Social factors play an important role in a range of health-behaviors, such as smoking and alcohol consumption (Donovan, 2004; Tyas & Pederson, 1998). One domain in which social factors have been shown to have a particularly strong influence is eating behavior (Herman, Roth, & Polivy, 2003). Excess food intake is a key contributor to weight gain and obesity, and some researchers have suggested that social norms related to food intake can account for the spread of obesity in social networks (Christakis & Fowler, 2007). There is substantial evidence indicating that people tend to conform to the eating behavior of their eating companion(s), eating more when the companion eats a relatively large amount and eating less when the companion eats a relatively small amount (Cruwys, Bevelander, & Hermans, 2015; Herman et al., 2003). A recent meta-analysis (Vartanian, Spanos, Herman, & Polivy, 2015) found a large overall modeling effect \((r = .39) \), and further showed that social models have a stronger inhibiting effect \((i.e., \text{people eat less when eating with a companion who eats a relatively small amount}) \) than an augmenting effect \((i.e., \text{people do not necessarily eat more when eating with a companion who eats a relatively large amount}) \). It appears that social models set an upper limit for how much is appropriate to eat.

The robustness of the modeling effect is further demonstrated by two findings from the literature. First, the modeling effect is just as powerful when participants are simply informed about the behavior of previous participants in the study \((\text{the so-called remote-confederate design}) \) as when the model is physically present \((\text{Feeney, Polivy, Pliner, & Sullivan, 2011}) \). Second, social cues can override other cues that might be expected to influence food intake, such as how hungry the person is. For example, Goldman, Herman, and Polivy (1991) had participants refrain from eating for up to 24 hr before their experimental session and found the same strong modeling effect among participants who were food deprived and those who were not food deprived. These results speak to the power of social influences on food intake.

An intriguing finding from the literature is that, although the effects of social models on food intake have been well-documented, people typically fail to acknowledge the influence of such external cues on their behavior. Instead, participants tend to explain their food intake in terms of internal cues such as how hungry they are, sensory cues such as how good the food tastes, or...
factors such as the cost or healthiness of the food (Croker, Whittaker, Cooke, & Wardle, 2009; Vartanian, Herman, & Wansink, 2008; Vartanian, Sokol, Herman, & Polivy, 2013). A similar reluctance to acknowledge social influences on behavior has been observed in other domains as well (e.g., energy conservation; Nolan, Schultz, Cialdini, Goldstein, & Griskevicius, 2008). Subsequent research suggests that the failure to acknowledge social influences on food intake might reflect a motivated denial rather than a lack of awareness (Spanos, Vartanian, Herman, & Polivy, 2014, 2015).

To provide further insights into the potential motivated nature of food intake attributions, the present study examined whether the tendency to explain one’s food intake in terms of internal cues rather than external cues would be apparent when those cues are in conflict with one another and the internal cue is no longer the most logical explanation for one’s food intake. Female participants were either 18-hr food deprived or were given a meal-replacement preload before taking part in a taste test. Deprived participants were exposed to either a low-intake norm (cue conflict, in that deprivation should promote eating whereas the low-intake norm ought to suppress eating) or no norm (control condition); preloaded participants were exposed to a high-intake norm (cue conflict, with the preload expected to suppress intake and the high-intake norm expected to increase intake) or no norm (control condition). This study included only women because past research suggests that modeling effects are particularly strong among women, the only other study to examine modeling after a period of deprivation included only women (Goldman et al., 1991), and most of the research on attributions for food intake has been conducted with women. We predicted that food-deprived participants would eat less when exposed to a low-intake norm than when no norm was present, and that preloaded participants would eat more when exposed to a high-intake norm than when no norm was present. With respect to participants’ explanations for their food intake, our hypotheses were more exploratory: It may be that people are willing to acknowledge external influences when their typical explanation (i.e., their hunger level) is no longer viable. However, it is also possible that people are so reluctant to acknowledge external influences that they continue to deny them despite clear evidence of external influence. The present study will disentangle these two possibilities.

