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The controversial idea that information can be processed and
evaluated unconsciously to change behavior has had a particularly
impactful history. Here, we extend a simple model of conscious
decision-making to explain both conscious and unconscious accu-
mulation of decisional evidence. Using a novel dichoptic suppression
paradigm to titrate conscious and unconscious evidence, we show
that unconscious information can be accumulated over time and
integrated with conscious elements presented either before or after
to boost or diminish decision accuracy. The unconscious information
could only be used when some conscious decision-relevant informa-
tion was also present. These data are fit well by a simple diffusion
model in which the rate and variability of evidence accumulation is
reduced but not eliminated by the removal of conscious awareness.
Surprisingly, the unconscious boost in accuracy was not accompa-
nied by corresponding increases in confidence, suggesting that we
have poor metacognition for unconscious decisional evidence.

conscious awareness | decision-making | metacognition |
continuous flash suppression | binocular rivalry

One of the fundamental challenges to understanding and pre-
dicting human behavior is that we are nonrational and often

do not act in our own best interest. Indeed, many thinkers have
struggled to conceptualize and model illogical and unexpected
behavioral choices. One compelling proposition is that unconscious
information can push and pull everyday decisions—without our
explicit knowledge or permission. However, despite their popu-
larity, such propositions lack strong experimental support.
Research exploring the role of unconscious information pro-

cessing in the context of decision-making has typically focused on
the role of deliberation in the absence of conscious attention di-
rected at a problem. Within this framework, inattentional thought
has been argued to be superior to focused attentional deliberation
when making complex decisions (1–4) because of the proposed
larger information processing capacity of unconscious thought (5).
However, these findings have faced much controversy, because
several studies have failed to find evidence for inattentional de-
liberation (6–10). A particularly important criticism here is that
the tasks typically used do not allow for the adequate control
of decision variables and hence, have little traction in assessing
deliberation without attention. Moreover, these studies do not
directly manipulate conscious awareness. Consequently, it is dif-
ficult to determine whether any unconscious decisional processes
actually occur during the period of inattention.
Here, we developed a task in which we can control the amount

of decision-relevant information available during both conscious
and nonconscious processing. This task allowed us to investigate
the idea that unconscious information can predictably alter con-
scious decisions. We used a simple perceptual decision paradigm,
which has produced many neurobiological and computational
insights into decision-making in humans and nonhuman animals
(reviewed in ref. 11). Cross-species behavioral and neural data
support simple accumulation models, according to which a con-
scious decision is made after enough noisy evidence has accu-
mulated to a particular criterion level (12–15). These models can
explain a variety of different behaviors, such as the relationship
between accuracy, difficulty, and response time and even changes

of mind (16). However, it is unknown if these models can account
for unconscious decisional evidence that might affect behavior.

Results and Discussion
We suppressed noisy visual stimuli from conscious awareness
using a dynamic dichoptic mask consisting of bright dots spinning
concentrically around the fixation point (Fig. 1 shows the time-
line). Participants were asked to decide the direction (left or
right) of a coherent dot motion stimulus presented to one eye for
700 ms. In the first experiment, the mask was presented to the
other eye for the first 400 ms, suppressing the dot motion stim-
ulus from conscious awareness for this duration. Participants
were asked to report on each trial whether they saw any part of
the suppressed stimulus; unless indicated otherwise, all sub-
sequent analyses include only trials in which the stimulus was
suppressed (Fig. S1 shows suppression break data).
In a coherent condition, signal strength of the suppressed

stimulus was constant throughout the entire presentation. In
a noncoherent random condition, the suppressed stimulus only
contained purely random motion (0% coherence). This method
allowed us to keep the amount of conscious information constant,
while adjusting the amount of decision-relevant information pre-
sented outside of conscious awareness.
In experiment 1, we found that decision accuracy was signifi-

cantly higher when the unconscious stimulus contained coherent
information than in the random condition across a range of co-
herence levels [F(1,6) = 23.44, P = 0.003] (Fig. 2A, data points).
These data suggest that decisional information during the first
one-half of the trial might be processed without conscious
awareness, resulting in an overall increase in decision accuracy.
To facilitate computational modeling of the data, we replicated
this effect in a second experiment, in which the dot motion
stimulus remained consciously visible until the participant gave
a response. Performance again improved when the unconscious
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information was coherent rather than random [F(1,4) = 23.44,
P = 0.008] (Fig. 2B).
Motion priming has been found for stimuli in the absence of

