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Landscaping analyses of the ROC predictions of discrete-slots
and signal-detection models of visual working memory

Chris Donkin & Sophia Chi Tran & Robert Nosofsky

# Psychonomic Society, Inc. 2013

Abstract A fundamental issue concerning visual working
memory is whether its capacity limits are better characterized
in terms of a limited number of discrete slots (DSs) or a limited
amount of a shared continuous resource. Rouder et al. (2008)
found that a mixed-attention, fixed-capacity, DS model pro-
vided the best explanation of behavior in a change detection
task, outperforming alternative continuous signal detection
theory (SDT) models. Here, we extend their analysis in two
ways: first, with experiments aimed at better distinguishing
between the predictions of the DS and SDT models, and
second, using a model-based analysis technique called land-
scaping, in which the functional-form complexity of the
models is taken into account. We find that the balance of
evidence supports a DS account of behavior in change detec-
tion tasks but that the SDT model is best when the visual
displays always consist of the same number of items. In our
General Discussion section, we outline, but ultimately reject, a
number of potential explanations for the observed pattern of
results. We finish by describing future research that is needed
to pinpoint the basis for this observed pattern of results.

Keywords Visual workingmemory .Mathmodeling .Model
selection

Visual working memory (WM) is the short-term memory
system that maintains visual representations of stimulus in-
puts. It plays a fundamental role in a wide variety of ways in
visual perception and cognition, including the ability to detect

changes in scenes and to reason about visual displays (Luck &
Hollingworth, 2008).

There is widespread consensus that visual WM is limited in
its capacity (e.g., Luck & Vogel, 1997; Matsukura &
Hollingworth, 2011). However, there is considerable ongoing
debate concerning the basis for those capacity limits and the
manner in which visual WM operates.

According to discrete-slots (DS) views, visual WM makes
available some limited number of DSs for storing objects in
memory (e.g., Awh, Barton, & Vogel, 2007; Barton, Ester, &
Awh, 2009; Cowan, 2001; Luck & Vogel, 1997; Rouder et al.,
2008; Zhang & Luck, 2008). Each slot is presumed to store a
single to-be-remembered object. Furthermore, if an object is
stored in one of the slots, it is stored with the maximum
resolution that the system allows, regardless of the number of
other objects in the to-be-remembered set. By contrast, if an
object is not stored in one of theDSs, there is a complete loss of
resolution for the object. Thus, the DS models are all-or-none
in character and posit that a mixture of cognitive states (mem-
ory vs. no memory) governs performance in visual WM tasks.

A dramatically different view of visual WM is provided by
continuous shared-resources models (e.g., Bays, Catalao, &
Husain, 2009; van den Berg, Shin, Chou, George, & Ma,
2012;Wilken &Ma, 2004). According to these models, visual
WM makes available some total pool of resources that is
shared in continuous fashion across the members of a to-be-
remembered set of objects. If the number of objects in the set
is small, the observer can store high-resolution memory rep-
resentations of all of them. As the number of objects in the set
increases, there is a gradual and continuous decrease in the
memory resolution associated with each individual object.

In this research, we pursue an approach that was used by
Rouder et al. (2008) for trying to disentangle the predictions
from DS versus continuous shared-resource models. These
researchers used a well-known version of a visual WM task
based on change detection (Luck & Vogel, 1997). At study,
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observers were presented with a visual array of highly dis-
criminable colored squares. At test, a single probe square was
presented at one of the locations of the original array. The
observer judged whether the color of the square at the probed
location changed or stayed the same. Rouder et al. manipulat-
ed two independent variables in their task. The first variable
was memory set size (M): the study array consisted of two,
five, or eight squares. The second variable was change prob-
ability (π ): In each block of trials, the color of the probed
square changed with a probability of .3, .5, or .7.

Rouder et al. (2008) developed families of mathematical
models to represent the DS and shared-resources views. We
describe these families of models and their precise predictions
in the Mathematical Models section of this article. The impor-
tant conceptual point is that the two families of models made
very different predictions regarding the structure of the prob-
ability of “change” judgments that one should observe in the
task. In particular, following Rouder et al., we define the
probability of a “hit” [p (h)] as the probability that an observer
responds “change” when the color of a square does indeed
change, whereas the probability of a “false alarm” [p (f)] is the
probability that the observer responds “change” when the
color of the square remains the same. As is explained in
detail in the Mathematical Models section, the DS models
predict that, for each set size condition (M ), if one plots a
receiver operating characteristic (ROC) curve by plotting
p (h) against p (f) in each change-probability condition (π ), the
resulting ROC curves should be straight lines with slope equal
to one. By contrast, the continuous shared-resources models
predict that these ROC curves should have a curvilinear, bow-
shaped form.

To assess these predictions, Rouder et al. (2008) fitted the
members of the DS and shared-resources families to the
individual-subject ROC data. Because individual models had
differing numbers of free parameters, the researchers used a
variety of model evaluation statistics as criteria of fit, includ-
ing the Akaike information criterion (AIC; Akaike, 1974) and
Bayesian information criterion (BIC; Schwarz, 1978). These
statistics include terms that measure the absolute goodness of
fit of a model but that also penalize a model for its number of
free parameters. The model that yields the smallest AIC or
BIC is considered to provide the most parsimonious account
of the data. Rouder et al. found that a member from the DS
family provided the best overall AIC and BIC fits to their
individual-subject ROC curves, thereby providing support for
the DS view of visual WM.

Although Rouder et al.’s (2008) results are intriguing and
provide a considerable advance, there are some limitations
associated with their study. One limitation is that it may be
difficult to assess the linearity of the ROC curves in their
study. On the basis of inspection of the averaged ROC curves
reported in the study (Rouder et al., 2008, Fig. 2A), it seems
likely that for many individual subjects, the three points on

each ROC curve may have been located close together.1

Under such conditions, it is exceedingly difficult to tell apart
models that predict linear versus bow-shaped ROCs. Because
the favored model from the DS family used fewer free param-
eters than did models from the shared-resources family, the
statistical support for the DS model may have had more to do
with its simplicity than with its ability to account for highly
diagnostic data. In addition, although statistics such as AIC
and BIC are extremely reasonable ones, they provide only
approximations to ideal goals for model selection. The extent
to which those statistics allow recovery of the “correct”model
in any given situation needs to be carefully assessed.

