Individual Differences in the Tendency to See the Expected

Nora Andermane¹, Jenny M. Bosten², Anil K. Seth³, Jamie Ward²

¹ Department of Psychology, University of York

² School of Psychology, University of Sussex

³ Sackler Centre for Consciousness Science, University of Sussex

Introduction

Possessing prior knowledge of stimuli facilitates their entry into visual awareness^{1,3}

Expected stimuli are:

•More likely to enter awareness

Consciously registered faster

•Require weaker sensory evidence for detection

Results

All attentional and prior manipulations significantly biased the subjective experience of binocular rivalry

• Expected stimuli were likely to be perceived first (relative to 50%) and were reported faster (strong primes showing the opposite)

	Mean (SD)	Cohen's d	t-test (two-tailed)
Selective attention (s)	1.04 (1.61)	0.71	p < .001
Predictive context (%)	55.0 (5.8)	0.86	p < .001
Imagery (%)	63.5 (16.3)	0.83	p < .001
Expectancy (%)	56.3 (9.2)	0.68	p < .001
Weak prime (%)	59.2 (21.0)	0.44	p = .001
Strong prime (%)	17.2 (13.4)	2.45	p < .001

University of Sussex Sackler Centre for Consciousness Science Paper link: <u>https://authors.elsevier.com/a/1blk3_NzVjBwRS</u>

Different methods are used to induce priors:

•Perceptual priming² •Expectancy cues³ •Self-generated imagery⁴ •Inducing a predictive context⁵

RQ1: Do people reliably differ in the tendency to see the expected percept?

RQ2: Do different methods of manipulating perceptual priors engage the same mechanism (e.g. activate sensory templates⁶)?

RQ3: Does reliance on perceptual priors predict perceptual abilities and traits?

Methods

- 75 participants (58 female, aged 18-46) with normal or corrected-to-normal vision
- Study duration 2h (30min online questionnaires, 1h 30min labbased tasks)

Some (but not all) expectancy-based effects correlated, suggesting a common mechanism

- The ability to use selective attention to control rivalry predicted expectancy-based effects (imagery & predictive context)
- Proneness to adaptation by strong signal primes predicted superior naturalistic change detection
- Proneness to priming by weak signal primes predicted the experience of perceptual anomalies

TNO test for stereoscopic vision

Binocular rivalry task

Change blindness task & a battery of questionnaires

Exploratory factor analys	sis with varimax rotation ((N = 67)
----------------------------------	-----------------------------	----------

	Selective attention	Adaptation	Binocular rivalry
Binocular rivalry	20	02	.90
Selective attention	.69	04	13
Predictive context	.27	.29	.03
Imagery	.59	.22	.16
Expectancy	.45	17	04
Weak prime	.42	.10	16
Strong prime	.05	65	02
CB parameter a	.13	.66	05
CB parameter β	.15	23	.16

assessing perceptual traits

- Cognitive Failures Questionnaire (Broadbent et al., 1982)
- Sussex Cognitive Styles Questionnaire: Imagery Ability (Mealor et al., 2016)
- Cardiff Anomalous Perceptions \bullet Scale (CAPS) (Bell et al., 2005) Autism-Spectrum Quotient (Baron-Cohen et al., 2001)

Acknowledgements

This work was supported by a donation from the Dr. Mortimer and Theresa Sackler Foundation and by the School of Psychology, at University of Sussex.

Contact: N.Andermane@york.ac.uk , www.sussex.ac.uk/sackler

Discussion

- All prior manipulations led to significant effects on awareness of binocular rivalry (with moderate to large effects)
- Attentional control predicted expectancy-based effects, suggesting they may share a common mechanism
- Adaptation predicted naturalistic change detection, whereas facilitatory priming predicted the experience of perceptual anomalies

References

[1] Summerfield, C., & Egner, T. (2009). *Trends in cognitive sciences*, 13(9), 403-409. [2] Brascamp et al. (2007). *Journal of* vision, 7(12), 12-12. [3] Pinto et al. (2015). Journal of vision, 15(8), 13-13. [4] Pearson, J., Clifford, C. W., & Tong, F. (2008). Current Biology, 18(13), 982-986. [5] Denison, R. N., Piazza, E. A., & Silver, M. A. (2011). Frontiers in human neuroscience, 5. [6] Kok, P., Mostert, P., & De Lange, F. P. (2017). Proceedings of the National Academy of Sciences, 114(39), 10473-10478.