attention (17) and awareness (18). Hence, we sought to determine
whether this increase in accuracy could simply be the result of the
suppressed information priming or facilitating the subsequent
visible stimulus. To test this, we conducted a third experiment, in
which the order of presentation was reversed (i.e., the visible
stimulus was followed by suppressed coherent/random motion).
Again, accuracy was significantly higher in the coherent condition
than in the random condition [F(1,5) = 8.43, P = 0.03] (Fig. 2C),
ruling out priming as an account for the boost in decision accuracy.
Across all of the experiments, the accuracy boost from un-

conscious information was well-explained by a simple evidence ac-
cumulation model, which assumes that the unconscious information
carried less decisional evidence than conscious information (Fig.
2D, steeper slope for the red plot and Methods). Furthermore, we
found it necessary to assume that unconscious evidence accumula-
tion was less noisy: the variability in the unconscious information
was reduced by the same factor as the rate of accrual of actual
decisional evidence. Fits of the model are shown in Fig. 2 (solid
lines), and estimated parameters (Table 1) suggest that, when the
unconscious stimulus was presented before the conscious stimulus,
the quality and variability of evidence accumulation during un-
conscious processing were about 20% of that when the participant
was aware of the stimulus presentation. Interestingly, when the
suppressed stimulus was shown after the conscious stimulus, par-
ticipants carried on collecting evidence at 95% efficiency during the
suppression period. This finding fits well with recent work showing
that information held in sensory memory can boost decisional ac-
curacy (19) or allow for a change of mind (16). In experiment 3, it is
possible that such a memory trace combines with the unconscious
evidence, boosting the overall quality of decisional evidence.
To obtain an objective account of the extent of conscious

awareness during the suppression period, we ran a control ex-
periment, in which all of the decisional information was rendered
unconscious (experiment 4). Suppressed coherent motion (400 ms)
was followed by random visible motion (300 ms). We found that
decision accuracy was not significantly different from chance
[t(8) = 1.56, P = 1.57] (Fig. 3A). This finding provides additional
evidence against a simple priming account of the data: if priming
was responsible for the increases in accuracy, then we would

expect to find above-chance performance here. The more fasci-
nating implication, however, is that, when there was no conscious
coherent signal, participants were unable to use the coherent
unconscious information.
We believe that there are two possible explanations for why

participants were unable to use the unconsciously processed in-
formation when conscious directional information was removed.
First, it is possible that the unconscious information is processed
but requires conscious information to bind to for us to be able to
access and use it. Second, the suppressed information is simply
not presented for long enough to reach above-chance perfor-
mance. Because we show that suppressed information is accu-
mulated at a slower rate than visible information, it is possible
that the decision threshold is not being reached fast enough to
yield accurate responses. Finally, there is evidence to suggest
that participants need some degree of training with feedback to
learn how to use unconscious information (20).
We next considered the possibility that participants may have

been misattributing the visibility of the gray dots during the
suppression period to the subsequent visible motion segment of
the stimulus. We tested for this possibility in experiment 5; we
presented a suppressed coherent/random gray dot motion stim-
ulus for 400 ms followed by a visible yellow dot motion stimulus
for 400 ms. Six participants were instructed to report if they saw
any gray dots on each trial after their motion direction response.
Overall, decision accuracy was significantly higher when the un-
conscious stimulus contained coherent information (M = 70.65,
SD = 4.4) than when it contained random information (M = 66.41,
SD = 5.09) across the range of coherence levels [F(1,5) = 11.82,
P = 0.02], replicating our earlier results (Fig. 3B). We also in-
cluded mock catch trials, where we simulated both breaks in
suppression (gray dots were presented to both eyes) and suc-
cessful suppression (gray dots not presented at all). All partic-
ipants missed less than 5% of the catch trials (M = 1.98, SD = 1.7).
Together, these data indicate that participants are able to accu-
rately identify and report breaks in suppression.
In experiment 6, we tested the possibility that decision accu-

racy was impeded in the random condition rather than enhanced
in the coherent condition. In this control experiment, visible co-
herent motion (200 ms) was followed by either a random sup-
pressed dot motion stimulus or the mask stimulus alone (250 ms;
participants also completed trials on which the order of coherent

