study items. When no study item is probed, all
items in memory will accumulate negative evidence quickly.

Serial exhaustive In the serial-exhaustive architecture, we
also assume, as in the parallel architecture, that the probe is
compared individually with each study item. The difference
is that the probe is compared with the items one at a time
(i.e., sequentially), and a response is given only after all
items have been compared (i.e., exhaustive). For simplicity,
we assume that some fixed order of processing the items
takes place, so that the mean drift rates associated with
different lags do not vary across trials. We again implement
this process by assuming a pair of LBA accumulators for
each item in the study list, collecting positive and negative
evidence for a match between the item and the probe. In the
serial-exhaustive model, an “old” response is made if at least
one of the positive accumulators reaches its threshold before
the corresponding negative accumulator. A “new” response
is made only if all negative accumulators reach threshold
before their respective positive accumulators. In the serial-
exhaustive model, however, each of the items is compared
one after the other, and a response is triggered only after all
items in short-term memory have been compared.4

Model parameterizations

In addition to investigating the multiple model architectures,
we consider a number of different parameterizations of the
models. Within each of the model architectures, we fit a
range of models in which drift rate and response threshold
parameters are differentially allowed to vary across experi-
mental conditions (such as the lag between a studied item
and when it is probed, and the length of the study list). There
are two reasons for investigating multiple parameterizations.
The first is that the adequacy of an architecture may depend
critically on the parameterization that is assumed. In addi-
tion, by investigating different parameterizations, we may
discover which model provides the most parsimonious ac-
count of performance.

The second reason for investigating multiple parameter-
izations is that we can use the estimated parameters to better
understand short-term memory-scanning performance. The
parameters of the LBA have interesting psychological inter-
pretations, and the way in which various empirical factors
influence those parameters can be particularly revealing. For
example, the rate of accumulation of evidence for the match
between a study item and a probe provides an indication of
the strength of the memory for that study item. Therefore,
the way in which factors such as the number of items in the
study list or the lag between study and probe influence the
parameters of the LBA accumulators can be highly reveal-
ing of the processes underlying short-term memory.

We now present an overview of the considerations we
made regarding how empirical factors may influence re-
sponse thresholds and drift rates. The details of these param-
eterizations are provided in the Appendix.

Response threshold It seems likely that participants will set
different thresholds for deciding whether there is a match or
a mismatch between the probe and a study item. For exam-
ple, participants may require less evidence to decide that a
probe does not match a study item than to decide that the
probe does match a study item. It is also possible that the
length of the study list could influence the amount of evi-
dence required to make a decision. Indeed, Nosofsky et al.
(2011) found evidence that participants increase their re-
sponse thresholds as the size of the study list grows. Note
that, like Nosofsky et al., we assumed that when response
thresholds were allowed to change with set size, they did so
as a linear function of set size. (Our main conclusions are
unchanged if more flexible functions are allowed.)

Drift rate We considered three different parameterizations
for how empirical factors may influence the drift rates of the
LBA processes. In the first, we assumed that drift rate
(evidence for or against a match) is determined only by
the lag of presentation between the probe and a study item.

3 In our instantiation of a parallel self-terminating model, the “new”
response is made only when all of the negative accumulators reach
threshold before any of the positive accumulators. It is also possible to
construct a parallel self-terminating model that makes a “new” re-
sponse when each of the accumulators collecting negative evidence
finishes before the accumulator collecting positive evidence for the
same item. Eidels, Donkin, Brown, and Heathcote (2011) discussed
this same issue and argued that the difference between the models is
small, especially when accuracy is high, as it is in the short-term
memory-scanning paradigm.
4 The serial-exhaustive model has sometimes been questioned on
grounds that it is implausible that search would continue once a match
has been found. Sternberg (1975) noted various systems, however, in
which an exhaustive stopping rule can actually give rise to a more
efficient search process than can a self-terminating rule.
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In particular, we expected that the amount of evidence for
the match between a study item and a positive probe would
be strongest when the lag between study and probe items
was one—that is, when the probe was the final item on the
study list. We expected that evidence accumulation would
slow as the lag between study and probe increased. This
parameterization was motivated by previous findings that
RTs for positive probes often vary strongly with their lag of
presentation in the memory set (e.g., McElree & Dosher,
1989; Monsell, 1978; Nosofsky et al., 2011). As is detailed
in the Appendix, drift rates associated with negative probes
were also allowed to be influenced by lag of the study items.

In our second (more general) drift rate parameterization,
we allowed for the possibility that the rate of evidence
accumulation is also influenced by the size of the memory
set. Again, we allowed for the possibility that drift rates are
driven by the lag between study and probe. However, in this
parameterization, we also allowed that there may be a sys-
tematic effect of memory set size on the drift rates as well.
For example, the short-term memory store presumably has
some capacity that may be strained as the size of the study
list increases, thus reducing the rate at which study and
probe items can be matched.

We also considered a third parameterization in which the
rate of evidence accumulation was allowed to vary freely
across all individual combinations of lag and study list
length. This parameterization has the least constraint and
allows for the possibility of complex interactions between
set size and study–probe lag. We fit this version to ensure
that no model architecture was stunted by the constraints
placed on the evidence accumulation rate.

As is noted in the Appendix, all parameterizations made
allowance for primacy effects on drift rate, because small
primacy effects are often observed in the Sternberg memory-
scanning task.

We present a total of 36 models: 12 different parameter-
izations of each of the three different model architectures.
The 12 parameterizations within each model architecture
come from a combination of 3 drift rate parameterizations
and 4 response threshold parameterizations (see the Appendix
for full details). Other parameters, including the start point
variability and drift rate variability parameters of the LBA
process, were held fixed across memory set size, lag, whether
the probe was a target or a lure, and whether participants
responded “old” or “new.”

Nondecision time parameters For simplicity, in the case of
the parallel self-terminating and global-familiarity models,
we modeled the nondecision time component of RT using
a single parameter, t0, and this parameter was held fixed
across all conditions. Because of historical precedent, in
the case of the serial-exhaustive model, we allowed dif-
ferent nondecision times for targets and lures (Sternberg,

1975). Also, we found that fits of the serial-exhaustive
model to the RT distribution data improved considerably
when we made allowance for between-trial variability in
the nondecision time. Thus, for the serial-exhaustive
model, we modeled nondecision time as a log-normal
distribution, with two separate mean nondecision times
for targets and lures (TPOS and TNEG) and a common log-
normal scale parameter (ST). (Note that in the special case
in which TPOS 0 TNEG and ST 0 0, the nondecision time
in the serial-exhaustive model is identical in form to what
is assumed for the other models.) Finally, as is explained
later in our article, to address past hypotheses advanced
by Sternberg (1975) that involve encoding-time issues,
we also fitted elaborated versions of the serial-exhaustive
model in which nondecision time was allowed to vary
across other conditions as well.

We start the investigation by fitting and comparing each
of these models, using the data from Nosofsky et al.’s (2011)
Experiment 2.

Nosofsky et al.’s experiment 2

Method

Nosofsky et al. (2011, Experiment 2) reported RT distribu-
tions for 4 participants, each of whom completed multiple
sessions of short-term memory scanning. Memory set size
ranged from one to five items, and all serial positions within
each set size were tested. Two participants (1 and 2)
completed 9 sessions (days) of 500 trials per session.
Participants completed an equal number of trials in each
memory set size condition, with the serial position probed
on each trial selected randomly from within the relevant
memory set. Two participants (3 and 4) completed 16 ses-
sions of 300 trials in which each unique combination of
serial position and set size was presented equally often.
(Thus, for these 2 participants, smaller set sizes were tested
less often than were larger ones.) Within each block of
testing, the probe was a target item (a member of the study
list) on half of the trials and was a lure item on the other half
of the trials. Presentation orders were random within the
constraints described above.

Trials were the same in both designs and began with a
fixation cross presented for 500 ms. Study items were then
presented for 500 ms, with a 100-ms break between stimuli.
An asterisk was presented after the final study item for
400 ms, signifying that the next item presented was the
probe. The probe remained on screen until a response was
made, and feedback was presented for 1,000 ms, followed
by a blank screen for 1,500 ms before the beginning of the
next trial. The stimuli on each trial were randomly chosen
from the 20 English consonant letters, excluding Y.
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Results

Mean and standard deviation of response times The top row
in each of Fig. 2a–d contains a plot of the mean and standard
deviation of RTs for each individual participant as a function
of memory set size and lag. The effect of set size on mean
RTs was similar for all participants (first column). As has
been observed in numerous past studies, mean RTs increased

roughly linearly with set size, and the functions for targets and
lures were roughly parallel to one another. As is shown in the
second columns of Fig. 2, however, the slowdown with set
size for positive probes is largely due to increasing lags
between the probes and matching memory set items. That is,
the slowdown occurs in large part because larger set sizes
contain items that have a larger lag between study and probe.
Nevertheless, holding lag fixed, there is also some evidence of

Fig. 2 Observed (top row) and predicted (second through fourth rows)
means and standard deviations of response times (RTs) plotted as a
function of set size only (first and third columns) and as a function of
study–probe lag (second and fourth columns). In the study–probe lag
plots, “X” refers to responses on lure trials; “ss” in the legend refers to

set size. Model predictions come from models with drift rates that vary
as a function of study–probe lag and study set size, and with response
thresholds that vary across response and study set size (see the text for
details)
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an effect of set size per se. For example, at lag 1, mean RTs get
longer as set size increases.