Method

Participants

Participants were 104 women recruited from an undergraduate psychology course or from the community. Previous research on modeling of food intake has found large effects (Vartanian et al., 2015), as has research examining internal versus external attributions for food intake (e.g., Vartanian et al., 2013). A power calculation based on anticipated large effects indicated that we would need a sample size of 52 participants. However, given the novelty of the research questions being examined, we elected to double that sample size. Participants’ mean age was 20.43 years ($SD = 3.31$), and their mean body mass index (BMI, kg/m2) was 22.87 ($SD = 3.47$). Regarding ethnicity, 47 identified as White, 45 identified as Asian (22 were Australian-born), and 12 identified with other ethnicities. This study was approved by the university’s ethics committee.

Materials and Procedure

Participants signed up for a study on “hunger and taste perception” with sessions scheduled to begin between 11 a.m. and 3 p.m. When participants signed up for the study, they were informed that they would need to refrain from eating for at least 18 hr before their experimental session, and they were also emailed a reminder notice the day before their session with the specific time past which they should not eat. The mean number of hours deprived was 17.97 ($SD = 1.78$), and all participants had refrained from eating for at least 12 hr before their session. Upon arrival, participants provided informed consent, reported when they last ate, and rated their current hunger on a 10-cm visual analogue scale anchored by Not at all hungry and Extremely hungry. Participants were then randomly assigned to one of the two deprivation conditions (preloaded or deprived) and to one of the two norm conditions (cue conflict vs. no-cue control). Participants were distributed across conditions as follows: preload/cue conflict, $n = 23$; preload/no-cue control, $n = 29$; deprived/cue conflict, $n = 25$; deprived/noncue control, $n = 27$.

Participants in the preload condition were given a drink consisting of 400 ml of water and 160 g of vanilla Ensure powder (700 kcal; 26 g protein, 23 g fat, 93 g carbohydrate) that was described as a “nutritionally balanced meal replacement drink.” They were asked to consume the entire drink. Participants in the deprived condition did not consume anything. Next, all participants watched a 15-min nature documentary, answered a few questions about that documentary, and rated their hunger again on a 10-cm visual analogue scale before proceeding to the taste test.

Norm information was conveyed using a remote-confederate manipulation. Participants in the cue-conflict conditions were exposed to bogus information about the food intake of 10 previous participants via a sheet of paper that was left on the table where participants were completing the taste test. For deprived participants, the remote-confederate sheet indicated that previous participants had eaten an average of four bite-size pieces of pizza; for participants in the preload condition, the remote-confederate sheet indicated that previous participants had eaten an average of 14 bite-sized pieces of pizza. These values were chosen because participants in a previous study using the same food ate an average of approximately nine bite-sized pieces of pizza (Spanos, Kenda, & Vartanian, 2015). Participants were told that the researchers had been asking previous participants to write down how much they ate so that the researchers would know how much food to order, but that the food had now all been ordered so there was no longer a need for participants to add their name to the list. Participants in the control conditions were not exposed to these lists. All participants were then given a plate with 30 bite-sized pieces of pizza, which they were asked to taste and rate on a variety of dimensions (e.g., how salty, how crunchy, and how fresh). Participants were given 12 min to complete the taste test.

After completing the taste test, participants completed a “reasons for eating” survey. Participants were asked to indicate the extent to which 19 separate factors influenced how much they ate during the taste test. The only two factors of interest in the present study were “How much other people in the study ate” and “How
hungry I was.” The rest of the items were filler items included to mask our interest in those two key factors. All items were rated on a 9-point scale ranging from −4 (made me eat less than I normally do) to 4 (made me eat more than I normally do), with 0 (did not influence me) as the midpoint. After completing all of the measures, participants completed a suspicion probe (no participants guessed the true purpose of the experiment), and were then debriefed.

