Lexical Storage and Retrieval of Prefixed Words

Marcus Taft and Kenneth I. Forster

Monash University

Abstract

Three experiments are described which support the hypothesis that in a lexical decision task, prefixed words are analyzed into their constituent morphemes before lexical access occurs. The results show that nonwords that are stems of prefixed words (e.g., juvenute) take longer to classify than nonwords which are not stems (e.g., pertoire), suggesting that the nonword stem is directly represented in the lexicon. Further, words which can occur both as a free and as a bound morpheme (e.g., vent) take longer to classify when the bound form is more frequent than the free form. Finally, prefixed nonwords took longer to classify when they contained a real stem (e.g., dejivenate), compared with control items which did not (e.g., depertoire). A general model of word recognition is presented which incorporates the process of morphological decomposition.

In order to recognize that a visually presented sequence of letters forms a word, some kind of representation of the sensory input must be matched with an internal lexical representation of the word. One of the key issues in the study of this process of lexical access concerns the form in which the sensory signal is represented and the possible recodings that might be carried out in order for accessing to take place. For example, there has been considerable debate as to whether word recognition is based on features of the whole word or on individual features of components of the word (e.g., Smith, 1971; Wheeler, 1970). Interest has also been focused on the possibility that the orthographic stimulus is converted into phonological form prior to accessing (Rubenstein, Lewis, \& Rubenstein, 1971; Baron, 1973; Forster \& Chambers, 1973; Meyer, Schvaneveldt, \& Ruddy, 1974).
The type of recoding which will be of prime consideration here is the possible morphological decomposition of an item. For example, the word linlucky is clearly composed

Requests for reprints should be addressed to M. F.it: Department of Psychology, Monash University, (ä...ston, betoria, Australia 3168.
of the base word luck, the adjectival suffix $-y$, and the negative prefix um-. It is possible that the internal lexicon is organized so that unlicky is stored in conjunction with luck (along with lucky, luckily, luckless, and so on), and more particularly, that there is no separate lexical entry for the word unlucky, this word being constructed from the entry luck by the addition of the affixes $u n$ - and $-y$. Such a method of storing information entails that recognition of the word unlucky requires a prior morphological analysis of the word, that is, the prefix $i m$ - and the suffix $-y$ must be stripped off before the lexical representation of unlucky (namely luck) can be accessed. Similarly, it would seem logical and economical for the word cats to be tiled in the lexicon as cat, and thus be recognized as a word only atter the $-s$ has been stripped off. The results obtained by Kintsch (1972), Gibson and Guinet (1971), Snodgrass and Jarvella (1972), and Murrell and Morton (1974) are consistent with the notion that affixed words, or at least sulfixed words, are stored in their base form in the lexicon. Such an economy is quite plausible, and is, in fact, employed in information retrieval systems (Knulh. 1973).

However, the notion of morphological decomposition is no longer so appealing when one is confronted with more extreme cases. For example, it would have to be argued that the word unremittingly is stored as the entry mit even though mit does not form a word on its own. If this were so then in order to access the word unremittingly one would have to strip off its affixes un-, re-, -ing, and -ly and then search the lexicon for the entry mit. On finding it, one can then ascertain from information stored in this entry whether un + $r e+m i t+i n g+l y$ is a valid combination or not (this information would be similar to the output of the filter system described by Halle, 1973). Note that the same lexical entry, namely, mit, would have to be accessed also for the purposes of recognizing submit, commit, admit, permit, emit, transmit, and possibly, omit (but not limit, summit, and mitten, since these are not composed of stem plus affix).
Although it may seem quite counter intuitive to claim that nonwords can be given lexical status, it seems very difficult to make a clear distinction between recognizing a word which is obviously composed of a base word plus one or more affixes (e.g., unlucky, reorganize) and a word composed of a nonword stem plus one or more affixes (e.g., unremittingly, rejuvenate). That is, it would be difficult to design the system so that morphological decomposition was applied in the cases that clearly involve a real-word stem, but was prevented from applying in the cases that do not involve a real word as a stem.
The following experiments were designed to determine whether the concept of morphological decomposition, elaborated to its fullest, must be incorporated into models of word recognition.

Experiment I

If the nonword stems of derived words (e.g. juvenate) are stored in the lexicon, then the prediction can be made that such a stem will be more difficult to recognize as a nonword
than will a nonword that is not stored in the lexicon, that is, that is not the stem of a derived word (e.g., livenate).

In cases like livenate, the item would be recognized as a nonword after a search in the appropriate subset of the lexicon was found to be unsuccessful (Rubenstein, Garfield, \& Millikan, 1970). But in cases like juvenate a lexical representation of the nonword would be found. However, there would have to be information in this lexical entry which stipulated that the item could not stand as a free morpheme, that is, was not a word on its own. Search would then have to continue on, in case there was an entry for this item which was a free morpheme, since this is a possibility. For example, if a reader has to recognize the item vent as a word, he might firstly find the nonword entry vent, which has been stored for the purposes of accessing prevent, invent, and so on, and thus could only identify vent as a word after further search discovered the free morpheme entry.
Therefore, on a task where subjects must decide whether the presented item is a word or not, that is, a lexical decision task, a nonword that is the stem of a derived word should take longer to respond to than a nonword that is not the stem of a derived word. This longer latency of response would result from the interruption of the search caused by finding an inappropriate lexical entry.