The standard deviations in RTs, presented in the third and
fourth columns of Fig. 2, tend to show a similar pattern as
do the mean RTs, but they are much noisier. In general, the
standard deviations increase with set size for both targets
and lures. For the targets, this increase seems to be largely
due to the influence of study–probe lag.

Response time distributions The RT distributions for correct
responses for target and lure items are plotted for each partic-
ipant in Fig. 3a (and again in 3b). The RT distributions are

shown separately as a function of lag and set size for the
targets (main columns 1–4) and as a function of set size for
the lures (main column 5). The observed RT distributions
(solid squares) in the figure are summarized using the .1, .3,
.5, .7, and .9 quantiles, which represent the times at which
10%, 30%, 50%, 70%, and 90% of responses were made. The
use of quantiles offers quick comparison between the RT
distributions for different lags and set sizes. The height of
the quantiles indicates the speed of responses, with central
quantiles indicating the central tendency and the distance
between quantiles indicating the spread and shape of the
distribution. The lowest quantile within each distribution

Fig. 2 (continued)

Psychon Bull Rev

Author's personal copy



provides an indication of the leading edge of the distribution
(i.e., the shortest RTs). The probability of making a correct
response in each given lag and set size condition is reported
underneath its respective set of quantiles. The proportion of
correct responses is very high for most conditions, so we omit
reporting the RT distributions for incorrect responses. Note,
however, that models were fit to both correct and incorrect
distributions, and all of those models that fit the data well also
accounted for the speed of incorrect responses.

It is clear from Fig. 3 that the lag between the study item
and test probe had a large effect on performance, as indicat-
ed by both a reduction in the proportion of correct responses

and a lengthening of RTs as lag increased. That is, within
each particular set size, there is a pattern in which quantiles
increase in their location and spread as lag increases. For
most participants, there is also a small effect of primacy:
That is, within each set size, the item with the greatest lag
(i.e., the item in the first serial position) is generally more
accurate and faster than the preceding lag (i.e., the item in
the second serial position). RTs also lengthen due to
increases in the size of the study set, as reflected by the fact
that all quantiles tend to increase in their vertical placement
as one moves from left to right across the plot. This effect of
set size is particularly evident for the lures.

Fig. 2 (continued)
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Importantly, in addition to an increase in the spread of the
distributions, there is a slowdown in the entire distribution
of RTs, due to increasing memory set size. This increase
manifests itself as a shift in even the fastest quantile, an
effect particularly evident when the probe was a lure.

We have now identified a wide array of qualitative patterns
in the memory-scanning data that a successful model must
account for. These patterns will provide a strong test of our
candidate architectures for short-termmemory scanning. First,
however, we use model selection methods to identify which
architectures and parameterizations provide the most parsimo-
nious quantitative accounts of the complete RT distributions.

Model selection

We fit all 36 models (3 architectures × 12 parameterizations)
to each of the 4 participants’ full RT distributions for correct
and incorrect responses. The global-familiarity and parallel
self-terminating models were fit to the individual-trials data
by using maximum likelihood estimation, and optimal
parameters were found using SIMPLEX (Nelder & Mead,
1965). Closed-form analytic likelihood expressions exist for
both the global-familiarity and parallel self-terminating
architectures, but not for the serial-exhaustive architecture.
The serial-exhaustive models, therefore, were fit by

Fig. 2 (continued)
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Fig. 3 Observed and predicted quantiles (black and gray points, respec-
tively) for correct responses from the 4 participants reported in Experi-
ment 2 of Nosofsky, Little, Donkin, and Fific (2011). Quantiles are
plotted as a function of whether the probe was a target or a lure, the
length of the study list (set size), and the lag between study item and probe
(lag). The observed proportion of correct responses in each condition is
also reported underneath their respective quantiles. Predictions are given

for the global-familiarity architecture (a) (see the online supplement for
predictions from the parallel self-terminating model) and for the serial-
exhaustive architecture (b). The full parameterization used for all archi-
tectures allowed response thresholds to vary over study set size and
evidence valence and drift rate to change over study–probe lag and set
size. P1 refers to participant 1, P2 to participant 2, and so forth
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Fig. 3 (continued)
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simulation. We simulated 20,000 trials for each combination
of serial position and set size to produce predicted RTs for
the serial-exhaustive models. Observed and simulated RTs
for correct and incorrect responses within each condition
were divided into 50-ms bins, from 150 to 3,000 ms, and
their agreement was evaluated using the multinomial log-
likelihood function (Eq. 9 in Nosofsky et al., 2011).
Furthermore, as is explained below, to allow meaningful com-
parisons among all three classes of models, we also fitted
members of the class of global-familiarity and parallel models,
using these same simulation techniques. In all cases, extensive
efforts were made to ensure that any differences in the fit
quality of the serial-exhaustive models were not due to the
fitting method used. For example, all models were fit with
multiple start points, which most often converged to the same
part of the parameter space. (Furthermore, when we fit the
global-familiarity and parallel self-terminating models using
the simulation method, we found that they converged closely
to the same best-fitting parameters as were estimated using the
analytic solutions.)

We used the Bayesian information criterion (BIC) to
determine which architectures and parameterizations pro-
vided the most parsimonious account of the data (Schwarz,
1978; for a discussion of using BIC to evaluate models of
RT, see Donkin, Brown, & Heathcote, 2011). BIC is made
up of two parts: The first is a measure of how well the model
fits the data, and the second is a penalty term based on the
number of parameters in the model. In this way, BIC selects
models that are only as complex as is necessary to explain
the major patterns in the data, while penalizing models that
incorporate unnecessary parameters.

BIC was calculated for all 36 models separately for each
participant, using the following formula: BIC ¼ �2� log L
þk � log N , where k is the number of parameters in the
model, N is the total number of data points used to fit the
model to the data, and log L is the log-likelihood of the best
set of parameters given the observed data. The term −2 × log
L represents quality of fit and becomes smaller as the model
fit improves, whereas k × log N is a penalty term that causes
BIC to increase as the number of free parameters increases.
The best model is the one that yields the smallest BIC value.

Recall that analytic likelihoods for the serial-exhaustive
models were not possible and were, instead, calculated on
the basis of simulation. Therefore, to compare the three
architectures, we took the best-fitting model from each of
the global-familiarity and parallel self-terminating architec-
tures and refit them in the same way as that in which the
serial-exhaustive models were fit, via simulation. In Table 1,
we report the ΔBIC values that come from this procedure.
ΔBIC values were calculated by taking the difference be-
tween each model’s BIC and the model with the smallest
BIC value. A ΔBIC value of 0, therefore, represents the
best-fitting model. Examination of the table reveals that the

ΔBIC values for even the best serial-exhaustive model were
much larger than those for the global-familiarity and parallel
self-terminating models for all 4 participants. Later in this
section, we consider an elaborated version of the serial-
exhaustive model that makes allowance for encoding-time
differences depending on the lag with which a positive
probe was presented (cf. Sternberg, 1975, p. 12). As will
be seen, even this elaborated serial-exhaustive model per-
forms far worse than do the alternative architectures.
Therefore, we now focus on the results from the global-
familiarity and parallel self-terminating models.

Figure 4 shows the ΔBIC values (calculated using the
analytic methods) for each of the 24 models from the global-
familiarity and parallel self-terminating architectures for each
of the 4 participants in Nosofsky et al.’s (2011) Experiment 2.
Note first that the best-fitting versions of the parallel and
global-familiarity models provide roughly equally good
accounts of the data, although particular parameterizations
within each architecture fare better than others. We organize
our discussion of the results of our model fitting into sections
regarding, first, the response threshold parameterizations and,
second, drift rate parameterizations.

The results for the response threshold parameterizations are
clear-cut. Regardless of architecture, models with response
thresholds that changed across study set size and were differ-
ent for positive and negative match accumulators were gener-
ally preferred over models that did not allow for these forms of
flexibility. To see this result, note that the fourth cluster of bars
within both model architectures (labeled EV + SS in the
figure) tends to have ΔBIC values closest to 0 for both the
global-familiarity and parallel models. Indeed, the best models
according to BIC were almost always those in which response
thresholds varied both for set size and for positive and nega-
tive match accumulators.