Fig. 1. General experimental protocol. Left shows the stimulus presentation timeline as it was physically presented on the screen; Right illustrates a subject’s
perception of the presented stimuli. The blue-shaded region highlights the unconscious portion of the trial. The mask consisted of colored dots spinning
concentrically around the central fixation point at a rate of 1.67 revolutions per second. The dot motion stimulus consisted of a number of randomly moving
dots, with a fraction of the dots (10–60%) moving coherently in one of two directions. At stimulus offset, a tone was sounded to prompt participants to report
the direction of motion as quickly and accurately as possible. Participants had a response window of 1,000 ms in which to make their choice. After their
response, the fixation point changed color. Participants were then asked to indicate whether they saw any part of the dot motion stimulus during the first
one-half of the stimulus presentation (when it was presented concurrently with the mask stimulus; 1 = saw part/all of the stimulus; 2 = stimulus was com-
pletely suppressed for the entire duration).
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motion andmask was reversed). There were no significant differences
in accuracy between trials where the random dot motion stimulus
was present (M = 57.91%, SD = 5.99%) and absent [M = 58.1%,
SD = 6.54%; F(1,4) = 0.02, P = 0.89]. This finding suggests that
the higher accuracy in the coherent conditions illustrated in Figs.
2 and 3B cannot be attributed to the suppressed random motion
impeding performance by adding noise to the decision. Order of
presentation also had no effect on accuracy [F(1,4) = 0.085, P = 0.79],
indicating that the visibility of the unsuppressed motion was not
disrupted when preceded by the mask (as in Fig. 2 A and B).
We next wanted to see whether presenting suppressed motion

traveling in the opposite direction to the visible motion would
result in reduced accuracy compared with motion traveling in the
same direction throughout. In experiment 7, suppressed motion
was presented for 400 ms followed by visible motion presented
for 400 ms that was traveling in either the same or opposite di-
rection. The coherence level remained constant in both conditions.
We found that accuracy was significantly higher when the motion
was traveling coherently in the same direction than when it was
moving in the opposite direction during suppression [F(1,8) = 6.83,
P = 0.03] (Fig. 4A). This result suggests that information processed
outside of awareness can also have a negative impact on decision-

making performance. Here again, we included catch trials and
found that all participants missed these catch trials on less than 5%
of trials (M = 1.98, SD = 1.7).
Participants were also asked on each trial to indicate whether

they thought that the dot motion stimulus had been presented.
To establish participants’ abilities to accurately discriminate
whether the suppressed random motion had been presented, we
calculated their sensitivity (d′) (21). We found that, for both
order conditions, d′ was not significantly different from 0 (indi-
viduals ranged from −0.02 to 0.62), indicating that participants
were unable to distinguish trials in which the random motion was
present from trials in which it was not [unsuppressed first: t(4) = 1.46,
P = 0.22; mask first: t(4) = 1.63, P = 0.18]. This finding provides
additional objective evidence that the dot motion stimuli were
effectively suppressed during the mask presentation.
Sensory decision-making involves the gradual accumulation of

information over time, which leads to higher accuracy for longer
stimulus presentations (15, 22–24). In experiment 8, we manip-
ulated the duration of the suppression period to see whether the
benefits to accuracy observed in the coherent condition were
caused by a similar accumulation of evidence over time. Un-
conscious random or coherent motion was presented for 100–500 ms
followed by visible coherent motion (200 ms). We found that there
was a significant difference in accuracy between the coherent and
random conditions [F(1,7) = 12.77, P = 0.009] (Fig. 4B), and although
accuracy in the random condition remained constant across durations
[F(2,14) = 0.28, P = 0.76], accuracy in the coherent condition increased
with longer unconscious presentation times [F(2,14) = 3.91, P = 0.045].
Furthermore, the difference in accuracy between the coherent and
random conditions increased with longer durations [F(2,14) =
2.73, P = 0.02]. This finding suggests that more information was
accumulated during longer durations, although that information