In this research, our goal was to address these concerns by
extending the original Rouder et al. (2008) investigation in
two main ways. First, we tested a number of variants of the
change detection task used by Rouder et al. Some of these
variants included tasks with a greater number of change
probability conditions (as well as more extreme change prob-
ability manipulations) than had been used by Rouder et al. The
hope was to generate more challenging ROC data with greater
diagnosticity than that obtained in the original study. Second,
to investigate the extent to which the AIC and BIC statistics
allow recovery of the correct models in these situations, we
conducted what are known as landscaping analyses of the
model-fitting results (Navarro, Pitt, & Myung, 2004). As is
described in depth in the Model Analysis section, these
techniques provide much deeper analysis of the relative
merits of the competing models than simple listing of AIC
and BIC fits alone.

Mathematical models

In this section, we describe some of the formal models that
Rouder et al. (2008) used as representatives of the DS and
continuous shared-resources views. In all cases, we presume
that the models are applied to the type of change detection
paradigm used by Rouder et al. In particular, (1) memory set
size (M ) is varied within blocks at different levels denoted i ;
(2) objective change probability (π ) is manipulated between
blocks at different levels denoted j ; and (3) the stimuli are
highly discriminable, so that when changes occur and items
are stored in one of the DSs, the DS models presume that
correct change responses are made with a probability of one.

Included among the members of the DS family in Rouder
et al.’s (2008) investigation were fixed-capacity and variable-
capacity DS models that assumed that performance across
trials arises from a mixture of attentive and inattentive states.

1 The data from our Experiment 1 (a replication of Rouder et al., 2008)
are consistent with this notion; we found that for 65 % of participants, hit
and false alarm rates differed across change proportion conditions by, at
most, .3.
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The representatives of the shared-resources family were
equal- and unequal-variance signal detection theory (SDT)
models. In this article, the main focus is on just two of the
models, one from each family: the mixed-attention, fixed-
capacity DS model and the equal-variance SDT model.
Rouder et al. found that these models were the representatives
from the DS and shared-resources families that best accounted
for their data. It is worth noting that we fitted the complete
battery of models to our data sets; however, like Rouder et al.,
we found that the fixed-capacity DSmodel and equal-variance
SDT models performed best.

Discrete-slots model

The mixed-attention, fixed-capacity DS model assumes that
participants have a fixed average number of “slots” into which
items presented during study can be stored. (Although the
number of slots may be variable across trials, the average
number is presumed to be fixed across the different set size
and change probability conditions.) This fixed average
number of slots is represented by a capacity parameter k
in the model. Let mi denote the probability that a probed item
is stored in one of the slots when memory set size (M ) is at
level i . Then, according to the fixed-capacity DS model,mi is
given by2

mi ¼ min 1; k
�
M

� �
:

The model assumes that when a location is probed at test, if
the item in that location was stored in memory, then a perfect
change versus same classification is made (because the
colored squares are highly discriminable in the Rouder et al.,
2008, paradigm). However, if the item in the probed location
was not stored in memory, the observer must guess. The
probability that the observer guesses change is determined
by a guessing parameter g . Adopting the assumption of selec-
tive influence, the value of g is presumed to depend only on
the level of change probability (π ) that operates in a block of
trials. Thus, when π is at level j , the observer guesses change
with probability gj. Presumably, as the level of change prob-
ability that operates within a block of trials increases, ob-
servers will tend to guess change with higher probability.

Finally, Rouder et al. (2008) found that it was necessary to
include an attention parameter, a , into the model to allow for
imperfect performance when M < k (people reliably make a
small number of errors on even the simplest of trials). It is
assumed that on some proportion of trials (1−a ), the observer
fails to encode the visual display and somust guess. The guess
process due to inattention is assumed to be identical to that

used when an item is not in memory (i.e., the observer guesses
change with probability gj).

Combining the assumptions outlined above, the DS model
predicts the following for hit rates p (h) and false alarm rates
p (f) for the i th study set size and j th change probability
condition:

p hij
� � ¼ ami þ a 1 −mið Þg j þ 1 − að Þg j ð1aÞ

p fij
� � ¼ a 1 −mið Þg j þ 1 − að Þg j: ð1bÞ
From inspection of Eqs. 1a and 1b, it is straightforward

to see that, for any given set size condition i , the DS model
predicts linear ROC (isosensitivity) curves with slope equal
to one and y-intercept equal to ami . Also, solving Eqs. 1a
and 1b for mi and then eliminating that term reveals that the
DS model also predicts linear isobias curves of the form

p hij
� � ¼ 1þ 1 − 1

�
g j

� �
p fij
� �

. (Example predictions from

the model are shown as gray lines in the top panels of Fig. 1.)
This DS model estimates a capacity parameter k , an attention
parameter a , and G guessing parameters gj, where G is the
number of change probability conditions.

Signal detection model

An alternative to the fixed-capacity DS model is the continu-
ous SDT model, which assumes that the study display is
remembered with varying degrees of precision as the number
of items in the display changes. When a location is probed
with a test item, the item evokes a certain level of familiarity in
the observer, x , who then uses a criterion β to determine
whether the item has changed or is the same. It is assumed
that items that do not change from study to test evoke a
distribution of familiarities represented by a standard normal.
When an item does change from study to test, the familiarity is
represented by a normal distribution with mean d′ (and vari-
ance 1 in the equal-variance version we focus on here). As
such, when a test item evokes a particular level of familiarity,
x , the participant compares the likelihood of the familiarity
under the two possible situations:

LR xð Þ ¼ ϕ x − d 0ð Þ
ϕ xð Þ ; ð2Þ

where φ is the density of the standard normal distribution. If
the likelihood ratio is above the criterion β , then the observer
responds change and otherwise responds same .