Turning to the drift rate parameterizations, the most con-
sistent pattern was that models in which the rate of evidence

Table 1 ΔBIC values based on simulation for each of the global-
familiarity (GF), parallel self-terminating (PST), and serial-exhaustive
(SE) architectures for each of the 4 participants in Nosofsky, Littlel,
Donkin, and Fific’s (2011) Experiment 2

ΔBIC k

P1 P2 P3 P4

GF 0 0 0 26 19

PST 27 56 18 0 19

SE 146 124 689 518 21

SE w/enc 117 85 645 353 24

Note. For all architectures, we report the best-fitting version of the
model and the number of parameters. We also include theΔBIC values
for the serial-exhaustive model that includes encoding time that varies
with study–probe lag (SE w/enc)
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Fig. 4 ΔBIC values are plotted for each of the 24 global-familiarity
and parallel self-terminating models fit to each of the 4 participants
reported in Experiment 2 of Nosofsky, Little, Donkin, and Fific (2011).
Smaller values of ΔBIC indicate models that are more parsimonious.
The models vary according to their architecture: global familiarity (the
first four clusters of bars) and parallel self-terminating (second four
clusters). The different response threshold parameterizations imple-
mented, represented by each cluster of three bars, were the following:
none, one response threshold for all conditions; EV, separate thresholds
depending on the evidence valence (whether evidence was collected

for a positive or a negative match between study item and probe); SS,
linearly increasing thresholds based on study set size; and EV + SS, a
combination of the former two parameterizations. The three different
drift rate parameterizations, represented by black, dark gray, and light
gray bars, respectively, were the following: lag, drift rate changed due
to the lag between study and probe; lag + SS, –drift rate changed due to
lag and as a linear function of set size; and free, drift rate was estimated
freely across all combinations of set size and serial positions. P1 refers
to participant 1, P2 to participant 2, and so forth
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accumulation was allowed to vary freely over all individual
combinations of memory set size and lag (lightest gray bars)
were not favored by BIC. These free drift rate models
suffered because the data did not require the degree of
flexibility permitted by their numerous free parameters.
The models whose drift rates were determined by study–
probe lag (and primacy) or a systematic combination of lag
and set size were preferred over the free model. However, it
is hard to distinguish between the two constrained drift rate
parameterizations (i.e., lag only or lag plus set size).

In sum, the quantitative fits indicate that the best global-
familiarity and parallel self-terminating models yield essen-
tially identical accounts of the RT distribution data, with the
serial-exhaustive model providing a decidedly worse ac-
count. The evidence also indicates that the magnitude of
the response thresholds varied with memory set size (and
with the positive or negative valence of the evidence accu-
mulator). Finally, models that assume that drift rate is a
systematic function of lag (and perhaps set size as well)

provide more parsimonious accounts of the data than do
ones that allow drift rate to vary freely across all unique
combinations of lag and set size.

Before evaluating the models on their ability to capture
the fundamental qualitative effects in the data, we first
briefly examine the specific pattern of best-fitting parameter
values from the preferred model versions. These parameter
values are reported in Table 2. We focus our discussion on
the global-familiarity and parallel models. First, consistent
with our expectations, for all participants, drift rates for
positive probes tend to decrease as a function of the lag
between study and probe. In other words, the strength of
evidence for a match between study and probe items tends
to decrease as lag increases. Second, once one takes lag into
account, there is no evidence that increases in set size lead to
any decreases in drift rate toward the correct response
thresholds. (If anything, in those cases in which the lag plus
set size model yielded superior BIC values than did the lag
only model, ΔS was slightly positive, not negative.) As we

Table 2 Parameter estimates for each of the global-familiarity (GF), parallel self-terminating (PST), and serial-exhaustive (SE) architectures for
each of the 4 participants in Nosofsky, Little, Donkin, and Fific’s (2011) Experiment 2

P1 P2 P3 P4

GF PST SE GF PST SE GF PST SE GF PST SE

s 0.22 0.26 1.15 0.27 0.32 1.21 0.18 0.24 1.19 0.15 0.17 1.15

TPOS 0.25 0.26 0.36 0.22 0.22 0.38 0.16 0.19 0.29 0.15 0.16 0.38

TNEG 0.39 0.44 0.33 0.42

ST 0.001 0.001 0.001 0.001

A 0.09 0.13 0 0.08 0.12 0 0.06 0.09 0 0.07 0.08 0

bPOS 0.23 0.24 0.08 0.27 0.32 0.1 0.14 0.13 0.03 0.19 0.22 0.05

bNEG 0.19 0.18 0.06 0.32 0.33 0.05 0.17 0.17 0.03 0.28 0.26 0.03

ΔbPOS 0.009 0.021 0 0.01 0.02 0 0.01 0.01 0 0.02 0.02 0

ΔbNEG 0.04 0.02 0 0.01 0 0 0.008 0 0 0 0 0

v1 1.05 1.04 2.66 1.11 1.24 3.38 0.68 0.81 2.12 0.69 0.80 2.78

v2 0.79 0.76 1.96 0.85 0.95 2.52 0.56 0.63 1.45 0.59 0.66 1.90

v3 0.70 0.66 1.82 0.80 0.88 2.36 0.54 0.61 1.48 0.58 0.65 1.90

v4 0.57 0.53 1.41 0.81 0.88 2.33 0.54 0.61 1.57 0.60 0.67 1.99

v5 0.51 0.46 1.37 0.77 0.82 2.32 0.54 0.64 1.78 0.65 0.70 2.55

u1 0.75 0.80 2.00 1.09 1.05 1.96 0.74 0.76 1.81 0.85 0.78 2.14

u2 0.84 1.28 2.63 1.04 1.23 2.41 0.73 0.87 2.42 0.80 0.83 2.40

u3 0.78 0.66 2.67 0.99 1.06 2.49 0.71 0.72 2.31 0.76 0.92 2.63

u4 0.78 0.60 2.61 0.95 1.02 2.28 0.70 1.02 2.42 0.71 0.66 2.38

u5 0.77 0.55 2.51 0.88 0.83 2.40 0.69 0.59 2.31 0.67 1.15 2.30

P 1.17 1.19 1 1 1.04 1 1.09 1.08 1 0.99 1.04 1

ΔS 0.02 0.07 −0.004 0 0.02 −0.001 0.003 0.04 0.001 0.04 0.02 0

Note. The parameter estimates are the maximum likelihood estimates based on fits of the model in which response thresholds changed across study
set size and evidence valence and drift rate changes systematically across study–probe lag and set size. Note that for the serial-exhaustive model,
TPOS, TNEG, and ST refer to the means and standard deviation of a normal distribution that is then exponentiated to produce the log-normal
distribution. Remaining parameters are as follows: s and A represent between-trial variability in drift rate and start point, respectively; b parameters
represent response thresholds; vi and ui represent drift rates for a positive and negative match, respectively, between an item at lag i and the probe; P
represents a primacy parameter; and ΔS represents the change in drift rate with set size
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discuss more fully in our General Discussion section, this
result has interesting implications for the interpretation
of limited-capacity parallel-processing accounts of short-
term memory scanning. Finally, for the global-familiarity
and parallel architectures, thresholds for positive-match
responses increase with memory set size (ΔbPOS > 0), with
negative-match response thresholds tending to show less
increase. Apparently, as memory set size grows, observers
choose to accumulate more evidence before making their
recognition decision. Armed with this information regarding
the pattern of best-fitting parameters, we now discuss the
models’ account of the main qualitative effects in the data.

Qualitative model predictions

Mean and standard deviation of response times The pre-
dicted means and standard deviations of RTs from the
global-familiarity, parallel self-terminating, and serial-
exhaustive architectures are shown in the second through
fourth rows of Fig. 2. For all architectures, the specific
model versions are the ones with free parameters reported
in Table 2.

As can be seen in Fig. 2, both the global-familiarity and
parallel models generally account very well for the mean
RTs, regardless of whether they are plotted as a function of
set size only (column 1) or as a function of set size and lag
(column 2). (The main misfit is that, for participant 2, the
two models underpredict the influence of primacy—i.e., the
final lag position in each set size.) The models’ account of
the lag effects is straightforward. As lag increases, drift rates
decrease (see Table 2), so the time for a match decision to
complete gets longer. The main exception is a systematic
primacy effect: Within each set size, the item with the great-
est lag (i.e., the item in the first serial position) receives a
boost to its drift rate. The set size effects for positive probes
(column 1) arise for two reasons. First, as set size increases,
there is an increased proportion of cases in which the match-
ing item has high lag. Second, observers set higher response
thresholds as set size increases (Table 2), which slows down
the completion of the LBA processes. Note that the in-
creased response thresholds tend to cause (slightly) longer
RTs with increased set size even when lag is held fixed
(column 2).

The models predict pronounced set size effects for the
negative probes for several reasons. Regarding the parallel
model, note that a “no” response is made only when the
LBA processes for all of the individual memory set items
reach their negative response thresholds. In general, the
larger the set size, the longer it takes for the slowest such
process to complete. Regarding the global-familiarity mod-
el, the larger the set size, the slower is the global rate of drift
toward the negative response threshold (Table 2). Such a
result is expected because, as set size increases, the summed

similarity of a negative probe to the memory set items will
tend to increase (Nosofsky et al., 2011). Finally, set size
effects for the negative probes also arise because, at least in
some cases, the larger the set size, the greater is the setting
of the response threshold parameters (Table 2).