Results

Preliminary Analyses

There were no differences across conditions in age, BMI, or ethnicity, ps > .19. There were also no group differences in hunger ratings at the beginning of the experiment (M_deprived = 6.98 vs. M_preload = 6.71; F = 0.58, p = .45, ηp² = .01). Before completing the taste test, however, the deprived group had significantly higher hunger ratings (M = 6.77, SD = 2.36) than did the preload group (M = 3.72, SD = 2.56; F = 39.68, p < .001, ηp² = .28), indicating that our manipulation was successful. With respect to the norm manipulation, participants exposed to the low-intake norm provided a lower estimate of previous participants’ intake (M = 5.50, SD = 2.64) than did participants exposed to the high-intake norm (M = 10.85, SD = 3.44; F = 36.93, p < .001, ηp² = .45).

Food Intake

A 2 (deprivation condition: deprived vs. preloaded) × 2 (norm condition: conflicting norm vs. no norm) analysis of variance (ANOVA) was used to examine group differences in food intake. There were significant main effects of deprivation condition (F(1, 100) = 15.21, p < .001, ηp² = .13) and of norm condition (F(1, 100) = 4.38, p = .04, ηp² = .04), which were qualified by a significant Deprivation × Norm interaction (F(1, 100) = 14.89, p < .001, ηp² = .13). Simple effects analyses revealed that participants in the deprived condition ate significantly fewer pizza pieces when exposed to a low-intake norm than when no norm was present, p < .001, ηp² = .15. In contrast, for preloaded participants, there was no significant difference between those who were exposed to a high-intake norm and those in the no-norm control condition, p = .22, ηp² = .02 (see Figure 1).

![Figure 1. Mean number of pizza pieces consumed by condition. Error bars represent SEs.](image)

Attributions for Food Intake

Separate mixed-model ANOVAs were conducted for participants in the deprivation and preload conditions, with norm condition as the between-subjects factor and attribution type as the within-subjects factor. In the deprivation condition, there was only a main effect of attribution type, F(1, 49) = 74.89, p < .001, ηp² = .60. Across both norm conditions, participants rated their hunger level as a stronger influence on their food intake (M = 2.39, SD = 1.71) than they rated the behavior of other people in the study (M = −0.18, SD = 1.76). Follow-up one-sample t tests indicated that, regardless of their norm condition, deprived participants rated hunger significantly above the midpoint of the scale (ps < .001), whereas ratings for the influence of other people’s behavior did not differ from the neutral (“no influence”) midpoint (ps > .32).

For the preload group, there was only a significant Modeling Condition × Attribution Interaction, F(1, 50) = 9.17, p = .004, ηp² = .16. Simple effects analyses indicated that, in the high-intake norm condition, participants rated the behavior of others (M = 1.17, SD = 1.44) as a stronger influence on their food intake than they rated hunger (M = −0.17, SD = 2.46), p = .02, ηp² = .10. In the no-norm condition, the difference between ratings of the influence of other people’s behavior (M = −0.03, SD = 1.01) and hunger (M = 0.90, SD = 2.41) was not significant (p = .07, ηp² = .07). Follow-up analyses indicated that ratings for hunger were not different from the midpoint of the scale for either of the preloaded groups (ps > .05). Ratings for other people’s behavior were not different from the midpoint of the scale for the high-intake norm group (p = .86), but were significantly above of the midpoint of the scale for the high-intake norm group (p = .001).

Discussion

This study examined the effect of conflicting eating cues on participants’ food intake and on their explanations for why they ate as much or as little as they did. Participants who had been food deprived for 18 hr ate less when exposed to a low-intake norm than when no norm was present. In fact, the food intake of deprived participants in the low-norm condition was very similar to that of participants who had just consumed a preload. These findings extend the earlier research by Goldman et al. (1991) by demonstrating inhibited food intake among hungry participants exposed to low-intake confederates using a remote-confederate design. These remote-confederate findings suggest that it is the norm itself, rather than concerns with how one might be judged by a co-eater, which is driving food intake. Participants who had filled up on a meal-replacement drink before the taste test ate slightly more when exposed to a high-intake norm than when no norm was present, but this difference was not statistically significant. These findings are consistent with the results of a recent meta-analysis indicating that social models have a more powerful inhibitory effect than augmenting effect on people’s food intake (Vartanian et al., 2015).