Rouder et al. (2008) presented the equations for calculating
hit and false alarm rates from the model. If one assumes that
manipulation of study set size influences only the memory
strength d′ and the change probability manipulation affects
only the criterion β , the hit and false alarm rate predictions for

2 The model presumes that when memory set size (M) is less than the
average number of slots (k), all items are stored with a probability of 1.
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the i th study set size and j th change probability conditions are
as follows:

p hij
� � ¼ Φ

di
0

2
−
logβ j

di
0

� �
ð3aÞ

p fij
� �

¼ Φ
−di

0

2
−
logβ j

di
0

� �
; ð3bÞ

whereΦ is the cumulative distribution function of the standard
normal distribution.

As is well known, the equal-variance SDT model predicts
curvilinear bow-shaped ROC curves that are symmetric about
the negative diagonal. (Example predictions from the model
are shown as gray lines in the bottom panels of Fig. 1.) The
model estimates S sensitivity (d′) parameters and G response
bias (β ) parameters, where S is the number of set size condi-
tions and G is the number of change probability conditions.

Experiments

We conducted four experiments that were variants of the
change detection task conducted by Rouder et al. (2008).
Experiment 1 was a minor variant of the Rouder et al. task,
with three different memory set size conditions (M = 3, 5, 8)
crossed with three different change probability conditions
(π = .3, .5, .7). In addition, although the manipulation turned
out to have little effect, within that experiment we conducted
both an external-change and an internal-change condition. In
the external-change condition, on change trials, the probe
square was different in color from any of the colors in the
study array. In the internal-change condition, on change trials,
the probe square was the same color as another square from the
study array. In Experiment 2, the values of M were {2, 5, 8},

and in Experiment 3, the value of M was held fixed at 6. In
these experiments, five different change probability values
were tested: π = .15, .3, .5, .7, and .85 for Experiment 2, and
π = .14, .3, .5, .7, and .86 for Experiment 3. The goal was to
construct isosensitivity curves with a greater number of points
and, perhaps, a greater span in hit and false alarm rates than in
the previous experiment. Finally, in Experiment 4, we tested
six different set size conditions (M = 1, 2, 3, 4, 6, 8), with
change probability held fixed at π = .5. The goal was to
produce an isobias curve with a greater number of points than
obtained in the previous study. In Experiments 2–4, change
trials always involved external changes. A summary of the
design of the four experiments is provided in Table 1.

Method

Participants

Ninety-nine, 20, 44, and 30 participants took part in Experiments
1–4, respectively. Participants in Experiment 1 were from
Indiana University, while participants from the remaining exper-
iments were tested at the University of New South Wales.
Participants in Experiment 2 were reimbursed $15 per session
for four sessions, while the remaining participants received
course credit for a single session. An additional participant
completed just two sessions of Experiment 2 and was therefore
excluded from analysis.

Stimuli

Stimuli were a set of 10 color squares (white, black, red, blue,
green, yellow, orange, cyan, purple, and dark blue-green)
presented on a gray background. Experiment 1 utilized 17-
in. CRT monitors, while Experiments 2–4 used 24-in. LCD

Fig. 1 ROC curves averaged over participants for each of the four
experiments (columns). The averaged predictions of the discrete-slots
model (top row) and the signal detection theory model (bottom row) are

shown in gray, whereas the data (which are the same in both rows of plots)
are shown in black. Error bars are standard errors across individuals
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monitors. Each color square was 0.75° × 0.75° in size. Stimuli
were presented within an array whose visual angle was within
a 9.8° × 7.3° rectangle. Items were presented in randomly
chosen locations, with the restriction that they had to be at
least 2° away from any other item and from the center of the
viewing area. The cue indicating the position of the probe
color square was a black, 1 pixel thick, 1.5° diameter circle
that surrounded the probe color square.

Procedure

Trials began with a fixation cross for 1,000 ms. A study array
ofM color squares was then presented for 500 ms. After a 500-
ms blank screen, a multicolored pattern mask was presented at
each study location for 500 ms. A single test color was then
presented in one of the locations of the study array (this
location was also marked by the circular cue that we described
earlier). The test color was either the same as the item in that
location during study (a no-change trial) or different from the
item in that particular location of the study array (a change
trial). The participant was asked to indicate whether the test
item was the same as the study item or had changed by
pressing “F” or “J” on the keyboard, respectively. The partic-
ipants then received feedback on their response for 1,000 ms,
and the next trial then began after a 1,000-ms blank screen.

At the start of each block, participants were told explicitly
how often the study itemwould change at test in the upcoming
block of trials. The change probability conditions were
presented in random order, with the constraint that all condi-
tions were experienced before one was repeated. An equal
number of each study set size condition, for both change and
no-change trials, was presented in random order within each
block of trials. Due to differences in design, each experiment
yielded a distinct number of trials per cell of the experiment
(i.e., where a cell corresponds to a combination of study set
size and change probability condition). Note that because
different change probability conditions necessarily produce
more or fewer change or no-change trials, we report a range
of trials per cell for each experiment. Participants in
Experiment 1 completed 9 blocks of 60 trials, yielding be-
tween 18 and 42 trials per cell per participant. Those in

Experiment 2 completed four sessions of 10 blocks of 60
trials, yielding between 24 and 136 trials per cell per partici-
pant. In Experiment 3, there were 10 blocks of 50 trials,
yielding between 14 and 86 trials per cell per participant.
Finally, Experiment 4 utilized 6 blocks of 84 trials, yielding
84 trials per cell per participant.