Unlike the parallel and global-familiarity models, the
serial-exhaustive model has difficulty accounting for the
serial-position effects on the mean RTs. As is well known,
the baseline version of the serial-exhaustive model consid-
ered by Sternberg (1966) predicts flat serial-position curves.
We should emphasize that our more fully parameterized
version of the serial-exhaustive model is not subject to this
constraint (see the fourth rows of Fig. 2). The total decision
time from the serial-exhaustive model arises as a sum of the
individual-item comparison times across all items in the
memory set. As lag decreases, the individual-item compar-
ison time for a positive probe to match its representation in
memory decreases, so the overall sum decreases. Nevertheless,
the present version of the serial-exhaustive model underpre-
dicts the magnitude of the serial-position effects. In addition,
its main failing is that, once one conditionalizes on study–
probe lag, it predicts toomuch separation between the different
set size functions (column 2). The reason is that, the greater the
set size, the greater will be the sum of the individual-item
comparison times associated with the mismatching items from
the memory set.

Regarding the standard deviation of RTs, the global-
familiarity and parallel self-terminating models do a reason-
able job of capturing the main qualitative trends in the
observed data (see Fig. 2). However, their quantitative fit
is not as good as it was for the mean RTs. Both models tend
to underpredict the standard deviation of RTs on lure trials,
particularly for the larger set sizes. The serial-exhaustive
model shows a similar limitation.

Predicted quantiles The open circles in Fig. 3a, b represent
the predicted quantiles from the global-familiarity and serial-
exhaustive architectures, respectively.5 The predictions from
the parallel self-terminating model were almost identical to
those of the global-familiarity model, so we have placed them
in an online supplement. The vertical displacement between
predicted and observed quantiles indicates how closely the
models account for the shape and location of the observed RT
distributions. We use horizontal displacement to provide an
indication of how closely the models predict the proportion of
correct responses. Predicted quantiles that sit close, both ver-
tically and horizontally, to the black observed quantiles are
models that fit the data well.

5 It should be noted that the models were fit not to empirical quantiles,
but to the entire RT distributions. We use quantiles to summarize the
model fits due to the savings in space that they afford, but note that
better agreement between predicted and observed quantiles would
likely be possible using a quantile-based objective function.
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It is evident from comparison between Fig. 3a and b that,
consistent with the patterns in BIC values reported earlier,
the serial model fits the data worse than do the parallel and
global-familiarity models. Because the fit routine settled on
different patterns of parameter estimates in trying to match
the serial model’s predictions to the data, the nature of the
discrepancies differs across the participants. In general,
however, for most participants, the serial model predicted
a leading edge of the target RT distributions that was too fast
for the small set sizes. In addition, excluding the very
longest lag (i.e., the primacy serial position), the serial
model tended to underpredict the degree of positive skewing
at long lags for large set sizes. Overall, the global-familiarity
and parallel models did a good job of predicting both the
proportion of correct responses and the distributions of RTs
for all combinations of set size and lag. The models capture
the major trends in the quantiles—namely, that accuracy
decreases and RT distributions become shifted and more
skewed as study–probe lag increases. All of the architectures
predict the shift in RT distributions as memory set size
increases. The main failing for the global-familiarity and par-
allel models is that they predict too little skew for lure items,
underpredicting the .9 quantiles, particularly for larger memory
set sizes. This problem is magnified for the serial model.

To further characterize the RT distributions, we fit them
with an ex-Gaussian distribution (cf. Heathcote, Popiel, &
Mewhort, 1991; Hockley, 1984; Ratcliff & Murdock, 1976).
The parameters of an ex-Gaussian distribution can be useful
for describing the shape of RT distributions, including their
leading edge and degree of positive skew. We report the
detailed results of these analyses in the online supplement.
The main issue that we investigated was the extent to which
the models predicted accurately how the leading edge and
positive skew of the RT distributions changed with increases
in set size. Overall, the global-familiarity and parallel self-
terminating models did a good job in these respects. By
contrast, in various cases, the serial model predicted changes
in the leading edge that were too large and tended to under-
predict the degree of positive skew for larger set sizes.

Encoding-time hypothesis

In discussing challenges to the serial-exhaustive model,
Sternberg (1975, p. 12) suggested that recency effects (i.e.,
effects of study–probe lag) may reside in other stages of
information processing than the memory comparison stage.
For example, he hypothesized that “the time needed to form
an internal representation of the test stimulus in the encod-
ing stage might depend on how . . . recently that stimulus
had been presented.” To test this hypothesis on the present
data, we fitted an elaborated version of the serial-exhaustive
model in which the location parameter of the log-normal
distribution of base times (TPOS) was allowed to vary freely

with lag. Note that because the log-normal shifts to the right
and grows more positively skewed as TPOS increases, this
mechanism could potentially allow the elaborated serial-
exhaustive model to account for both effects of lag on the
RT distributions. Although this added flexibility indeed im-
proved the BIC fit of the serial-exhaustive model (see Table 1,
row 4), it still performed far worse than did the parallel self-
terminating and global-familiarity models. Its main failing is
highly instructive and is the same as the one that we described
earlier in this article. For any fixed lag, the serial-exhaustive
model predicts a big effect of set size on RT (Fig. 2, row 4,
column 2). That is, even if a recently presented test probe is
encoded and compared very rapidly, the systemmust still scan
exhaustively through all of the remaining mismatching items
in the memory set. As can be seen from the observed data in
Fig. 2 (column 2), however, although there is some separation
between the different set size functions once one condition-
alizes on lag, the separation is not nearly as great as predicted
by the serial-exhaustive model.

Discussion

Our model-based analysis of the RT distribution data col-
lected by Nosofsky et al. (2011) revealed an inadequacy of a
serial-exhaustive architecture, whereas both the global-
familiarity and parallel self-terminating architectures appear
to be viable candidates. In addition, our use of multiple
parameterizations led us to the firm conclusion that partic-
ipants set different thresholds for responding on the basis of
two factors: (1) the size of the memory set and (2) whether
the evidence accumulated is for a positive or a negative
match between study items and the probe. We also found
that the rate at which evidence accumulates is driven pri-
marily by the lag between study items and the probe, and
perhaps also according to an overall influence of set size.
Our model-based analysis failed, however, to distinguish
between the global-familiarity and parallel self-terminating
architectures of short-term memory scanning.

As was expected, the serial-exhaustive model predicted
well the overall effect of set size on mean RTs. More interest-
ing, unlike the baseline model considered by Sternberg
(1966), the version that we tested was not constrained to
predict flat serial-position curves. Nevertheless, one of its
main failings is that it predicts big effects of set size even
when one conditionalizes on lag of a positive probe, because
the system must scan exhaustively through all the nonmatch-
ing items from the memory set. These predicted effects were
much larger in magnitude than those observed in the data. One
could account for the positive-probe data by assuming that
LBA drift rates associated with (correct) matches are strongly
influenced by lag, while the processes that lead to rejection of
nonmatching items occur very fast. But then the model would
be incapable of predicting the steeply increasing set size
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functions for the lures (for a related analysis, see van Zandt &
Townsend, 1993).

These limitations of the serial-exhaustive model arose
even when we elaborated the model by allowing separate
encoding-time distributions for each different lag of a pos-
itive probe. A related possibility to consider is that there are
encoding difficulties during initial study, such that some
proportion of memory set items are not encoded into mem-
ory at all. Such encoding failures may have occurred due to
the fast presentation rates of the memory set items. In this
case, participants may resort to guessing strategies on some
proportion of trials, and a complete model must include this
guessing component. Although we cannot rule out such a
possibility, in our view this approach to saving the serial-
exhaustive model seems strained. First, the hypothesis that
participants often resorted to guessing suggests that error
rates should have been quite high. Although there are occa-
sional examples of high error rates for specific study–probe
lags for participants 1 and 3, error rates were uniformly low
for participant 2 and, especially, participant 4 (see Fig. 3).
Second, the parallel self-terminating and global-familiarity
models already do an excellent job of accounting for the
data without the need to posit a guessing process.

As was noted in our introduction, Sternberg (1975) raised the
possibility that the methodology used, especially the presenta-
tion rates of the memory set items and test probes, may lead to
the use of alternative processes for memory scanning. Nosofsky
et al.’s (2011) Experiment 2 used rapid presentation rates
(500 ms) for study items and very little time between the final
study item and the presentation of the probe (400 ms). In the
experiment conducted by Sternberg (1966), for which the serial-
exhaustive model was proposed, study items were presented for
longer durations (1.2 s), and there was a 2-s break between the
final study item and the probe. It is possible that participantsmay
utilize global familiarity or parallel memory scanning when
presentation rates are rapid but may use serial-exhaustive
strategies when presentation rates are slower.

Therefore, we now present the results of a new experi-
ment in which we attempt, as closely as possible, to replicate
the conditions used by Sternberg (1966), but with enough
trials to look at individual-participant RT distributions. If
memory scanning is indeed accomplished via a serial-
exhaustive process when presentation rates are slowed, we
would expect that the architecture might perform as well as
or better than the global-familiarity and parallel models.