Fig. 2. Information is accumulated in the absence of conscious awareness,
improving decision accuracy. (A) Experiment 1: mean percentage correct (± SEM)
is plotted for seven participants for the coherent (red) and random (green)
conditions, where the suppressed coherent/random motion (400 ms) was
followed by unsuppressed coherent motion (300 ms). Overall, accuracy was
lower in the random condition (M = 57.49, SD = 3.54) than in the coherent
condition (M = 60.78, SD = 4.12). (B) Experiment 2: mean percentage correct
(± SEM) is plotted for five participants, two of whom had also participated in
experiment 1. Here, suppressed coherent/random motion (300 ms) was fol-
lowed by visible coherent motion that remained on the screen until the
participants made a response. Again, accuracy was lower in the random
(green) condition (M = 63.36, SD = 5.81) than in the coherent (red) condition
(M = 69.14, SD = 5.67). (C) Experiment 3: mean percentage correct (± SEM) is
plotted for six participants, three of whom had also participated in experi-
ment 1. Here, the visible coherent motion (300 ms) preceded the suppressed
random/coherent motion. Overall, accuracy was lower in the random (green)
condition (M = 58.11, SD = 5.05) than in the coherent (red) condition (M = 63.56,
SD = 7.44). (D) Information flow diagram illustrating the effects of evidence ac-
cumulation in the absence of conscious awareness on decision accuracy. In this
example, the trial begins with the motion stimulus suppressed from conscious
awareness. During the suppression, the rate and variability of evidence accu-
mulation in the coherent (red) condition are reduced by a factor (K) with a mean
accumulation rate of Kvi and an SD of Ks. In the random (green) condition, the
accumulation rate is zero, with the same reduced variability (Ks). After the sup-
pression period, evidence is accumulated at the full rate (v) and variability (s) in
both conditions.

Table 1. Best-fitting parameters estimated for the simple
diffusion model for experiments 1–3

Experiment

Parameter

a Ter K β0 β1 STer

1 0.078 0.197 0.216 0.0043 0.00086 0.07
2 0.078 0.837 0.177 −0.0246 0.00399 —

3 0.170 0.130 0.957 −0.0008 0.00333 0.08

Note that we did not need to include variability in nondecision for
experiment 2.

Fig. 3. (A) Experiment 4: mean percentage correct (± SEM) is plotted for nine
participants, all of whom had participated in at least one of the previous
studies. Here, suppressed coherent motion was followed by unsuppressed
random motion. Overall, accuracy for three tested coherence levels was at
chance level (M = 50.68, SD = 1.3). (B) Experiment 5: mean percentage correct
(± SEM) is plotted for six participants, three of whom had participated in at
least one of the previous experiments. Here, the suppressed coherent/random
gray dot motion stimulus was followed by a visible coherent yellow dot
motion stimulus. Overall, accuracywas higher in the coherent condition (M= 70.65,
SD = 4.4) than in the random condition (M = 66.41, SD = 5.09).
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was outside conscious awareness. When we reversed the pre-
sentation order, we did not find the same pattern of improve-
ment with longer durations (experiment 9) (Fig. S2).
Previous studies have uncovered a close relationship between

decision confidence and accuracy (reviewed in ref. 25). For ex-
ample, Kiani and Shadlen (26) found that, for nonhuman pri-
mates, confidence, like accuracy, was directly proportional to the
quality and amount of evidence available in noisy visual displays.
In other words, conscious decisions are typically accompanied by
good metacognition. If unconscious decisional information alters
confidence, we would expect to find more consistent metacognition
in the coherent condition than in the random condition, because
the drift rate (and consequently, accuracy) is substantially higher in
the former (Fig. 2D). We tested this hypothesis in experiment 10,
where we presented visible coherent motion (250 ms) followed by
either suppressed coherent or random motion (250 ms). In addi-
tion to making their direction and visibility responses, participants
were asked to rate how confident they were on a scale from one to
four. Results indicated that, although accuracy was again higher in
the coherent than in the random condition [F(1,5) = 22.15, P = 0.005]
(Fig. S3), participants did not report feeling any more confident
(Fig. 4C). These data suggest that participants were unaware of
their better performance in the coherent condition.
Metacognition was assessed at the individual level for each

condition by calculating the difference between participants’