Results

Data censoring

We used the following procedure to censor data from each
experiment. First, in Experiment 1, we excluded 2 participants
whose accuracy was below 60 % and mean response time
(RT) was less than 500 ms (mean RT for all other participants
was close to 1 s). Second, we removed the first 50 trials of the
first block of each experiment, since participants were still
learning to do the task. Third, we removed trials that were
unrealistically fast or slow by excluding trials on which RT
was shorter than 180 ms or longer than 4 s. This exclusion led
to 1.8%, 4.3%, 2.9%, and 0.2% of trials being removed from
Experiments 1–4, respectively. Finally, for each participant,
we excluded any trial on which the RT was longer than 2.5
standard deviations above the mean RT. This procedure led to
a further exclusion of 2.7 %, 1.8 %, 2.5 %, and 2.8 % of trials
in Experiments 1–4, respectively.

Hit rates and false alarms

Before turning to amodel-based analysis of the data, we briefly
discuss the ROC data from each experiment. The averaged
ROC data from each experiment are displayed in Fig. 1 (black
symbols). As can be seen from the figure, across all four
experiments, manipulations of memory set size and objective
change probability had the expected effects on the general
patterns of performance. Increases in memory set size led to
decreases in overall performance (decreasing hit rates and
increasing false alarm rates). Increases in objective change
probability led to increasing proportions of change responses
(increasing hit rates and increasing false alarm rates).

Table 1 Designs for the four experiments

Experiment Study Set Sizes Change Probabilities Number of
Participants

Trials per Cell Number of Parameters

DS SDT

1 3,5,8 .3,.5,.7 99 18–42 5 6

2 2,5,8 .15,.3,.5,.7,.85 20 24–136 7 8

3 6 .14,.3,.5,.7,.86 44 14–86 6 6

4 1,2,3,4,6,8 0.5 30 84 3 7

Note . DS, discrete slot; SDT, signal detection theory

Atten Percept Psychophys

Author's personal copy



Our purpose in displaying these averaged ROC curves is
simply to document the overall trends in performance.
However, presentations of averaged ROC curves can be mis-
leading. For example, a single curvilinear ROC participant
will make the average ROC curvilinear even if all other ROC
curves are linear. In an attempt to highlight individual differ-
ences, Fig. 2 contains the ROC results for 6 participants from
each of the four experiments (the remaining participants’ data
and model fits are available upon request). Three of these
representative participants’ data were better fit by the DS
model, and three were better fit by the SDT model (see the
Model Analysis section). As can be seen, the data patterns at

the level of individual subjects tend to be noisy, and there can
be large individual differences.

Modeling analysis

Parameter estimates We fitted the fixed-capacity DS model
(Eqs. 1a and 1b) and the equal-variance SDT model (Eqs. 3a
and 3b) to the data of each individual participant across all
four experiments. As has been outlined earlier, the DS model
has an attention parameter, a , a capacity parameter, k , and a
separate guess parameter, gj, for each of the change probabil-
ity conditions in the experiment. The SDT model has a d ′

Fig. 2 ROC curves for 6 individual participants (rows) in each of the four
experiments (columns). Data are shown in black, and model predictions
are shown in gray. The top three rows show predictions from the discrete-

slots model, and the bottom three rows show predictions from the signal
detection theory model
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parameter for each of the study set size conditions and a β
parameter for each of the change probability conditions. The
number of parameters used by each model in each experiment
is reported in Table 1.

We fitted the models to each individual’s data using max-
imum likelihood estimation (for details, see Rouder et al.,
2008). Best-fitting parameters were estimated using a
SIMPLEX algorithm started from 100 different random
starting points. Within each of the 100 searches, we also
restarted the SIMPLEX with the current best-fitting parame-
ters multiple times, since this broadens the search and thus
avoids local maxima.

Table 2 reports the best-fitting parameters for the two
models averaged across participants in each experiment.
According to the DS model, participants have a capacity of
around three items and attend to the visual display on about
85 % of trials. Furthermore, their probability of guessing
change increases systematically with increases in objective
change probability. Overall, participants are biased toward
guessing change rather than no change . The parameter esti-
mates from the SDT model have similar implications for
behavior: Participants become less able to discriminate be-
tween change versus no-change trials (i.e., d′ decreases) as
the number of study items increases. In addition, their criterion
settings for making change responses become increasingly
lax as objective change probability increases.

As was mentioned earlier, there were considerable individ-
ual differences in performance and, therefore, wide ranges of
individual-participant parameter estimates. Table 3 reports the

range of parameter values across individuals within each
experiment.

Model fits We assessed the parsimony of the fit of each model
by using the AIC and BIC statistics. Both model selection
criteria become smaller as the quality of the agreement be-
tween model and data improves but get larger as the number
of parameters in the model increases. As such, the model with
the smaller criteria gives a more parsimonious account of the
data. The criteria are formalized as: AIC = 2p − 2l and BIC =
p log(n ) − 2l , where l is the (maximum) log- likelihood of the
parameters given the data, p is the number of free parameters
in the model, and n is the number of data points being fit by
the model. Note that BIC is more penalizing of models with
extra complexity than is AIC.

In Table 4, we report the number of participants better fit by
the DS and the SDTmodels using AIC and BIC. Using BIC, the
majority of participants in Experiments 1, 2, and 4 are best fit by
the DS model. The sum of BIC across participants in those
experiments also favors the DS model. The opposite is true for
Experiment 3, where the SDT model provides a better fit to the

Table 2 Best-fitting parameters, averaged over participants, for discrete-
slots (DS) and signal detection theory (SDT) models for the four
experiments

DS SDT

Experiment 1 2 3 4 1 2 3 4

k 3.36 2.80 2.641 3.52 d'1 – – – 4.502

a 0.80 0.88 – 0.95 d'2 – 3.25 – 4.502

g0.15 – 0.22 0.36 – d'3 2.64 - - 3.76

g0.3 0.47 0.36 0.48 – d'4 – – – 2.74

g0.5 0.59 0.60 0.62 0.68 d'5 1.53 1.57 – –

g0.7 0.70 0.80 0.79 – d'6 – – 1.33 1.75

g0.85 – 0.90 0.84 – d'8 0.92 1.00 – 1.36

β0.15 – 2.05 1.46 –

β0.3 1.12 1.34 1.08 –

β0.5 0.92 0.82 0.79 0.66

β0.7 0.85 0.53 0.53 –

β0.85 – 0.33 0.42 –

1 Note that since the a parameter is not identifiable with just one set size,
this capacity is likely to be an underestimate of the true capacity value.
2 This value is the ceiling placed on the d′ parameter.