Sternberg (1966) replication experiment

Method

Participants Three participants completed ten 1-h sessions
on separate days. For each session, participants were

reimbursed $9, with a $3 bonus for overall accuracy greater
than 95%.

Stimuli The stimuli were the ten digits 0–9 (cf. Sternberg,
1966). Each digit was presented in the center of a computer
monitor at a visual angle of approximately 3°.

Procedure Memory set size varied from one to five.6 Each
trial began with a fixation cross for 500 ms, followed by the
individual presentation of each item in the study list for
1,000 ms, with a 200-ms break between successive study
items. After the final study item, an asterisk was presented
for 2,000 ms to signal that the next digit presented was the
test probe. The probe then remained on screen until a re-
sponse was made. Participants were asked to indicate
whether the probe was a member of the study list (an old
item, using the “F” key) or was not a member of the study
list (a new item, using the “J” key). Feedback as to the
accuracy of the response was then presented for 1,000 ms.
After feedback, participants were asked to recall the entire
study list, in order, by entering the corresponding digits
using the keyboard (cf. Sternberg, 1966). Participants were
then forced to take a 1,500-ms break, during which time
they were to return their index fingers to the “F” and “J”
response keys. Participants then pressed the space bar
with either thumb to indicate that their index fingers were
in the appropriate location, which prompted the start of
the next trial.

The composition of the study list for each trial was made
up of digits randomly sampled from the entire set of ten
stimuli. The number of target and lure trials was equal, and
their order was random. If the probe on a given trial was a
target, the serial position of that item within the study list
was chosen at random. In each block of 50 trials, there were
10 trials of each of the five study set sizes, and each session
was composed of six blocks of trials. Each participant,
therefore, completed a total of 3,000 trials, fewer than the
approximately 5,000 trials that participants in the rapid-
presentation experiment completed, but enough to consider
full RT distributions (with an average of at least 60 obser-
vations in each serial-position—set-size combination).

Results

Mean and standard deviation of response times In Fig. 5,
we show the mean and standard deviation of RTs as a
function of set size and study–probe lag. Again, in general,
mean RTs increase roughly linearly as a function of set size,
and the set size functions for positive and negative probes

6 Sternberg (1966) also tested six-item lists. To obtain suitable sample
sizes for fitting our individual-condition RT distributions, we decided
not to include the six-item lists.
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are roughly parallel to one another. The notable exception is
for participant 7, whose lure RTs were flat for the first four
set sizes and then slowed for the final set size.

The second column of Fig. 5 contains a plot of mean RTs
for correct responses as a joint function of lag and set size.
Most notable is that, for all 3 participants, the serial-position
effects are much smaller than when presentation rates were
faster. Indeed, in most cases, the functions are nearly flat.

This result is particularly interesting given that there is still a
large influence of memory set size on RTs. Whereas the set
size effects in Fig. 2 were driven primarily by the presence
of trials with larger lags, such is not the case for Fig. 5.
Interestingly, we observe a similar pattern in standard devi-
ations of RTs, such that they increase with set size (for
participants 5 and 6) but remain relatively constant for
different study–probe lags.

Fig. 5 Observed and predicted means and standard deviations of
response times (RTs) for the Sternberg (1966) replication experiment.
The format of the figure is almost identical to Fig. 2, with the exception

that model predictions in row 5 come from a simple version of the
serial -exhaustive model in which drift rates are fixed across study–
probe lag and set size and response thresholds are fixed across set size
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Response time distributions Figure 6 contains plots of ob-
served quantiles for each combination of study set size and
study–probe lag for targets and lure items for each of the 3
participants. Despite differences in the pattern of mean RTs,
the shapes of the distributions in this slow presentation rate
experiment look similar to those in the fast presentation rate
experiment. RT distributions are positively skewed (as rep-
resented by the gradual increase in separation between in-
creasing quantiles). In addition, as set size increases, the

lengthening of RTs is associated with a shift in the entire
distribution and with moderate increases in skew. Consistent
with the lack of mean serial-position effects, however, the
lag between study and probe has much less influence on the
entire RT distributions under these slow presentation rate
conditions. The proportion of correct responses was gener-
ally much higher in the present experiment, although we still
generally observed slight decreases in accuracy with in-
creasing lag between study item and probe.

Fig. 5 (continued)
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Preliminary discussion Many of the qualitative patterns
in the data are consistent with the predictions from a
serial-exhaustive model. For example, the model pre-
dicts the linearly increasing set size functions, while
predicting little or no effect of study–probe lag on the
mean and standard deviation of RTs. Thus, the different
presentation rates may indeed influence the way that
short-term memory is accessed. To test this hypothesis
in greater depth, we now turn to the model-based anal-
yses of the RT distribution data.

Model selection and best-fitting parameters

We again fit to the data all 36 of the previously outlined
models. The fitting method and calculations of BIC were
done in the same manner as for the fast presentation exper-
iment. Perhaps most interesting is that the serial-exhaustive
model is now very competitive with the other architectures.
To compare the serial-exhaustive model with the other
architectures, we again took the best-fitting models (accord-
ing to BIC values calculated from analytic fits) from the

Fig. 5 (continued)
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global-familiarity and parallel self-terminating architectures
and fit them to binned RT data, using simulation. As is
reported in Table 3, the best representative from the serial-
exhaustive architecture had BIC values similar to those for
the global-familiarity and parallel self-terminating models

(i.e., ΔBIC values are as small for the serial-exhaustive
model as they are for the other architectures).

ΔBIC values for the full set of parallel and global-
familiarity models are plotted for each participant in
Fig. 7. There is again relatively little difference between

Fig. 6 Observed and predicted quantiles for the Sternberg (1966) replication experiment. The format of the figure is identical to Fig. 3
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the best-fitting members of these two classes of models.
Regarding the alternative parameterizations, the pattern is
very similar to the one shown in Fig. 4. The best versions
are those in which response thresholds change over evi-
dence valence and study set size. Also, we again observe

that drift rate need not vary freely across all unique combi-
nations of serial position and set size. Instead, drift rate
varies as a systematic function of these variables.

The best-fitting parameters for each of the architectures
are reported in Table 4. For the global-familiarity and

Fig. 6 (continued)
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parallel models, response thresholds again increase in mag-
nitude with increases in set size. By contrast, according to
the serial-exhaustive model, there is zero increase in the
magnitude of the response thresholds. The main change in
the pattern of parameter estimates, as compared with the fast
presentation rate experiment, is in the estimated drift rates.
With the possible exception of lag 1 for participant 7, the
estimated drift rates are roughly flat across the different
study–probe lags according to all of the models.

Qualitative model predictions

Mean and variance of response times Rows 2–5 of Fig. 5
contain the predictions for means and standard deviations of
RT from the global-familiarity, parallel self-terminating, and
the two versions of the serial-exhaustive models. The sec-
ond serial model is a constrained version in which drift rates
are held constant across serial position and set size and
response thresholds are held constant across set size. The
global-familiarity and parallel models do a good job of
accounting for the qualitative patterns in mean and standard
deviations in RTs. Most important, the serial model now
also does a good job of accounting for these data.

Predicted quantiles Figure 6a contains the predicted quan-
tiles from the global-familiarity model, and Fig. 6b contains
predictions from the serial-exhaustive model. Again, the
predictions from the parallel self-terminating model were
very similar to those of the global-familiarity model and,
so, appear in the online supplement. The parallel and global-
familiarity models continue to do a good job of accounting
for both the speed and accuracy of responses for both target

and lure items. Now, however, the serial-exhaustive model
also appears to do a relatively good job of explaining the
shapes of the RT distributions.

The procedure for our Sternberg replication experiment was
similar to one used by Hockley (1984), who also used slow
presentation rates. A main theme of his investigation was to
analyze his RT distribution data by fitting the ex-Gaussian
distribution to them and examining how the ex-Gaussian
parameters changed as a function of set size. Among the differ-
ences in procedure was that our participants participated in far
more sessions than did Hockley’s. In addition, Hockley did not
require participants to serially recall the memory set items
following their probe recognition judgments. We report ex-
Gaussian analyses for our data in the online supplement. In
brief, we observed an increase in τ (i.e., positive skew of the RT
distributions) with set size that was consistent with Hockley’s
results. However, we also observed an increase in μ (i.e., the
leading edge of the distributions) with set size that was much
larger than what Hockley observed. Possibly, participants en-
gaged in serial search under our experimental conditions but
did not do so under Hockley’s conditions. Alternatively, due to
their greater experience in the task, participants in our experi-
ment may have learned to adjust response thresholds for trials
involving differing memory set sizes.

