Startle Responding and Context Conditioning
Naloxone® Pretreatment and Stimulus Intensity

JACQUELYN CRANNEY, PH.D.
Dartmouth College, Hanover, New Hampshire

Abstract—The possibility that acoustic startle stimuli could support a conditional response (freezing) to contextual stimuli was investigated. Rats were exposed to three acoustic startle stimuli on the first day, and one on the second day. On day 1, 20 rats received naloxone pretreatment and another 20 received saline (placebo) pretreatment. Half of each group received a high-intensity acoustic stimulus, the other half a low-intensity acoustic stimulus. Both the higher stimulus intensity and the naloxone pretreatment led to greater freezing behavior during the 3-minute test period before the single startle stimulus on day 2. These findings support the notion that increased actual or perceived intensity of the acoustic startle stimulus increases conditioning to contextual stimuli as indexed by freezing behavior.

Data that appear to contradict this notion have recently been reported in two separate areas of inquiry. First, Kelly and Leiner (1994), in investigating opioid and nonopioid stress analgesia, reported increased startle responsiveness after the administration of naloxone. Second, Borossz and colleagues (Borossz, Cranney, and Leiner 1984, 1985) reported findings that suggested that increased startle responsiveness and freezing behavior result from an association formed between the initially aversive startle stimulus and the contextual stimulus of the startle apparatus. These findings suggest that the acoustic startle stimulus has nociceptive properties and can support a conditional response, particularly freezing to contextual stimuli.

Given the numerous methodological differences among the numerous previous studies, it is not surprising that different conclusions were drawn. For example, the intensity of the auditory stimulus varied across the studies; Warren and Ison (1982) used a 110-db white noise stimulus, whereas Kelly and Leiner (1984) used a 120-db white noise stimulus. The lower intensity used by Warren and Ison (1982) may be related to the lack of influence of opioid manipulations. That is, the more intense stimulus, as employed by Kelly and Leiner (1984), may have nociceptive properties, and the presence of such properties may be a necessary condition for opioid manipulations to exert an influence. Accordingly, the current study varied the intensity of the acoustic startle stimulus, substituting the acoustic for the electrical stimulus in the experimental paradigm of Fenselew (1984, Painslew and Tighe 1984). The procedure had two phases that were carried out 24 hours apart.
On day 1, the training day, the rat was simply exposed to a few stimuli in the experimental apparatus in order to establish a freezing baseline. On day 2, the test day, the rat was returned to the experimental apparatus and given a single stimulus 3 minutes later. The percentage of time spent freezing during the 3-minute pre-stimulus period is an index of the amount of freezing conditioned to apparatus stimuli during the training day.

The opioid manipulation employed in the current study was pretreatment on day 1 with the opioid antagonist naloxone. If the acoustic startle stimulus has nociceptive properties, then naloxone will increase the perceived intensity and aversiveness of the stimulus (Fanselow 1984), and thus increase conditioning to contextual stimuli, as indexed by freezing behavior during the pre-stimulus period on day 2.

Methods

Subjects

Forty male albino Sprague-Dawley rats were used. None had undergone experiments before. The rats were 100 days old at the beginning of the experiment. They were individually housed, maintained on a 14:10 hour light/dark cycle, and allowed free access to food and water. All experimental procedures were carried out during the lighted portion of the cycle. Rats were handled for at least 20 seconds twice a day for 5 days before the experiment began.

Apparatus and Stimuli

The apparatus has been described previously (Leston 1976). Briefly, animals were tested in a 20 x 12 x 12-cm startle chamber enclosed within a dimly illuminated, sound-attenuating box, with an observation window in the front wall. Vertical displacement of the chamber moved an attached magnet within a fixed coil and induced a voltage that was amplified and integrated (Model 7901, Grins). The integrated output was adjusted to reset to baseline each second. Stimulus presentations were locked to the reset. The integrated output was digitized and stored to a Digital microcomputer, where the raw integrated values were transformed so that the range corresponded to the digital conversion limits (0-255 A-D [analog to digital] units). Startle response amplitude was measured during the 200-msec period after the startle stimulus onset. Before each rat was placed in the experimental apparatus, the chamber was cleaned with a solution of ammonium hydroxide and tap water.

The startle-eliciting stimulus was a 100-msec burst of white noise with a 10-msec rise/fall time, and with an intensity of either 100 or 130 dB SPL (re. 20 micron Pa). It was delivered through a 9-cm piezo-electric tweeter (5-8644, Herald Electronic), centered 12 cm from the long wall of the startle chamber. Continuous white noise (70 dB SPL, re. 20 micron Pa) masked extraneous auditory stimuli. All test stimuli were superimposed on this background of white noise. Stimulus and background intensity were measured with a General Radio sound level meter (Type 1531-C, 20-KHz setting), and a General Radio impact noise analyzer (Type 1556-B), with the microphone placed in a standard position within the chamber.

Procedure

Rats were first matched by weight, and then randomly assigned to one of four cells formed by a 2 x 2 factorial design: intensity (high, low) x pretreatment (saline, naloxone). On day 1, the naloxone groups were injected intraperitoneally with naloxone hydrochloride dissolved in isotonic saline, at a concentration of 4 mg/ml/kg. The saline groups were injected with an equivalent volume of the saline vehicle. One minute after injection, each rat was placed in the test chamber, and 4 minutes after injection received three acoustic startle stimuli spaced 54 seconds apart. The rat was removed 1 minute after the third stimulus. On the second day, each rat was placed in the chamber, and 3 minutes later received a single acoustic startle stimulus. The intensity of the stimulus was the same as that given on day 1. The session ended 5 minutes after the startle stimulus.