Table 3 The minimum and maximum best-fitting parameters across
participants for discrete-slots (DS) and signal detection theory (SDT)
models for the four experiments, rounded to the nearest .05

DS SDT

Experiment 1 2 3 4 1 2 3 4

k 1.20 1.20 0.60 2.00 d'1 – – – 3.00

6.80 5.60 5.40 5.60 4.50

a 0.45 0.60 – 0.80 d'2 – 1.50 – 2.60

1.00 1.00 1.00 4.50 4.50

g0.15 – 0.00 0.00 – d'3 1.00 – – 1.90

0.45 0.65 4.50 4.50

g0.3 0.00 0.10 0.10 – d'4 – – – 1.50

0.80 0.60 0.90 4.50

g0.5 0.25 0.40 0.35 0.35 d'5 0.50 0.60 – –
0.85 0.80 0.96 0.95 3.00 3.10

g0.7 0.40 0.55 0.45 – d'6 – – 0.10 0.75

1.00 1.00 1.00 3.00 3.10

g0.85 – 0.70 0.55 – d'8 0.30 0.50 – 0.60

1.00 1.00 2.00 1.90 2.20

β0.15 – 0.95 0.50 –
4.50 2.50

β0.3 0.40 0.95 0.45 –
2.50 2.50 2.10

β0.5 0.40 0.40 0.30 0.25

1.60 1.20 1.30 1.35

β0.7 0.30 0.20 0.10 –
1.20 0.95 1.10

β0.85 – 0.10 0.05 –
0.55 0.90
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majority of participants (this is true for bothAIC andBIC,which
yield identical results in this experiment, since the models have
the same number of free parameters). With the exception of
Experiment 4, for which theDSmodel is still favored, the results
are less clear when using AIC to do model selection.

Figure 3 contains a histogram of the differences between
(negative) 2× log-likelihood, AIC, and BIC for the two
models for each participant in the four experiments. A nega-
tive value in this plot corresponds to a participant for which

the DS model has a better fit than the SDT model. The
histograms are generally reflective of the pattern observed in
Table 4 but show that the evidence for one model over the
other lies on a continuum, even within a single experiment.
That is, the evidence never appears to be overwhelmingly
supportive of one model over the other (except in the case of
BIC in Experiment 4). Taken together, the results of the four
experiments provide a rather mixed message regarding wheth-
er one should prefer the DS or the SDT model.

Table 4 The number of participants, N , in each experiment selected using either the Akaike information criterion (AIC) or the Bayesian information
criterion (BIC), the proportions of participants better fit by each model (in parentheses), and the sums of AIC and BIC values (Σ)

AIC BIC

N Σ N Σ

DS SDT DS SDT DS SDT DS SDT

Experiment 1 58 (.60) 38 (.40) 41,923 41,899 85 (.89) 11 (.11) 43,915 44,289

2 9 (.45) 11 (.55) 29,367 29,330 13 (.65) 7 (.35) 30,159 30,235

3 13 (.29) 31 (.71) 17,906 17,840 13 (.29) 31 (.71) 17,906 17,840

4 22 (.73) 8 (.27) 7,735 7,806 30 (1.00) 0 (0.00) 8,104 8,666

Total 102 (.54) 88 (.46) 96,931 96,875 141 (.74) 49 (.26) 100,084 101,030

Note . DS, discrete slot; SDT, signal detection theory

Fig. 3 Histograms of the difference between participants’ (negative) 2× log-
likelihood, Akaike information criterion (AIC) and Bayesian information
criterion (BIC) (rows) values for each of the four experiments (columns).

Negative values indicate that the discrete-slots (DS) model outperforms the
signal detection theory (SDT) model. The vertical line at 0 on each plot
indicates the point at which both models perform equally well
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Landscaping analysis

Although AIC and BIC are often-used model selection tools,
they rely solely on the number of free parameters as a proxy
for complexity. However, a simple parameter count does not
take into account the fact that not all parameters in a model
have the same influence on the number of data patterns that
the model can produce—a concept known as functional form
complexity (Myung, 2000; Pitt, Kim, Navarro, & Myung,
2006; Pitt & Myung, 2002; Pitt, Myung, & Zhang, 2002).
We now use the landscaping technique to compare the DS and
SDT models, taking into account functional form complexity
(Navarro et al., 2004; for a related method, see Wagenmakers,
Ratcliff, Gomez, & Iverson, 2004).

In short, landscaping asks whether the fits of Model A
and Model B to observed data are more likely under one
model than under the other. The technique requires that one
simulate a large number of data sets fromModel A and then
fit those data sets with both Model A and Model B. The
same process is repeated, but this time the simulated data
sets come from Model B. For each data-generating model,
one creates a “landscape” by plotting the fits to the simu-
lated data from Model A against fits from Model B. Upon
each of the landscapes from Model A and Model B, one
then plots the fits of the two models to the empirical data. If
the empirical fits are more likely to have been produced
under one landscape than under the other, it follows that the
model that generated that landscape is more likely to be the
true model.

We began by simulating 10,000 data sets from each of the
DS and the SDTmodels for each of the four experiments (for a
total of 80,000 data sets). Each simulated data set was gener-
ated to have the same design (i.e., trial numbers, study set size
conditions, and change probability conditions) as the original
experiment. For example, the data sets intended to mimic
Experiment 1 had 60 trials per study set size condition, with
0.3, 0.5, or 0.7 of those trials being change trials. The k, a, and
d′ parameters used to simulate data sets were random draws
from the respective range of parameters reported in Table 3.
The g and β parameters for each data set were constructed by
sampling parameters from the smallest and largest change
probability conditions (from Table 3) and then creating a set
of G equally spaced g or β parameters, where G was the
number of change probability conditions in the given experi-
ment. That is, the guessing and bias parameters of the models
were constrained to increase with the change probability con-
dition. The simulated number of hits and false alarms in each
data set were a draw from a binomial distribution with prob-
ability governed by the predictions from the model given the
sampled parameters.