Discussion

Participants appeared to behave differently in our replication of
Sternberg (1966) than in Nosofsky et al.’s (2011) Experiment
2. One of the main differences was that, under these slow
presentation rate conditions, there was essentially no effect of
study–probe lag. This difference had a dramatic influence on
the results of our model-based analysis, since the serial-
exhaustive architecture was now able to account for the data
as well as the global-familiarity and parallel self-terminating
architectures. Indeed, even a highly simplified version of the
serial-exhaustivemodel, in which drift rate for targets and lures
was held fixed across all set size and lag conditions and in
which response thresholds were held fixed as well, provided a
good account of the data. We consider the comparisons among
the models in greater depth in our General Discussion section.

General discussion

In this research, we formulated alternative information-
processing architectures designed to account for detailed
RT distribution data and error rates observed in the classic
Sternberg (1966) memory-scanning paradigm. Our ap-
proach was to assume that the individual-item comparisons
(or single global-familiarity comparison) that take place in
each model architecture are governed by LBA processes.

Table 3 ΔBIC values based on simulation for each of the global-
familiarity (GF), parallel self-terminating (PST), and serial-exhaustive
(SE) architectures for each of the 3 participants in the slow presentation
rate experiment

ΔBIC k

P5 P6 P7

GF 11 64 46 19

PST 0 88 0 19

SE 10 0 80 9a

SE w/enc 35 33 120 24

Note. For all architectures, we report the best-fitting version of the
model and the number of parameters. We also include theΔBIC values
for the serial-exhaustive model that includes encoding time that varies
with study–probe lag
a Note that this best-fitting version of the serial-exhaustive model has
so few parameters because it assumes that response thresholds are
fixed across set size and drift rate is fixed across lag and set size. Free
parameters for this model are as follows: s, TPOS, TNEG, ST, A, bPOS,
bNEG, v, and u
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Because the LBA approach has fared successfully in the
modeling of RT distribution data associated with simple,
elementary decisions, it is a reasonable building block for
the more complex model architectures investigated here. By
placing reasonable constraints on the form of the elementary
processes that govern individual-item comparisons, we were
able to test the alternative architectures on their ability to
predict the composite RT distributions associated with search

of the entire memory sets. This approach also provided prin-
cipled predictions of error rates and speed–accuracy trade-offs
observed in the memory-scanning task. Finally, we used a
dual-route attack, in which we examined a variety of qualita-
tive predictions from the competing models, along with their
quantitative fits to the complete RT distributions.

Motivated by an old hypothesis advanced by Sternberg
(1975), we tested the models in two main experiments that

Fig. 7 ΔBIC values are plotted for each of the global-familiarity and
parallel self-terminating models fit to each of the 3 participants in the
Sternberg (1966) replication experiment. As in Fig. 4, EV and SS refer

to evidence valence and set size. Recall that smaller values of ΔBIC
indicate that a model is more parsimonious
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varied the presentation rates of the memory set items and the
test probes. In line with our expectations, we found support for
familiarity-based or parallel-access models in an experiment
in which rapid presentation rates were used. By contrast, in an
experiment in which presentation rates were slow, a serial-
exhaustive architecture yielded accounts of the data that were
as good as those of the global-familiarity and parallel-access
models. As is discussed in more detail below, one possibility
is that a single architecture governs performance across the
fast presentation rate and slow presentation rate conditions,
with systematic changes in parameter settings occurring
across these different conditions. An alternative possibility is
that the memory-scanning architecture changes depending on
the presentation rate conditions, becoming serial exhaustive in
character when presentation rates are slowed. In our view,
each alternative interpretation has certain advantages and
disadvantages.

Fast presentation rate experiment

In the fast presentation rate experiment, strong evidence was
found favoring either the parallel self-terminating or global-
familiarity architectures, as compared with the serial-
exhaustive one. The serial-exhaustive architecture, even
when elaborated to allow encoding-time differences due to
recency, was unable to capture the joint finding of strong

serial position effects in the mean RTs combined with the
roughly parallel and steeply linearly increasing set size
functions observed for positive and negative probes. Also,
as memory set size increased, the serial model often
predicted changes in the leading edge of the RT distribu-
tions that were too large, while underpredicting the
increases in positive skew of the RT distributions (see
the online supplement). Both the parallel self-terminating
and global-familiarity architectures did a reasonably good
job of capturing all of these aspects of the mean RT and
RT distribution data.

Within the framework of the parallel and global-
familiarity architectures, our detailed parametric investiga-
tions also suggested two main effects of the variables of set
size and serial position. First, as the lag between a positive
probe and a matching memory set item increased, the drift
rate associated with the LBA match process decreased. Such
an effect is consistent with the idea that the memory strength
of a study item decreases with its lag of presentation.
Interestingly, once one took lag into account, there was no
evidence that increases in set size per se led to any further
decrease in drift rates. A common metaphor from the
information-processing literature is that memory search
may involve a limited-capacity parallel process in which
total capacity is “shared” among the different memory set
items (e.g., Townsend & Ashby, 1983, p. 14). As set size

Table 4 Parameter estimates for
each of the global-familiarity
(GF), parallel self-terminating
(PST), and serial-exhaustive
(SE) architectures for each of the
3 participants in the slow pre-
sentation rate experiment

Note. The parameter estimates
are the maximum likelihood
estimates based on fits of the
model in which response thresh-
olds changed across study set
size and evidence valence and
drift rate changes systematically
across study–probe lag and set
size

P5 P6 P7

GF PST SE GF PST SE GF PST SE

s 0.17 0.22 0.86 0.32 0.36 0.31 0.34 0.39 1.15

TPOS 0.1 0.12 0.30 0.15 0.19 0.43 0.16 0.19 0.50

TNEG 0.34 0.55 0.59

ST 0.001 0.002 0.001

A 0.08 0.12 0.05 0.55 0.70 0.05 0.26 0.37 0

bPOS 0.24 0.26 0.02 0.69 0.84 0.03 0.47 0.55 0.07

bNEG 0.26 0.27 0.02 0.75 0.81 0.02 0.51 0.55 0.04

ΔbPOS 0.001 0.008 0 0.04 0.04 0 0.02 0.03 0

ΔbNEG 0.01 0 0 0.04 0.004 0 0.02 0 0

V1 0.80 0.92 1.70 1.15 1.42 1.25 1.04 1.17 2.85

V2 0.77 0.87 1.62 1.12 1.39 1.24 0.91 0.99 2.15

V3 0.77 0.87 1.51 1.13 1.43 1.31 0.95 1.04 2.30

V4 0.81 0.92 1.69 1.00 1.27 1.24 0.93 1.00 2.24

V5 0.75 0.83 1.52 0.98 1.30 1.11 0.91 0.96 2.38

U1 0.85 0.93 2.37 1.09 1.21 1.33 0.96 0.99 3.86

U2 0.81 1.10 2.15 1.07 1.35 1.23 0.98 1.63 3.72

U3 0.77 1.11 2.29 1.09 1.87 1.36 0.99 1.56 3.66

U4 0.78 1.09 2.29 1.07 2.11 1.35 0.97 1.17 3.66

U5 0.73 1.15 2.43 1.04 1.41 1.28 0.99 1.10 3.82

P 1.01 1 1 1.08 1.04 1 1.01 1.02 1

ΔS −0.05 −0.03 −0.003 0 −0.02 0 0 0.02 −0.01
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increases, less capacity can be devoted to any individual item.
Our detailed modeling of our RT distribution data, however,
lent no support to that hypothesis. Instead, the slowdowns in
RT with set size were due to increasing lag and to changes in
response thresholds, which we discuss next.

The second major effect was that, as memory set size
increased, participants increased their response thresholds for
making match/mismatch decisions. The basis for this effect
remains as a topic for future investigation. One possibility is
that it reflects the cognitive system’s manner of dealing with
increases in noise associated with larger set sizes. For example,
as memory set size increases, there are more opportunities for
an observer to false alarm to lures. Within the parallel self-
terminating architecture, if any individual-item comparison
yields a false alarm, the final response will be a false alarm;
therefore, as set size grows, overall false alarm probability will
increase. Likewise, as set size grows, global familiarity on lure
trials would also be expected to increase (Kahana & Sekuler,
2002; Nosofsky et al., 2011). Thus, increasing the magnitude
of the response thresholds may be the system’s way of holding
down the false alarm rate, because it requires that more evi-
dence be gathered before decisions are made.