meta-d′ and d′ performance in accordance with the work by
Maniscalco and Lau (27) (SI Experimental Procedures). This
meta-d′ score ensures that metacognitive scores are not con-
founded by variation in objective or subjective decision criteria
and provides a measurement of metacognition that is in the same
units as the standard signal detection measure of d′, allowing us
to directly compare them. If meta-d′ = d′, it would indicate that
participants are rating their confidence using all of the available
sensory evidence. If meta-d′ < d′, it means that some of the
signal that was available for processing during the motion dis-
crimination task was lost for metacognition.
One participant was excluded from this analysis because he or

she did not use the full scale of confidence ratings. As shown in Fig.
4D, meta-d′ scores did not significantly differ between the coherent
(M = 0.65, SD = 0.22) and random (M = 0.65, SD = 0.25) con-
ditions [F(1,3) = 0, P = 0.99], whereas the difference score (meta-
d′ − d′) was significantly larger in the coherent condition (M = −0.65,
SD = 0.17) than in the random condition [M = −0.35, SD = 0.26;
F(1,3) = 24.02, P = 0.02]. This result indicates that metacognitive
sensitivity was greater in the random condition; more of the
available motion signal was used when making the confidence
rating in the random condition. Because the amount of visible
information was the same in both conditions, this finding sug-
gests that participants were not using all of the information ac-
cumulated outside of awareness for their confidence judgments.
This result poses a challenge to existing models of confidence
based on the diffusion model (28, 29). Furthermore, this lack of
metacognitive insight suggests that conscious awareness during
the accumulation process is necessary for the accurate evaluation
of one’s own state of knowledge.
In summary, our results provide evidence that we are able to

process and accumulate information in the absence of conscious
awareness and use it to improve or diminish decision accuracy.
The role of unconscious decisional information can be modeled
by existing evidence accumulation models, with the assumption
that unconscious information carries less decisional evidence than
conscious information. We show that this information can only be
accessed and used when it is integrated with consciously processed
decision-relevant information. We further present the intriguing
finding that we are not aware that we possess this information
or that it has affected our decisions. These findings contradict
previous research proposing the superiority of unattended in-
formation processing and decision-making (1–4), because we
show that the rate with which we are able to process information
unconsciously is limited compared with conscious deliberation.
Nevertheless, we show that information processed outside of
awareness can be effectively used to substantially increase (or
decrease) decision accuracy without us even realizing it.

Methods
Participants consisted of experienced psychophysical observers with normal
or corrected-to-normal vision. Informed written consent was obtained from
all participants, and all experiments were approved by the University of New
South Wales Human Research Ethics Advisory Panel.

Participantswere seated on a height-adjustable chair at a distance of 42 cm
from a 20-in SONYMultiscan G520 CRT monitor with a resolution 1,280 × 960
and a refresh rate of 75 Hz. Participants’ heads were stabilized by a chin and
headrest housing a mirror stereoscope apparatus adjusted for each observer
so that the stimuli presented to each eye overlapped to form visual rivalry.
This apparatus uses circular mirrors to display images separately to each eye,
which overlap one another to form a single image when viewed binocularly.
Stimuli were presented using Psychtoolbox, version 3 (30) for MATLAB on
a Macintosh MacPro machine running Mac OSX.

The motion stimuli used in this study were dynamic random dot motion
(RDM) displays commonly used in research in perceptual decision-making
(reviewed in ref. 12). The RDM consisted of 100 gray dots (10.1 cd/m2), each
a 1 × 1-pixel square, moving at a speed of 6.1° per second on a black
background. In each trial, the direction of motion was randomly chosen
from a pool of an equal number of leftward and rightward directions. Three
uncorrelated sequences of dot movement were generated, and frames were