We then fit each of the 80,000 simulated data sets with the
DS and SDT models. The method for fitting the simulated
data sets was identical to the way that the models were fit to

the empirical data (i.e., the same objective functions, search
algorithms, and start points).

Before inspecting the landscapes, we first performed a
brief model recovery analysis, asking how often the model
that provided the best fit to the simulated data was the data-
generating model. Table 5 reports the proportion of data
sets for which each model was the best-fitting model in
cases in which either the DS or the SDT model was the true
data-generating model. When the DS model is the true
model, BIC generally chooses it with high probability,
and AIC chooses it with somewhat lower probability.
When the SDT model is the true model, AIC generally
chooses it with fairly high probability, but BIC often fails
to choose the correct model. In general, BIC tends to be biased
toward selecting the DS model over the SDT model. On the
other hand, AIC tends to select more equivocally between the
DS and SDT models.

Our recovery analysis suggests that using just one of the
selection criteria to decide between the two models is not
necessarily reliable. This result is particularly true for BIC,
which seems to have punished the SDT model too harshly for
its extra parameter(s). The analysis also suggests that when
AIC is used, it will be difficult to achieve unequivocal evi-
dence for either model in all but Experiment 2. These model
recovery results provide a strong rationale for using the land-
scape technique that we now apply.

Landscaping results Figure 4 contains the landscape plots for
the DS (top row) and SDT (bottom row) models for each
experiment (columns). Each of the gray dots in the landscapes
shows the log-likelihood fit of the SDT model (vertical axis)
and DSmodel (horizontal axis) to one of the 10,000 simulated
data sets. The log-likelihood values for fits to the empirical
data from each experiment are shown by the black dots. It
should be noted that landscapes produced by plotting AIC or
BIC values would be identical in form to the log-likelihood
plots shown in the figure, with all points identically translated
horizontally and vertically according to the specific penalty
term that is used. Although the absolute location of the land-
scape would shift, the relative location of the black dots (the
empirical fits) within the simulated gray dots would remain
the same.

It can be quickly gleaned from Fig. 4 that for Experiments
1, 2 and 4, the patterns of log-likelihood values for the empir-
ical data look more like the landscapes produced when the DS
model generated the data than when the SDTmodel generated
the data. That is, for Experiments 1, 2, and 4, the black points
in the figure look more like the gray points in the top row of
plots than in the bottom row of plots. The major problem for
the SDT model is that, in cases in which it is the true gener-
ating model (bottom panels), it produces many data sets for
which it provides a considerably better fit than the DS
model (gray points that lie on the upper-left side of the
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main diagonal). The empirical data points rarely demon-
strate this pattern and, instead, tend to lie close to the main
diagonal where the two models provide more nearly equiv-
alent fits to human data. By contrast, for Experiment 3, the
landscapes may favor the SDT model. In particular, when
the DS model is true, the empirical results (the black dots)
appear to lie to the upper left of the landscape. The empir-
ical results for Experiment 3 appear to lie more comfortably
within the SDT model landscape.

To confirm our visual impression of the landscape results in
Fig. 4, we calculated the landscape-based likelihood of the
empirical data (i.e., the black dots) in each panel (cf. Gilden,
2009; Navarro et al., 2004). To apply this procedure, we first
applied a kernel density estimate to the log-likelihood
values in each of the landscapes, using the ks package in
R.3 This procedure yields a landscape-based likelihood
estimate of each of the empirical data points. Figure 5 plots
the log likelihood of each participant’s data in the landscape
where the SDT model was true (vertical axis) and the
landscape where the DS model was true (horizontal axis).
In Experiment 1, the vast majority of participants (79 %)
fall to the lower-right of the main diagonal, indicating that
the data were more likely under the DS landscape. The
same is also true for Experiments 2 and 4, where 70 % of
participants’ data were more likely if the DS model were
true. By contrast, in Experiment 3, the data are more likely

under the SDT model, since the SDT model yields a higher
landscape-based likelihood for 75 % of the participants.

Discussion

Summary of results and potential explanations

The purpose of this research was to pursue further the ROC-
based methods used by Rouder et al. (2008) for disentangling
the predictions from DS versus continuous shared-resources
models of visual WM change detection. Our first approach
was to conduct more varied conditions than had been tested by
Rouder et al. Our new conditions included ones involving
more extreme manipulations of objective change probability
than had been used by Rouder et al., so that the straight-line
versus curvilinear ROC predictions from the DS and contin-
uous models might be more easily discriminated. Our second
approach was to use landscaping analyses of the predictions
from the models. This approach was intended to provide a
deeper analysis of the relativemerits of the competingmodels’
predictions than could be achieved by listing of penalty-
corrected fits alone.

Considered collectively across our four experiments, our
results did not point to a clear-cut winning model. On the one
hand, in our Experiment 1, which was a near replication of the
Rouder et al. (2008) design, the pattern of model-fitting results
was extremely similar to that reported in the original study.
Moreover, our landscaping analyses suggested that the DS
model was indeed the preferred model for that experiment,
confirming the model selection results yielded by use of the
AIC and BIC statistics. Furthermore, in Experiment 2, we
extended the design of the original experiment by using five
change probability conditions instead of three (and by using
more extreme change probability manipulations). In this ex-
tended experiment as well, the landscaping analyses pointed
toward the DSmodel as the preferred model. In Experiment 4,
we tested a single change probability condition, but a broader
range of set size conditions than in the original study. The
purpose was to produce an isobias curve based on more than
three points to test the linear isobias curve prediction from the
DS model. In this experiment as well, the landscaping analy-
ses favored the DS model, as compared with the continuous
alternative.