Slow presentation rate experiment

In the case in which presentation rates were slowed, the serial-
exhaustive model yielded quantitative fits to the detailed RT
distribution data that were as good as those of the parallel and
global-familiarity models. One of the major qualitative
changes across the fast presentation rate and slow presentation
rate experiments was that the serial position effects largely
disappeared under the latter conditions. In the parallel and
global-familiarity models, this change was modeled in terms
of a different pattern of drift rate parameters. Whereas drift rate
decreased with increasing lag in the fast rate experiment, the
measured drift rates were essentially flat in the slow rate
experiment. There are a couple of alternative explanations for
such a result. First, if memory strength decreases, at least in
part, with the simple passage of time (but see Lewandowsky&
Oberaurer, 2009) and if the strengths asymptote at some low
level, one would expect to see much reduced lag-based differ-
ences in drift rates under slow presentation conditions than
under fast presentation conditions. Alternatively, items may
have entered a longer-term store outside of short-termmemory,
where they become less susceptible to the effect of lag. Second,
in cases in which presentation rates are slowed, it is muchmore
likely that observers engage in a variety of rehearsal strategies.
If so, then the memory strengths and associated drift rates will
no longer be a simple function of lag. Instead, they will depend
on the specific rehearsal strategy that is used. Furthermore, if
different rehearsal strategies are used on different trials, the
patterning ofmemory strengths may be quite complex. A set of
roughly flat or unsystematic drift rates may be a reflection of a

confluence of different rehearsal strategies. To test this idea,
future research might bring rehearsal strategies into control by
providing explicit instructions on which strategy to use or by
asking participants to rehearse overtly. Alternatively, it may be
possible to fit mixture models to the data that make explicit
hypotheses about the alternative rehearsal strategies that par-
ticipants use across trials.

An alternative interpretation of our results is that a mixture
of mental architectures may underlie short-term memory scan-
ning, and there was a major shift toward greater use of serial-
exhaustive processing in the slow presentation rate condition.
Sternberg (1975, pp. 13–14) suggested various factors that
may lead to mixed strategies. In the present case, perhaps fast
presentation rate conditions give rise to large differences in
familiarity between positive and negative probes, so relying on
global familiarity becomes a more efficient strategy than serial-
exhaustive search. But under slow presentation rate conditions,
those familiarity differences may begin to disappear.

Perhaps the main argument in favor of this interpretation is
that most of the fundamental qualitative effects in the data
were those predicted a priori by a simple, baseline version of
the serial-exhaustive model. These effects include the roughly
parallel and linearly increasing set size functions observed for
positive and negative probes, the nearly flat serial position
curves observed at each set size, the increase in the leading
edge of the RT distributions as set size increased, and the fairly
moderate increases in positive skew with increases in set size
(as compared with Experiment 1). Although these effects can
be captured by versions of the parallel self-terminating and
global-familiarity models, they hold only under certain types
of parametric assumptions. Future work is therefore needed to
understand the overall flexibility of the parallel self-
terminating and global-familiarity models. In addition, future
work is needed to determine whether the parametric assump-
tions that yield good fits of those models to the slow presen-
tation rate data may have some deeper theoretical basis. If the
models capture the qualitative effects in the data only with a
restricted set of unmotivated parameter settings, their account
of those data must be brought into question.7

Is it plausible that the memory-scanning architecture
itself might change across these experimental conditions?

7 On the other hand, in order for the serial-exhaustive model to account
for the full set of RT distributions in the slow presentation rate experi-
ment, we found that we had to make two assumptions that were not
necessary for the global-familiarity and parallel self-terminating architec-
tures. Both were related to nondecision time. The first was that nondeci-
sion time was different depending on whether the probe item was a target
or a lure. This assumption was fundamental in Sternberg’s (1966) pio-
neering work as well. The second additional assumption was that nonde-
cision time varied from trial to trial according to a log-normal distribution
(whereas a constant nondecision time was assumed in the parallel and
global-familiarity models). Although this aspect of the serial-exhaustive
model is more complex than for the other models, in our view the
assumption that there is variability associated with nondecision time is
extremely plausible and hardly requires justification.
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Some precedence for such a possibility can be found, for
example, from earlier investigations conducted by McElree
and Dosher (1989, 1993). As was noted earlier, in their
investigation of short-term recognition (using fast presenta-
tion rates), McElree and Dosher (1989) obtained evidence
consistent with predictions from parallel or direct-access
models. However, in a closely related study in which par-
ticipants were required to make judgments of recency,
McElree and Dosher (1993) found evidence that order in-
formation is retrieved by a serial-retrieval mechanism.
Admittedly, the task goals differed across their two studies,
whereas in our investigation the primary task goal always
involved recognition. 8 Nevertheless, in our view, McElree
and Dosher’s (1989, 1993) findings lend support to the
possibility that the mental architectures that govern access
to short-term memory are not fixed but might change across
experimental conditions.

Other future directions

Finally, future work should also aim to distinguish be-
tween the global-familiarity and parallel self-terminating
models of memory scanning. We were unable to derive any
focused qualitative contrasts for distinguishing those models.
Moreover, our failure to discriminate between the two archi-
tectures on quantitative grounds is reflective of how well these
two architectures are able to mimic each other, even at the
level of full RT distributions. This mimicry is especially likely
to happen when the models are given the parametric freedom
required to explain the 40 different RT distributions and
response proportions that served as our test bed.

Regarding this mimicry, we should note that in the pres-
ent investigation, our focus was on the classic version of the
Sternberg paradigm in which highly discriminable memory
set items were used and accuracy was at very high levels.
The versions of the models that we formulated had these
types of testing conditions in mind. However, in recent
years, an interesting theme has been to examine perfor-
mance under conditions in which similarity relations among
memory set items and test probes are manipulated. Pursuing
this avenue in combination with the collection of detailed
RT distribution data might provide more highly diagnostic
information for telling apart the alternative architectures.

We should emphasize that one recently formulated mem-
ber of the class of global-familiarity models—namely, the
EBRW model (Nosofsky et al., 2011)—has shown initial
success in accounting for performance in such experiments.
For example, following a paradigm introduced by Kahana

and Sekuler (2002), Nosofsky et al. conducted an extended
version of the Sternberg task in which the memory set items
and test probes were embedded in a continuous multidimen-
sional similarity space (i.e., colors varying in hue, bright-
ness, and saturation). In addition to varying memory set size
and lag of positive probes, Nosofsky et al.’s design sampled
broadly from the similarity space, creating 360 unique lists
with varying set size, lag, and similarity structure. The goal
was to use the EBRW model to predict jointly both the
accuracies for the individual lists (which varied considerably
due to the confusability of the stimuli) and the individual-list
mean RTs. Furthermore, rather than allowing the random-
walk drift rates for the individual lists to vary as free param-
eters, the drift rates were instead computed from the summed
similarity of the test probes to the specific memory set items
(for details, see Nosofsky et al., 2011, Experiment 1). Despite
using relatively few free parameters, the model provided
excellent overall quantitative accounts of the choice probabil-
ities and mean RTs associated with the individual lists and
captured fundamental qualitative effects involving the roles of
set size, lag, and similarity.

Furthermore, the EBRW modeling conducted by
Nosofsky et al. (2011) seems broadly consistent with recent
results involving similarity effects for lures in short-term
recognition. For example, Johns and Mewhort (2011) con-
ducted experiments in which the lag of target items was
manipulated, but also in which the lag of lures was manip-
ulated. Specifically, lures were presented that were highly
similar to memory set items from specific serial positions.
With regard to target items, Johns and Mewhort observed
the common result that more recently presented targets had
shorter RTs than did less recently presented targets (except
for a small primacy effect). This finding is consistent with
the idea that more recently presented targets have greater
memory strengths (cf. Donkin & Nosofsky, in press;
Nosofsky et al., 2011). The novel and more interesting
finding was that the serial position function for the lures
showed the same pattern: Lures that were highly similar to
more recently presented memory set items had shorter cor-
rect rejection RTs than did lures that were highly similar to
less recent memory set items. Although some versions of
global-familiarity models might predict the reverse result
(see Johns & Mewhort, 2011), such is not the case for the
EBRW model. In particular, a fundamental component of
Nosofsky et al.’s EBRW modeling involved the assumption
that whereas memory strength of study list items decreased
with lag, so did memorial sensitivity—that is, the ability to
discriminate between memory set items and high-similarity
lures. (Intuitively, it is easier to discriminate between two
close shades of the same color if the first was just recently
presented, rather than presented in the distant past.) The
precise predictions from the EBRW model would depend
on detailed parameter settings from the model and the levels

8 As part of our direct replication of Sternberg (1966), we did require
participants to recall the entire sequence of items presented. A future
experiment, in which slow presentation rates are used without the
necessity to recall the entire set of items (or fast presentation rates that
do require full recall) may help disentangle this issue.
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of manipulated similarity in the experiment, but the general
result observed by Johns and Mewhort seems within the
model’s scope. In the same way that the EBRW model has
been formalized to account for similarity effects in short-
term recognition, it seems likely that analogous extensions
could be made to members of the class of parallel self-
terminating and serial-exhaustive models. It is an open
question whether such models could also capture the types
of similarity effects reviewed briefly above.

Still another approach to contrasting the models may be
to make use of the systems factorial technology, a still-
developing set of interrelated RT methods for distinguishing
among alternative mental architectures (e.g., Schweickert,
1992; Townsend & Nozawa, 1995; Townsend & Wenger,
2004). These methods involve the study of RT distribution
data in conditions in which similarities and factorial struc-
ture among a set of stimuli are very carefully calibrated.
Such techniques have been used recently, for example, to
distinguish among a variety of different mental architectures
of rule-based classification performance (Fific et al., 2010;
Little, Nosofsky, & Denton, 2011), and preliminary attempts
have been made to use the methods in the domain of
memory search with highly specialized types of stimuli
(Townsend & Fific, 2004). Combining these techniques
with the present RT distribution approaches may yield still
greater power in allowing one to distinguish among the
alternative models of short-term memory search.

