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Abstract

Most theories of how decisions are made assume that the ac-
cumulation of evidence from the environment is a noisy pro-
cess. Recently, models have been proposed which do not have
this micro-variability, and as a result are simple in the sense
of being analytically tractable. We use a global model analy-
sis method called landscaping to show that in terms of flexi-
bility, simply removing micro-variability does not necessarily
make a model more simple. Our landscaping also highlights an
experimental design which might be helpful in discriminating
between different response models.
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A wide range of experimental psychology tasks involve a
decision between two alternatives. Which alternative is cho-
sen and the time taken to make that choice has been the sub-
ject of intense investigation. Indeed, much work has been
done to describe the general process by which relatively sim-
ple decisions are made. The most successful theories for the
decision process usually come from a class of evidence ac-
cumulation (or sequential sampling) models. Evidence accu-
mulation models assume that participants collect information
from the environment to use as evidence as to which poten-
tial response is correct. Evidence is accumulated until there is
enough to indicate that one of the responses should be given.
This response is then made and the time taken for evidence
accumulation makes up the decision time component of ob-
served reaction time (RT). Though there are many models
which follow this basic framework, the particular assump-
tions about evidence accumulation that each model makes
varies considerably.

Historically, the collection of evidence from the environ-
ment has been modeled as a stochastic process (e.g. Ratcliff
& Tuerlinckx, 2002; Usher & McClelland, 2001), such that
how much evidence there is for a response varies randomly
from moment-to-moment. For example, in a random walk
process, the amount of evidence accrued between any two
moments in time is a sample from a normal distribution.

A small number of recently proposed models, however,
have demonstrated that it is not necessary to explicitly model
the micro-variability in evidence accumulation (e.g. Reddi &
Carpenter, 2000; Reeves, Santhi, & Decaro, 2005). Brown
and Heathcote’s (2008) Linear Ballistic Accumulator (LBA)
model assumes that while a decision is being made, evidence
accumulates at a fixed linear rate. Despite this lack of micro-
variability the model provides a full account of benchmark

choice and response time phenomena.
Brown and Heathcote (2008) proposed the LBA as a sim-

ple model of choice and RT because it makes few, and rela-
tively basic, assumptions about how evidence accumulation
occurs. A slightly different question remains as to whether
or not the LBA, with its lack of micro-variability, is a func-
tionally simpler model. In other words, we are interested in
whether or not the absence of micro-variability means that
the LBA is able to produce a smaller range of predictions.
In what follows we will use a global modal analysis tech-
nique called landscaping (Navarro, Pitt, & Myung, 2004) to
determine whether the LBA, without micro-variability, is less
flexible than a similar model with micro-variability, the dif-
fusion model (Ratcliff, 1978). First, however, we provide an
overview of the diffusion and LBA models.

Overview of Models

The Diffusion Model

Consider a recognition memory task in which participants
have been asked whether or not a stimulus currently presented
was either previously studied, “old”, or not studied, “new”.
A diffusion model account of this choice assumes that par-
ticipants sample information continuously from the stimulus.
Each sample of information counts as evidence for one of
the two responses and is used to update an evidence counter,
shown by the irregular line in the right panel of Figure 1. To-
tal evidence begins at some starting point and evidence that
favors an “old” response decreases the evidence counter and
evidence for a “new” response increases the counter. Evi-
dence accumulation continues until the counter reaches one
of the response boundaries, the horizontal lines in Figure 1.
The choice made depends upon which boundary was reached,
the top barrier for “new” and the bottom barrier for “old”. The
observed RT is the time taken for accumulation plus a non-
decision time component made up of things such as encoding
time and the time taken to make a motor response.

A key feature of the diffusion model is its micro-variability,
such that the amount of evidence accumulated varies from
moment-to-moment according to a normal distribution whose
mean we call thedrift rate. On top of this within-trial vari-
ability, there are typically three forms of between-trial vari-
ability added to the diffusion model. Drift rate and start point
are generally assumed to vary from trial-to-trial according
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Figure 1: Overview of the diffusion and LBA models (left and right panel, respectively)

to a normal and uniform distribution, respectively. Finally,
Ratcliff and Tuerlinckx (2002) included between-trial vari-
ability in non-decision time in the form of a uniform distribu-
tion.

The LBA Model

In the LBA there are separate accumulators gathering evi-
dence for each of the “new” and “old” responses. As indi-
cated by the straight lines in the left panel of Figure 1, these
accumulators accrue evidence linearly and without micro-
variability. Accumulation begins at some start point and con-
tinues until evidence in one accumulator reaches a response
boundary. The accumulator which reaches the boundary first
selects its associated response and predicted RT is accumula-
tion time plus non-decision time. As in the diffusion model,
the LBA also features between-trial variability. Like the dif-
fusion model, drift rate and start point are assumed to vary
between-trials according to normal and uniform distributions,
respectively. Unlike the diffusion model, the LBA typically
does not require between-trial variability in non-decision time
to fit empirical data.