However, if items such as jurenate are found to take longer to recognize than items such as luvenate an explanation could be given without resort to morphological decomposition. It could merely be said that juvenate is more similar to a word than is lutenatc. In order to avoid this problem, items such as pertoire were used in the following experiments in preference to items of the lucenate type. Both juvenate and pertoire form a complete word when the letter cluster $r e$ is added (i.e. rejuvenate and repertoire, respectively). In the former case, though, the cluster re forms a real prefix which contributes meaning to the word as a whole, and thus
tions. There were 15 practice trials. -!puoл ләло К К

 -uou pruoluppe oz pue 'surzs opnasd oz

 are given in the appendix. A total of 120 items
 quency according to the Kučera-Francis -әл и! әq!ssod se ле!!u!̣s se әлам рәлеләиәз

poyraw as nonwords than pseudo stems. that real stems should take longer to classify a pseudo stem (e.g., pertoire). Thus, the
hypothesis being tested in this experiment is
 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 real prefix from a word will be termed a real A nonword formed by the removal of иечи Јәчıел ал!

 q-

 significant ${ }^{1}, \min F^{\prime}(1,29)=4.44, p<.05$. than pseudo stems, this difference being predicted, real stems took longer to classify shown in Table 1. It can be seen that as The mean decision times together with
percentage error rates for each condition are made were omitted. to the cutoff. Trials on which an error was
 tion units away from the mean for each establishing cutoff points two standard devialong or short latencies were minimized by In this and in all subsequent experiments,
the effects of isolated trials with exceptionally In this and in all subsequent experiments, uolssnos!a pup slusวy subjects, and were paid for their participation. graduate and graduate stude errors. respond as quickly as possible, but to avoid
 response to be made was measured by a press a NO button. The time taken for this item was a valid English word, otherwise to each trial served as a warning signal. Subjects mately 4 sec . The starting of the projector on 500 msec with an intertrial interval of approxi-

 Procedure. Stimulus items were typed and
filmed on 16 mm movie film which was stems.

 juvenate. This problem will be taken up later, meanings of overwhelm, unwieldy, and re-

 by the prefix. For example, it might be sug

 on the grounds that in the words from which рәу!ssएן К К Коал.
 was unusually high. since the error rate of 17% in this condition
 the stem can stand alone. Evidently this tents of the lexical entry to determine whether represents the time taken to check the conlined earlier, it would be assumed that the morphological decomposition model out-
lined earlier, it would be assumed that the represented in the lexicon. In terms of the stems of real prefixed words are directly fact without assuming that in some way, the and it seems very difficult to account for this as being more word-like than pseudo stems, condition. The results of this experiment
indicate clearly that real stems are perceived with more errors being made in the real stem

$\begin{aligned} & 0 \downarrow t \\ & 0, ~ \end{aligned}$	$\begin{aligned} & \angle Z L \\ & 69 L \end{aligned}$	swars 2 opnes $_{d}$ suəps fery
(\%)	(כasu)	
10.193	L4	

 Rubenstein, Lewis \& Rubenstein, 1971

 јо әио \mathfrak{y}

 word, the nonword entry tent t_{2} may be enlexical search undertaken to classify vent as a cate recognition of the word went since, in
 -(доиира

 (bound morphemes). For example, while but also are stems which cannot stand alone

 represented in the lexicon then a further conIf it is true that stems of derived words are II INまwitgaxa taneously). generality over both subjects and items simul-
 tion, making it more difficult to detect any

 s！！

 due to uncertainty as to whether the real

 Experiment III rence． that lexical entries are examined in serial
order from high to low frequency of occur－
 sәn8ля ио！！！ in any other way．Secondly，the fact that no would be very difficult to explain the results words are stored as lexical items，since it
 interference occurs in the B / F condition adds theoretical assumptions：Firstly，the fact that These results confirm two quite independent

	RT (msec)	Error $(\%)$
B／F Words	637	2.5
F Words	605	4.3
F／B Words	604	4.3
F Words	612	3.9

Mean Lexical Decision Times and Percentace Error Rates for B／F，F， F／B Words（Experiment II）

 to classify as words than items having only a The prediction，then，is that items where the
bound form is more frequent than the free card $_{2}$ will never be encountered opportunity for interference to occur，since

 conditions no differences at all between any of the

 v แ！paŋuasad адам（x！puaddr ay u！pas！！）

 yıoq of pappe әaวм saxyjad əı！udorddeu （I јuau！nadxa u！pasn sp aues әч！aдам
 әuкs әч real stems（e．g．，jwenate）and pseudo stems same as for Experiment II．Twenty pairs of