Appendix

Model parameterizations

Response threshold parameterizations

We consider four different response threshold parameteriza-
tions. In the first, we used just one response threshold for all
responses and set sizes and, so, required just one response
threshold parameter, b. In the second version, we estimated
separate response thresholds for accumulators collecting evi-
dence for either a positive or a negative match between probe
and study items. This parameterization required two threshold
parameters, bPOS and bNEG, for positive and negative matches
between study items and probes, respectively. We also fit a
parameterization of the model in which response threshold
changed with study set size and, so, required an additional
slope parameter Δb for the linear relationship between study
set size and threshold, such that response threshold for both
positive and negative matches in set size i was determined by
b + Δb(i − 1). In the fourth and final version, we allowed
response thresholds to differ both for positive and negative
match accumulators and also across set sizes. This version

required four parameters in total, bPOS and bNEG, the response
thresholds for set size one, and ΔbPOS and ΔbNEG, the linear
slope parameters for each of the response thresholds.

Drift rate parameterizations

We first consider a parameterization in which the rate of
evidence accumulation depends only on the lag between
when the item is presented during study and when the item
is later probed. For parallel and serial architectures, in which
the match between each item in the study set and the probe
item is assessed separately, the rate of evidence accumula-
tion for each item is determined by the lag between the study
item and probe. In particular, we assume that the evidence
accumulation rate for a positive evidence match between
probe and study items depends on the lag between when that
item was studied and when it was subsequently probed.
Similarly, we assume that the rate of negative evidence
accumulation when a probe item is compared with a study
item that it does not match will also depend on study–probe
lag. That is, we expect that more recently presented items
will be easier to identify as not matching the probe (i.e.,
more negative evidence). In other words, we expect that the
lag between study and probe will facilitate the time taken to
identify both a positive and a negative match between study
and probe items. We estimate, therefore, separately for each
study–probe lag, i, a rate of accumulation parameter for both
a positive (vi) and a negative (ui) match between study and
probe items, yielding a total of ten drift rate parameters.

An example may help make this clearer. Imagine a trial
on which the study list was made up of the items “7,” “4,”
and “6,” presented in that order (which we will represent as
[7, 4, 6]) and a probe item “4” is presented. There are three
accumulators collecting positive evidence, one for each
study item, and three accumulators accumulating negative
evidence for a match between each study item and the
probe. Consider first just the accumulators associated with
the correct response—that is, the accumulator collecting
positive evidence for the study item “4” and those collecting
negative evidence for the study items “7” and “6.” The rate
at which positive evidence is accumulated for the match
between the memory for “4” and the probe item is estimated
as v2, because the lag between “4” and the probe item is two.
The negative evidence for the match between “6” and the
probe would accumulate at rate u1, and the negative evi-
dence for the match between “7” and the probe would
accumulate at rate u3. The rate at which evidence accumu-
lates for the incorrect responses will be discussed later.

Evidence accumulation rates are estimated differently in
global-familiarity architectures, because they are based on
the combined influence of all items in memory. We assume
that when there is a match between the probe and any of the
study items, the lag between the study and probe item, i,
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determines the rate of evidence accumulation for a positive
match between the entire contents of memory and the probe,
vi. When the probe item does not match any item in mem-
ory, we estimate the rate of evidence accumulation, uj, based
on the number of items in memory, j. This parameterization
may seem unintuitive at first but is a result of our reluctance
to place a constraint on the way that information from the
items in memory is combined. For example, consider a trial
on which only one item is presented and the probe does not
match this item. We would estimate the rate of negative
evidence accumulation to be u1. If we now have a trial on
which two items are present, neither of which is the probe
item, the lack of match between two items is combined in
some way to indicate that the probe is a lure. It might be
possible that this information is combined in a functional
way; for example, the rate for the most recent item, u1,
might be multiplied by the rate for the next most recent
item, u2, allowing us to estimate a drift rate for negative
match that is directly related to study–probe lag. Because we
do not wish to place such a constraint on how the negative
match between the probe and each item in memory is
combined, however, our only option is to estimate a separate
rate of accumulation for the case in which two items are
present, and more generally, depending on the number of
items in memory. So, finally, consider again a trial on which
the study list was [7, 4, 6]. If the probe was “6,” the rate of
positive evidence would be v1; if the probe was “7,” the rate
of positive evidence would accumulate at rate v3; and if the
probe was a new item (i.e., not a member of [7, 4, 6]), the
rate of negative evidence accumulation would be u3.

Beyond study–probe lag, there is also considerable evi-
dence for a primacy effect in short-term memory recogni-
tion; the first item in the list is often more easily recognized
than other items presented early in the study list. We decid-
ed, therefore, to include in all of our parameterizations, a
primacy parameter, P, by which we multiplied the lag-based
drift rate parameter when it was also the first item in the
study list. For example, say that the probe on a given trial
was “7” and the study list was [7, 4, 6]. In all architectures,
the rate of evidence for a positive response would be v3 × P.
If, however, the probed item was “2,” then in the parallel
and serial architectures, the influence of primacy would be
on the negative evidence for the item “7,” turning it into u3 ×
P, rather than just u3. For the sake of simplicity, because there
are many possible ways in which primacy may influence the
rate of negative evidence accumulation in a global-familiarity
architecture, we assume that primacy has no influence on the
rate of negative evidence accumulation (or on positive evi-
dence accumulation when the probe does not match any study
item). Note that the primacy parameter is not redundant,
because the same lag is present in multiple set sizes; for
example, a lag of 3 in a list of set size 3 would be subjected
to the primacy multiplier, but would not in set sizes 4 and 5.

The second drift rate parameterization we considered
assumed that in addition to lag and primacy, the evidence
accumulation rate for a match between study and probe
items is influenced by the number of items in the study list.
For example, consider a study list [7, 4, 6] in which “4” is
presented as the probe. In the parallel and serial architec-
tures, the accumulation rate of positive evidence for a match
between the second item and the probe is estimated as v2 ×
S3, where S3 refers to the additional influence on drift rate
from being an item in a list of length three. The accumula-
tion rate for a negative match between the other items will
be estimated as u1 × S3, and u3 × S3 × P for “6” and “7,”
respectively. In the global-familiarity architecture, Si will
influence only the drift rates for positive matches (vi), and
not negative matches, because those parameters are already
estimated separately for different set sizes. So, for the study
list [7, 4, 6] with “4” as the probe, the drift rate for a positive
match will be v2 × S3. For modeling purposes, we assumed
that the change in drift rate with study list length would be
linear and set S1 to 1 and estimated a single parameter ΔS to
govern the change in the list length multiplier, S, as the
study list length increased. So the list length multiplier for
a study list of length i was 1 + ΔS(i − 1).

In the third drift rate parameterization, we estimated a
rate of accumulation of positive evidence for each of the
possible study–probe lags within each set size. In other
words, we freely estimated a drift rate parameter for all 15
combinations of set size and serial position. We also esti-
mated six free parameters for the rate of negative evidence
accumulation when the study item did not match the probe
(five values of u and one ΔS). These parameters are identi-
cal to the parameters estimated in the second drift rate
parameterization, and so for the parallel and serial architec-
tures, the drift rate for negative evidence depends on both
the study–probe lag and an overall influence of study set
size. For the global-familiarity model, the drift rate for
negative evidence depends on study set size. So, given the
study list [7, 4, 6] and a probe of [4], in a parallel and serial
architecture, the drift rates for a positive match between the
probe and the representation for the study item “4” would be
v3.2, where the 3 refers to the study set size and the 2 refers
to the lag between study and probe item, and the negative
match between the probe and the other study items would be
u3 × S3 and u1 × S3 for items “7” and “6,” respectively. For
the global-familiarity model, the positive evidence would
simply accumulate at rate given by v3.2 if the probe matches
an item in the study list and at rate u3 if the probe does not
match an item in the study list.

So far, we have discussed estimation of drift rate param-
eters for only correct decisions—that is, when an accumu-
lator is collecting positive evidence for a matching probe or
negative evidence for a mismatching probe. We chose to fix
the mean of the drift rate distribution for any accumulator
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associated with what would be an incorrect decision to be
one minus the mean drift rate for the correct decisions. This
constraint is standard in multiple accumulator models of
choice RTs (e.g., Brown & Heathcote, 2005, 2008; Usher
& McClelland, 2001) and is used to satisfy a scaling prop-
erty when fitting RT models (but see Donkin, Brown, &
Heathcote, 2009, for a discussion of alternatives). So, for
example, if the study list was [3, 8, 1] and the probe was an
“8,” then in the parallel and serial architectures, the negative
evidence for a match between the memory for “8” and the
probe accumulates at the rate 1 − v2, and the positive evidence
for a match between “3” and “1” items and the probe accu-
mulates at rate 1 − u3 × P and 1 − u1, respectively.
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