The Complexity of the Models

The LBA was considered by Brown and Heathcote (2008)
as a relatively simple model because of its simpler assump-
tions about variability, and hence fewer parameters. How-
ever, recent work has demonstrated that the complexity of a
model is not determined simply by the number of parameters
in a model, but by how the parameters of the model interact
within the model architecture to produce different patterns of
predictions – also known as the functional form complexity
of a model (e.g. Myung, 2000; Shiffrin, Lee, Wagenmakers,
& Kim, 2008). Functional form complexity differs among
models when they are able to produce differing ranges of pre-
dictions, even when they share the same number of param-
eters. In this way an overly complex model can provide an
excellent fit to data, but not because the model gives a good
account of the underlying process, but simply because of the
model’s flexibility. In particular, a more complex model can

“overfit” the data by explaining the noise specific to a par-
ticular sample, as well as the structure due to the underlying
processes. Because only the structure re-occurs in new data,
overfitting limits the model’s ability in terms of prediction.

There are many techniques for analyzing the complexity of
a model (see Shiffrin et al., 2008 for a review). We will focus
on one particular method proposed by Navarro et al. (2004)
called landscaping. This method is highly related to paramet-
ric bootstrap methods proposed by Wagenmakers, Ratcliff,
Gomez, and Iverson (2004). Landscaping, as a means of de-
termining model complexity, is based on the idea that a more
flexible model will be better able to mimic the predictions of
an alternative model. Landscaping is used to compare the rel-
ative flexibility of any two models, and for our purpose these
will be models with and without micro-variability (a diffu-
sion and an LBA model, respectively). Note that landscap-
ing tells us about a specific form of local, relative flexibility,
rather than the model’s general flexibility. In particular,land-
scaping tells us about how flexible one model is relative to
another model, specifically for the regions of the parameter
space in which we observe real data. In what follows we will
refer exclusively to this local flexibility.

Landscaping
To do landscaping we generate data from one model, say
model A, and fit these data with both models, i.e. model A
and the alternative model, say model B. We then repeat the
process with model B as the data-generating model. How
well model B can fit the data generated by model A, and vice
versa, gives insight into the relative flexibilities of bothmod-
els. We will focus on two measures of model flexibility, the
first is the difference between how well model B fits model
A’s data compared to model A, and the second is how often
model B can better fit model A’s data. The first measure tells
us how flexible model B is compared to model A, i.e. if model
B gives better fits to data from model A than vice versa, then
model B is more flexible. The second measure tells us how
distinguishable, or confusable, the two models are, i.e. how
often we expect to have model B fit data better than model A



when model A is actually the true model.
In all of our landscaping analyses we simulated 3200 data

sets from each model. For each data set a random sample
of parameters was chosen from uniform distributions whose
ranges were determined by previously observed parameters
estimated from real data (as identified by Matzke & Wagen-
makers, 2009 and Donkin, Brown, Heathcote, & Wagenmak-
ers, 2009). The range of the uniform distributions from which
parameters were selected are given in Table 1.

Table 1: Range of parameter values used to generate data sets.
Parameters not previously defined are as follows:Ter is non-
decision time in both models,s andη represent between-trial
standard deviation in drift rate in their respective models, and
sz and st represent the ranges of between-trial variability in
start point and non-decision time in the diffusion model, re-
spectively.

Model b−A A Ter s v
LBA Min 0 .15 .1 .15 .5

Max .5 .45 .4 .35 1
a Ter η sz st v

Diffusion Min .06 .3 .01 .01 .01 .01
Max .25 .6 .25 .08 .3 .5

Landscaping is known to depend on the design of the data
simulated. Here we selected two commonly used designs,
one in which only the difficulty of the task was manipulated,
and one in which both difficulty and response caution were
manipulated. To simulate a difficulty manipulation we used
three conditions (easy, medium and hard) across which only
the drift rate parameter of the model could change. In prac-
tice this meant that the distribution of drift rates shown in
Table 1 was divided evenly into three smaller distributions,
with the ease of the task increasing with drift rate. To sim-
ulate a caution manipulation we used the same procedure to
create two conditions (speed emphasis and accuracy empha-
sis) across which only the response boundary parameter could
change, i.e. boundary parameter distributions were divided in
two and two values were sampled.

Micro-variability
In these first set of analyses we aim to investigate whether the
micro-variability of the diffusion model makes it more flex-
ible than a model without micro-variability, the LBA model.
The models, however, differ in more ways than just micro-
variability. In an attempt to make the models more similar,
and hence make the effect of micro-variability more salient,
we use a slightly simplified version of the standard diffusion
model (cf. Ratcliff & Tuerlinckx, 2002) in which there is no
between-trial variability in non-decision time. The models
now share the same assumptions about between-trial variabil-
ity – it is in both drift rate and start point of accumulation (but
see the General Discussion for talk of other key differences
between the models).