In terms of their explanations for their food intake, participants who were food deprived, whether or not they were exposed to the remote confederate, indicated that their hunger made them eat more than they normally would. They also indicated that how much other people ate had no influence on their own food intake, despite the fact that those exposed to the low-intake confederates ate approximately 37% less food than did those in the no-norm
condition. This failure to acknowledge the influence of external cues is consistent with past research (Vartanian et al., 2008, 2013), and further demonstrates how strongly people rely on internal eating cues (and deny external eating cues) to explain their food intake.

The pattern of attributions was different for participants in the preload conditions. Most notably, those who were exposed to the high-intake norm indicated that they ate more than they normally would have because of how much other people in the study ate, despite the fact that these participants did not actually eat significantly more than did participants in the no-norm condition. One explanation for this finding is that people might use external eating cues to justify their food intake when they believe that they may have eaten more than they should have. Spanos et al. (2014, 2015) have previously argued that people might be motivated to deny social influences on their food intake. It may also be the case, however, that under some circumstances people are motivated to acknowledge social influences (even if inaccurately). The suggestion that attributions for one’s food intake might be motivated parallels the notion of a self-serving bias in attributions for behavior in general. People tend to explain their successes and failures in a way that reflects well on them (Zuckerman, 1979). Similar processes might be at play with regards to people’s food intake such that the attributions they make might have implications for their self-esteem. In the present study, perhaps people who feared that they may have eaten too much seized upon hunger (as induced by the hunger manipulation) or the example of others (in the preload high-norm condition) as self-serving explanations for their behavior. The role of self-justification should be addressed more directly in future research, for example by measuring or manipulating the extent to which participants believe they have overeaten.

There are a number of limitations to the present study that should be noted. First, we had a fairly small sample, and it is possible that our study was underpowered to detect some effects (e.g., the increased food intake in the preload/high-norm condition). Second, our study included only female participants. There is some evidence that the modeling effect is weaker for men than in others (e.g., individuals with eating disorders or obesity), and what the practical significance is of these attributional errors (e.g., for understanding the development, maintenance, and treatment of diet-related problems).

References

Members of Underrepresented Groups:
Reviewers for Journal Manuscripts Wanted

If you are interested in reviewing manuscripts for APA journals, the APA Publications and Communications Board would like to invite your participation. Manuscript reviewers are vital to the publications process. As a reviewer, you would gain valuable experience in publishing. The P&C Board is particularly interested in encouraging members of underrepresented groups to participate more in this process.

If you are interested in reviewing manuscripts, please write APA Journals at Reviewers@apa.org.

Please note the following important points:

- To be selected as a reviewer, you must have published articles in peer-reviewed journals. The experience of publishing provides a reviewer with the basis for preparing a thorough, objective review.
- To be selected, it is critical to be a regular reader of the five to six empirical journals that are most central to the area or journal for which you would like to review. Current knowledge of recently published research provides a reviewer with the knowledge base to evaluate a new submission within the context of existing research.
- To select the appropriate reviewers for each manuscript, the editor needs detailed information. Please include with your letter your vita. In the letter, please identify which APA journal(s) you are interested in, and describe your area of expertise. Be as specific as possible. For example, “social psychology” is not sufficient—you would need to specify “social cognition” or “attitude change” as well.
- Reviewing a manuscript takes time (1–4 hours per manuscript reviewed). If you are selected to review a manuscript, be prepared to invest the necessary time to evaluate the manuscript thoroughly.

APA now has an online video course that provides guidance in reviewing manuscripts. To learn more about the course and to access the video, visit http://www.apa.org/pubs/authors/review-manuscript-ce-video.aspx.