Method

 stem conditions were derived are totallydifferent from those used earlier． which the items in the real stem and pseudo a totally new set of items．Thus the words from first experiment，it was felt desirable to employ
 step of checking the legitimacy of the prefix，
and hence should take longer to classify． real stem nonwords still involve an extra
step of checking the legitimacy of the prefix，

 also removed，and a search begun for pertoire． condition（e．g．，depertoire），the prefix de－is like repertoire．However，in the pseudo stem case dejuvenate is listed as a complete word， it is not，there must be an additional search in is a legitimate prefix．When it is found that the entry are examined to see whether de－
 removed，and a search is begin for the entry

 јо Su！ppe әч7＇s！sәчюоdКч uo！t！soduoәәр
 diswhelm is a proper word．

comes from the additional cycle 5 ， 4 ．In
Experiment II，B／F words（eemt）involved the The increased time required for real stems

 an explanation of the results are shown in

noissnosid twainad
18.7% in Experiment III）． two experiments（ 17.0% in Experiment I，

 を ョาษャเ $\min F^{\prime}(1,36)=6.80, p<.02$ ．

 S! וע,

 lexical entry is found, as would be the case ou J! pur wim wiaza of mo poune s! puom Firstly, it is possible that a search for the whole 'әшәчр ןеләиәя әч, ио suopuenve juәsard
 There are several alternative models which
should be mentioned. These all assume morclassify. involved the sequence $1,2,4,7$, and hence the
real stem nonwords again took longer to

of the model cannot be distinguished from
On the present evidence, this reformulation will share none the test with a lexical entry, but depertoire tural elements with a lexical entr a lexical entry, white pertoire shares no strue jubenate, then, shares a structural element with
 example, rejuenate might be stored as a bilities that should be considered. For test item are discarded temporarily while the second, by assuming that any prefixes on the but repertoire is not stored as pertoire; and that rejuvenate is actually stored as juvenate, similar than depertoire and reperroire. Thing and why dejuvenate and rejuvenate are more to each other than pertoire and repertoire, why juvenate and rejuvenate are more similar in this paper, essentially one must explain explain the results of the experiments reported which prefixed words are stored. In order to

A third possibility concerns the form in this parallel model as opposed to the serial from the evidence at hand as to the validity of to a "no" response. No judgment can be made "no" decision at step 2 would lead directly decomposition; steps $1,2,3$ are undertaken conducted in parallel with morphological model is that the search for the whole word is (per similar result was obtained by R. H. Freeman ate) and nonprefixed words (somersault). A recognition times of prefixed words (rejuvencomposition. Secondly, Taft, Forster, and
Garrett (1974) found no difference in the economy at all in having morphological deas rejuvenate, and therefore there is no

 crutch 661；fuse 681，hook 614.

 count 562 ，proud 553 ；vision 633 ，double 589 ； vent 725 ，coin 564 ；＇tribute 694 ，nervous 575 ；
－мй

705 （im）．

 ؛（u！）L69 sisulu＇L69 sifns ！（b！p） $10 L$ puou 761 （in）；herent 721 ，conuts 814 （co）；lect 696，

 （an）；ghast 856 ，viary 804 （a）；whelm 972， pertoire 713 （re）；nihilate 794，tagonize 693 （in）；sipid 647，kling 758 （in）；juvenate 897， trieve 756，gulate 683 （re）；fect 659，digo 792 tremity 738 （ex）；wieldy 813 ，dulate 824 （un）； （re）；bezzle 772，igrate 673 （em）；cursion 799， semble 751 ，sassin 630 （as）；vive 800 ，lish 708 that have been removed．

The items are arranged in pairs with the Experiment I
decision time for the item．

Appendix

the words beginning with re．
located without having to search through all －a；since the entry for rejuvenate could be
of Verbal Lcarning and Verbal Betheviur．1971，10，
！
ev

 pun siumunat poqua fo puanof ount suiues Forster，K．I．，\＆Chambers，S．M．Lexical access and
 ［вכ！8ојочоKsd u！So！ Bolinger，D．L．On defining the morpheme．Word，
$1948,4,18.23$ ．
 Baron，J．Phonemic stage not necessary for reading． SBONBABAHY 742 （re）；devade 835，depoch 675 （e）． 734，exve
 （in）；perjection 795，pergenuity 712 （in）；in 815 （e）；conquisitive 775 ，condustrious 720
 ＇でロ －и！

 ؛（u！）II8 Kı！！Suว
 784 recimate 735 （de）；

 stem nonword followed by its pseudo stem
 deep 616；quaint 679，scream 593. 630，dirt 533；view 586，dark 556；firm 620
 भ！

 habit 563 ，giant 662 ；patch 598 ，slice 674 ；

 Hacle，M．Prolegomena to a theory of word formation．

（SL6I＇8I ！！IdV pan！əəəy）

	－S8－85＇I＇OL6T＇K8oloyoks antḷuso
－ио！̣！us\％oə．，	

 nomic Science，1972，27，220－222．

 p．Iom［ens！＾u！8u！pooər ग！uәuoud soj əวuәp！＾ヨ