Fig. 4. (A) Experiment 7: mean percentage correct (± SEM) is plotted for nine
participants, three of whom had participated in at least one of the previous
experiments. Here, the suppressed motion was traveling in either the same or
opposite direction of the subsequent visible motion. Overall, accuracy was
higher when the suppressed motion was traveling in the same direction
(M = 68.51, SD = 8.26) than when it was moving in the opposite direction
during the suppression (M = 63.15, SD = 9.87). (B) Experiment 8: accuracy
rates (± SEMs) from eight participants were averaged across coherence level
for the random (green) and coherent (red) conditions and plotted as
a function of suppression duration. Overall, accuracy was higher in the co-
herent condition (M = 67.73, SD = 1.61) than in the random condition (M = 61.83,
SD = 2.25). (C) Experiment 10: mean confidence ratings (± SEMs) are plotted for
five participants and averaged across six coherence ratings. Confidence was
reported on a scale of 1–4, where 4 = very confident and 1 = not at all confident.
There were no significant differences in confidence between the coherent
(M = 2.19, SD = 0.24) and random (M = 2.12, SD = 0.2) conditions [F(1,4) = 3.75,
P = 0.13]. (D) Experiment 10: mean d′ and meta-d′ scores (± SEMs) are shown
for the coherent and random conditions. Although there were no significant
differences in the meta-d′ scores between the coherent (M = 0.65, SD = 0.22)
and random (M = 0.65, SD = 0.25) conditions, d′ was significantly larger in the
coherent (M = 1.3, SD = 0.36) than in the random condition [M = 0.91, SD = 0.31;
F(1,3) = 12.65, P = 0.04].
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interleaved so that, for example, the positions of the dots in frame 4 were
correlated only with the dots in frames 1 and/or 7 and none of the other
frames. That is, each frame was correlated only with a frame that was either
three frames backward or forward and not the subsequent frame (24, 31).

Dots were displayed within an invisible 8.2°-diameter circular aperture
with a central 0.7°-diameter fixation point. Participants were instructed to
maintain fixation on this point throughout the experiments to facilitate
fusion. On average, dot density was 1.9 dots per degree2, and to conserve
dot density, any of the signal dots that moved along a trajectory that would
place them outside of the circular aperture were wrapped around to appear
from the opposite side, thus ensuring that motion energy was uniform
across the different levels of motion coherence.

In each trial, the motion strength (the fraction of the dots that moved
coherently in one of two possible directions) was randomly selected from
a pool of possible coherence values. The range of coherence levels was de-
termined during pilot testing and chosen to span the range of behavioral
ability. The direction of coherently moving dots was chosen randomly from
a pool of equal numbers of leftward and rightward directions on each trial.

The mask stimulus consisted of 250 green dots (59.5 cd/m2), each a 1 × 1
pixel. Dots were displayed within an invisible 9.8°-diameter circular aperture
around a central 0.7°-diameter fixation point, with an average dot density of
3.3 dots per degree2. The dots moved clockwise at a speed of 6.1° per second
in a circular motion path around the fixation point. For individual experi-
ment parameters see SI Experimental Procedures.

Modeling
The model that we fit to data was an adaptation of the standard Wiener
diffusion model (32). Evidence is assumed to accumulate noisily toward one
of two boundaries corresponding to the available responses (left and right
in our experiments). A response is triggered when the evidence reaches the

respective boundary, and response time is the time taken for the decision plus
nondecision time, which incorporates time to make a motor response and en-
code the stimulus (defined as a normal distribution with mean Ter and SD STer).
Evidence begins at the midpoint between the two boundaries (given values of
a and 0) and accumulates with a mean rate of v but normally distributed noise
(with an SD of s fixed at a value of 0.1).

We assumed that the coherence of the random dot motion would be
linearly related to the accumulation rate v in the model, and therefore, the
drift rate for the ith coherence condition was vi = β0 + β1Coh, where Coh is the
percentage coherence value. Furthermore, we assumed that, when stimuli
were presented outside of awareness, the rate and variability of evidence
accumulation would be reduced by a factor, K. As such, when the unconscious
stimulus was coherent, evidence accumulated with mean rate Kvi and SD Ks.
However, when the unconscious evidence was random, the lack of objective
evidence meant that the accumulation rate was zero, but the noise in the
process was still reduced to Ks.

We fit the model to the aggregate across participants of choice proba-
bilities and distribution of correct and incorrect response times (summarized
by the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles) by minimizing a χ2 statistic (33).
Model predictions were generated by simulation using the Euler method
(34). There were six free parameters in the model (a, Ter, β0, β1, STer, and K),
and they were estimated using differential evolution optimization (35).
Table 1 contains the parameter estimates of the model for each of the three
experiments.
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