The “oddball” experiment turned out to be Experiment 3,
in which we tested a single memory set size condition but five
different change probability conditions. In this testing situa-
tion, the landscaping analyses pointed strongly toward the
continuous shared-resource model rather than the DS model.

In the remainder of this section, we consider several differ-
ent explanations for why the Experiment 3 results point in the
opposite direction from those of the other experiments. First,
in the original Rouder et al. (2008) article, as well as the

3 We report the results of the smoothed cross-validation method for
creating the bandwidth matrix of smoothing parameters. We made the
simplifying assumption that this matrix was a diagonal matrix. All other
settings of the kernel density estimator were left at default. We repeated
our analysis with a number of alternative settings and smoothingmatrices,
but our conclusions remained unchanged.

Table 5 Proportions of 10,000 simulated participants better fit by each
model in cases in which the DS model is true or the SDT model is true.
Note that the left columns give model selection results using AIC and the
right columns give model selection results using BIC

DS Model Is True

AIC BIC

DS SDT DS SDT

Experiment 1 .76 .24 .93 .07

2 .93 .07 .99 .01

3 .63 .37 .63 .37

4 .88 .12 1.00 .00

SDT Model Is True

AIC BIC

DS SDT DS SDT

Experiment 1 .17 .83 .36 .64

2 .04 .96 .14 .86

3 .40 .60 .40 .60

4 .24 .76 .78 .22

Note . DS, discrete slot; SDT, signal detection theory
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present extension, the focus was on the functional form of the
predicted ROC curves: The DS model predicts linear
isosensitivity and isobias ROCs, whereas the continuous
SDT model predicts curvilinear ones. In hindsight, however,
upon considering the Experiment 3 results, it becomes salient
that there are other important differences between the repre-
sentatives of the DS and continuous families that were for-
malized by Rouder et al. One of these differences is that the
favored version of the DS model makes more specific predic-
tions than does the SDT model regarding how overall “sensi-
tivity” will vary across the different memory set size condi-
tions (M ). Recall that the favored DS model (i.e., the fixed-

capacity version) assumes that the probability of entering the
“memory state” in set size condition i is given by

mi ¼ a : min 1; k
�
M

� �

where a is the attention parameter and k is the capacity param-
eter. Thus, the DS model uses two free parameters to predict
“sensitivity” across S different set size conditions. By contrast,
the versions of the SDT models that were formalized did not
include these types of constraints. Instead, both the equal- and
unequal-variance SDT models use S d′ parameters, one for
each separate set size condition. Conceivably, therefore, in the

Fig. 5 The landscape-based log-likelihood of the empirical fit values
when the signal detection theory model was true (vertical axis) and when
the discrete-slots (DS) model was true (horizontal axis) for each of the

four experiments. Points on the lower right of the main diagonal represent
participants whose data are more likely under the DS model

Fig. 4 Landscapes using log-likelihood for cases when the discrete-slots
(DS) model is true (top row) and when the signal detection theory (SDT)
model is true (bottom row), for each of the four experiments (columns).

The log-likelihood fits of the SDTmodel (vertical axis) and the DSmodel
(horizontal axis) to the simulated data are shown as gray points. The
empirical fits are shown as black points
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experiments involving multiple set sizes (i.e., Experiments 1, 2,
and 4), the better performance of the fixed-capacity DS model
may reflect its more parsimonious predictions of how sensitiv-
ity varies with set size, rather than its predictions of the func-
tional form of the ROCs. By contrast, in Experiment 3, there
was only a single set size, so this potential source of the
advantage of the fixed-capacity DS model disappears.

To evaluate this possibility, we conducted three follow-up
modeling analyses, using the data from Experiment 2. (We
chose Experiment 2 for analysis because it was identical to
Experiment 3 but included more than one set size.) The full
details of these analyses are given in the Appendix, but the
aim was to compare the DS and SDT models once they were
equated on the parsimony of their explanation of set size
effects. The logic behind our analyses was that if the DS
model was favored in Experiment 2 because it provided more
parsimonious predictions of set size effects, that advantage
might disappear if the models were equated on that factor. The
results of the modeling analyses reported in the Appendix,
however, provided no evidence to support the hypothesis.

A second possibility involves the response bias assump-
tions that we and Rouder et al. (2008) imposed on the SDT
models. Recall that Rouder et al. adopted the likelihood-ratio
version of SDT, in which the observer was assumed to re-
spond change when the likelihood-ratio statistic (Eq. 2)
exceeded a criterion β . Adopting the assumption of selective
influence, the magnitude of β was assumed to depend only on
the level of change probability and to be invariant with set
size. However, it is a wide-open question what form of re-
sponse bias may depend on only change probability and be
invariant with set size. Conceivably, the relatively poor fits of
the SDT model in Experiments 1, 2, and 4 could reflect
inappropriate assumptions concerning the nature of response
bias. Again, because only a single set size was tested in
Experiment 3, this potential shortcoming of the SDT model
disappears in that experiment.

In a preliminary attempt to evaluate this possibility, we
fitted an SDT model to the Experiment 2 data that made
alternative assumptions about response bias. The full details
of this alternative SDT model are given in the Appendix, but
in short, the model fitted our Experiment 2 data considerably
worse than did the likelihood-ratio version used by Rouder
et al. (2008) and never yielded a better BIC fit. Again, these
preliminary analyses fail to provide support for the response
bias explanation of our pattern of results.

A third possibility, suggested by a reviewer, is that the
diagnosticity of the data may be the underlying cause for the
atypical results in Experiment 3. The diagnosticiy of an indi-
vidual’s data is indexed by how often the data-generating
model would be recovered on the basis of that individual’s
best-fitting parameters (for both models). The idea is that
nondiagnostic data may be preferentially accounted for by a
particular model. For example, we would observe our pattern

of results if the data from Experiment 3 were nondiagnostic
and if the SDTmodel tended to be recoveredwhen results were
nondiagnostic. Jang, Wixted, and Huber (2011) found that the
diagnosticity of the data was a key factor in their comparison of
SDT and dual-process models of long-term recognition mem-
ory. We repeated their analysis on our data and models but
found little evidence to support this diagnosticity hypothesis.