For both sessions, while the rat was in the chamber, its behavior was observed according to a time-sampling procedure: every 2 seconds the rat's behavior was scored as either freezing or activity. Freezing was defined as the absence of all visible movement of the body and vibrissa except for movement necessary to respiration (Fanselow 1984). Interrater agreement on a random sample of animals was 99%, a level comparable to that reported by Fanselow (1984). The observer was always ignorant of the drug administered to the rat. The percentage of samples scored as freezing during the pre- and post-stimulus periods on each day was calculated.

Results

During the pre-stimulus period on day 1, only one rat, in the low-intensity, saline group, showed any freezing behavior (4.0%). Figure 1 shows the mean percent freezing scores for the post-stimulus period on day 1, and for both the pre- and
Results indicate that freezing behavior during the critical poststimulus test period on day 2 was facilitated by stimulus intensity and by the naloxone pretreatment. These findings support the notion that increased intensity of the acoustic stimulus increases its nociceptive properties and thus increases conditioning to contextual stimuli during day 1 as indexed by freezing behavior. That naloxone pretreatment also increased freezing behavior supports Pandey's (1979, 1984) argument that naloxone increases the perceived intensity and aversiveness of stimuli.

In this experiment, the effects of the higher physical intensity and of the naloxone pretreatment were both evident during the 3-minute poststimulus test period on day 2. Since the animals had not yet received further nociceptive stimulus presentations or drug treatment, the differential freezing behavior during the test period can be attributed to the different treatments during the training phase on day 1. In subsequent research, it was found that naloxone pretreatment without startle stimuli on day 1 does not lead to freezing during the poststimulus period on day 2. During the training phase, the contextual stimuli...
became associated with the acoustic stimulus. This association between contextual and acoustic stimuli was manifested in freezing behavior on day 2, and the amount of freezing indexed the strength of the association formed. Within this framework, it could be argued that a stronger association was formed between contextual and startle stimuli when the acoustic pre stimulus was of a greater actual or perceived intensity. The lack of a naloxone pretreatment effect in that day 1 and 2 poststimulus periods can be explained in terms of the stronger short-term effects of the immediately preceding startle stimuli presentation. These short-term effects are reflected in the greater overall freezing levels during the poststimulus periods.

There was substantial variability in freezing behavior among animals in each group, as reflected by the large standard errors (see Figure 1). A similar phenomenon is evident with weak levels of electrical shock (M. S. Fanselow, personal communication, June 1984), and it is possible that the phenomenon reflects individual differences in auditory and pain sensitivity. Future research could investigate this possibility by independently assessing auditory and pain thresholds.

The amplitude of the startle response was facilitated by the increased stimulus intensity, corroborating previous research (e.g., Hoffman and Ison 1989). The startle response was not facilitated by naloxone pretreatment. Given the previous contradictory reports of decreased activity (Fanselow 1984) and increased activity (Kelf and Leitner 1984), it is possible that naloxone does not have a systematic effect on startle response. That naloxone clearly affects freezing, but not startle, suggests that at some level there is a divergence in the processes underlying the two responses. This notion is supported by the relatively low correlation, r = 0.30, P = 0.06, between the pre stimulus day 2 freezing scores and their associated startle response amplitudes. It should be noted that this low correlation contrasts with the high correlation reported by Leaton and Borzutz. (1985). There are three possible reasons for this discrepancy. First, Leaton and Borzutz did not use any naloxone manipulations. Second, the short, 10-second sample used by Leaton and Borzutz (1985) should bear a closer relationship to subsequent startle responding than the long, 3-minute sample employed here, since there would be more varied activity in the longer sample. Third, the level of freezing in the current study was relatively low, so the range for correlation was not as great as in the Leaton and Borzutz (1984) study.

Conclusion

Overall, the results of this study suggest that acoustic startle stimuli can support conditional responding, but that this process depends on the relative properties of the acoustic startle stimuli, which are determined to a large degree by the actual and perceived intensity of the stimulus. Future research needs to further explore the nature and boundaries of this phenomenon. Again, from varying the parameters of stimuli presentation, investigation of the opiate system underly- ing the naloxone effect and how it relates to the same phenomenon with shock (Fanselow 1984) and pain- induced analgesia effects (Kelly and Leitner 1984, Leitner and Kelly 1984) would appear to be a particularly interesting area of study.

Acknowledgments

I thank R. M. Leaton for the use of his laboratory facilities and E. Leiter for instruction on the freezing observation technique. I am also grateful to R. S. Ashmore, M. S. Fanselow, and D. B. Leitner for valuable criticism of an earlier draft of the manuscript. Naloxone was the generous gift of Etho Laboratories to M. S. Fanselow.

<table>
<thead>
<tr>
<th>Group</th>
<th>Day 1</th>
<th>Day 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>High intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naltrexone</td>
<td>76.1 (10.3)</td>
<td>71.8 (15.8)</td>
</tr>
<tr>
<td>Saline</td>
<td>76.4 (10.4)</td>
<td>76.6 (22.5)</td>
</tr>
<tr>
<td>Low intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naltrexone</td>
<td>35.1 (24.4)</td>
<td>34.2 (23.9)</td>
</tr>
<tr>
<td>Saline</td>
<td>34.4 (23.7)</td>
<td>42.5 (38.5)</td>
</tr>
</tbody>
</table>

Note: Standard deviations are in parentheses.
References