A final potential explanation for our pattern of findings,
which would need to pursued in future empirical work, is
that the mode of processing in visual WM change detection
tasks varies with experimental conditions. In particular,
Experiment 3 was unique in that observers knew in advance
on each trial the precise number of items that would be
presented in the visual display. Perhaps that situation
allowed them to efficiently adapt their allocation of atten-
tion to obtain at least partial information about all items in
the display. By contrast, in Experiments 1, 2, and 4, set size
varied randomly from trial to trial. In that situation, the
observer does not know in advance the resolution with
which he or she should prepare to encode items and, thus,
attempts to “grab” into visual WMwhatever whole items he
or she can. Thus, an extremely interesting project for future
research would be to conduct versions of the change detec-
tion task in which memory set size was varied between
blocks rather than within blocks. If continuous shared-
resource modes of processing are enabled when observers
become adapted to sustained set size presentations, contin-
uous SDT models might fit extremely well the complete
sets of ROC data obtained under such conditions.

Alternative model selection approaches and experimental
paradigms

The model selection approach used in our present research was
based on landscaping, which takes into account functional
form complexity, unlike simpler methods such as BIC. A
major criticism of landscaping is that the data are used first to
define the parameter space of the landscape and then, a second
time, to assess the likelihood of the data in that landscape.
However, we would argue that this procedure is a relatively
minor case of using data twice, because the parameters esti-
mated from individuals define only the range of the parameter
values used to generate the landscape (the parameters are then
sampled from uncorrelated, uniform distributions defined
across those ranges). Nevertheless, there are other, more prin-
cipled model selection methods that take into account func-
tional form complexity, such as Bayes factors and minimum
description length (Myung, 2000; Pitt et al., 2002). Indeed,
such methods have recently been used to evaluate the parsi-
mony of ROC predictions made by DS and SDTmodels in the
domain of long-term recognitionmemory (e.g., Kellen, Klauer,
& Bröder, 2013; Klauer & Kellen, 2011). An interesting
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avenue for future research is to apply such methods in the
domain of visual WM change detection.

Finally, the theme of the present investigation was to pursue
the nature of visual WM change detection performance solely
through model-based analysis of ROC data. However, in re-
cent work, we have begun to extend the arsenal of methods for
distinguishing between DS and shared-resources views. In
these extended methods, we have collected extensive RT data
and have formalized the predictions that alternative versions of
DS and shared-resources models make for such data (Donkin,
Nosofsky, Gold, & Shiffrin, in press). Such extended tools
should provide still deeper insights into the nature of the forms
of information processing and memory representation that
underlie visual WM change detection.

Appendix Alternative SDTand DS models

Alternative set size models

In the first two analyses, we assumed specific functional
relationships between set size and the sensitivity of the SDT
model. First, we fitted a constrained SDT model in which d′
was assumed to be a decreasing linear function of memory set
size. This constrained SDTmodel yielded a better BIC fit than
did the unconstrained version for only 6 of the 20 data sets.
Furthermore, it yielded a better BIC fit than did the fixed-
capacity DS model for only 2 of the 20 data sets.

In a second attempt to find a better SDT model, we fitted a
sample size model variant of the SDT model (Palmer, 1990;
Taylor, Lindsay, & Forbes, 1967). Smith and Sewell (2013)
showed that the sample size model provides an excellent
account of the influence of changing set size from 1 to 4. In
this model, the observer is assumed to divide attention evenly
among all items in the display. As such, the discriminability of
any one item in a display containing M items is given by
dM

0 ¼ d1
0
= ffiffiffiffi

M
p . That is, the sum of the squared d′s is constant

for all display sizes. We assumed the same relationship be-
tween d′ and set size, estimating a single d′ parameter for all
set sizes. The sample size SDT model provided a better
account of the data than did the unconstrained SDT model
for only 5 of the 20 participants according to BIC and fit better
than the DS model for only 4 of the 20 participants.

Finally, we compared the unconstrained SDTmodel with an
equivalently unconstrainedDSmodel. In this variable-capacity
DS model, we drop the assumption of a fixed capacity for all
set sizes and, instead, freely estimate the probability that an
item is in memory for each of the S set size conditions. The
variable-capacity DS model and the SDT model both make no
a priori predictions for the effect of set size on sensitivity, and
so if the set size factor is the reason for the discrepancy

between Experiment 3 and the other experiments, we should
expect to see the SDT model provide a much better account of
the data than the variable-capacity DS model. We did not
observe such a pattern, since 10 of 20 participants were still
better fit by the DSmodel. An exact binomial test suggests that
it is unlikely ( p = .048) to have observed so many DS
participants if the true proportion of participants better fit by
the DS model is the same as for Experiment 3 (.29). It is also
worth noting that a replication of the earlier simulation studies
using the variable-capacity DS model suggests that neither
model is more flexible than the other and that the true model
should be recovered approximately 92 % of the time.

Clearly, the first two analyses do not rule out the idea that
some other version of an SDTmodel that places constraints on
how sensitivity varies with set size could outperform the
fixed-capacity DS model. Our initial analyses, however, fail
to provide support for the idea. Furthermore, our third analysis
suggests that the difference between the conclusions for
Experiment 3 and our other experiments is not simply due to
relative parsimony in predicting how sensitivity varies with
set size.

Alternative response bias model

In our alternative response bias model, we assumed that the
observer sets the criterion at location c ij in set size condition
i and change probability condition j , and we defined bias (β )
as the distance of the criterion from the midpoint of the noise
and signal distributions, relative to overall d′ (Macmillan &
Creelman, 1991, p. 37):

β ¼ ðcij − di
0

2
Þ=di0

We then assumed that this alternatively defined form of
response bias depended only on change probability level j and
was invariant with set size i .
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