Difficulty Manipulation To create our landscape we first
simulated data from both the LBA and the diffusion model.
The data were simulated with all parameters except for drift
rate fixed across three difficulty conditions, with 200 observa-
tions simulated per condition. We used 200 observations per
condition because this amount is standard in applications of
choice RT models (Wagenmakers, 2009). Both models used
seven parameters for both simulating and fitting data – the
diffusion model: a, Ter, η, sz, veasy, vmedium, vhard , and the
LBA: b, Ter, s, A, ve, vm and vh. The simulated data were
summarized using five quantiles (.1, .3, .5, .7 and .9) and both
models were fit using quantile maximum probability estima-
tion (Heathcote, Brown, & Mewhort, 2002) as the objective
function and simplex as a search algorithm (Nelder & Mead,
1965).
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Figure 2: Difference in log-likelihood values between the
data-generating model and the alternative model. The black
and gray lines represent the diffusion and LBA as the gen-
erative models, respectively. The dotted line represents the
point at which the data-generating and alternative models give
equal quality fits, negative values indicate cases in which the
alternative model fits better than the generative model. In
this plot the simulated data come from a difficulty manipula-
tion and the models used make the same assumptions about
between-trial variability.

Figure 2 shows the difference in quality of fit between the
generating and alternative model when the diffusion was the
generating model (black histogram) and when the LBA was
the generating model (gray histogram). Positive values indi-
cate that the data-generating model fits better than the alter-
native model, and negative differences indicates that the alter-
native model is fitting the generating model’s data better than
the generating model itself. Two things are apparent from
the figure: the gray histogram is generally more positive than
the black histogram, and neither histogram has much mass in
the region of negative differences. The first observation tells
us that when the LBA was the generating model the diffu-
sion tended to fit worse than how well the LBA fit when the
diffusion was the generating model. In other words, the diffu-



sion model appears to be less flexible than the LBA model in
terms of how closely it can resemble the other model’s data.
The second observation tells us that neither model is very ca-
pable of better fitting the other model’s data – the LBA fit data
generated from a diffusion model better than the generating
model in only 3.2% of the 3200 data sets, and the diffusion
model better fit data generated from an LBA only 0.8% of the
time.

Caution and Difficulty Manipulations To create the land-
scape for a design in which both caution and difficulty were
manipulated we simulated data in which all parameters except
for drift rate were fixed across the three difficulty conditions
and all parameters except for response boundary were fixed
across the two caution conditions. Fits were as in the previous
landscape except that each model now had eight parameters
– the diffusion:aspeed , aaccuracy, Ter, η, sz, ve, vm, vh, and the
LBA: bs, ba, Ter, s, A, ve, vm andvh. Landscapes were cre-
ated using both 200 observations per condition (as in the pre-
vious landscape), as well as 100 observations per condition
(since twice as many conditions meant that total sample size
was twice that of the previous landscape). Sample size had
little effect on the pattern of results, but the smaller sample
size did lead to slightly more confusion between the models.
We present, therefore, the results of the landscape using the
smaller sample size (i.e. where total sample size was equated
across landscapes).
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Figure 3: Difference in log-likelihood values between the
data-generating model and the alternative model. The data
come from a caution and difficulty manipulation, and the
models make the same assumptions about between-trial vari-
ability.

A quick look at Figure 3 suggests that the current land-
scape is similar to the one where only difficulty was manip-
ulated. Closer inspection, however, reveals two differences:
Firstly, the histograms in Figure 3 show a larger mean and
variance than those in Figure 2, and secondly, the histograms
show even less mass below zero. The first observation sug-
gests that when both caution and difficulty are manipulated

that both models are not as good at accounting for the alter-
native model’s data. Note, however, that the relative position
of the black and gray histograms continue to suggest that the
diffusion model has less flexibility than the LBA. The sec-
ond observation implies that the models are even more dis-
tinguishable when both caution and difficulty manipulations
are made – in 3200 data sets, the LBA never better fit data
generated from a diffusion model, while the diffusion model
better fit data from an LBA only 0.4% of the time.

Discussion Our first measure of flexibility, the relative
shapes and positions of the histograms in our figures, suggest
that the LBA is capable of getting better fits of data gener-
ated from a diffusion model than vice versa. We take this to
mean that the LBA model is more flexible than our simplified
version of the diffusion model (i.e. one without non-decision
time variability). Since the models were equated on assump-
tions about between-trial variability, we also take this result as
evidence against the idea that the micro-variability in thedif-
fusion model makes the model more flexible than the model
without micro-variability, the LBA. Indeed, there may be evi-
dence to suggest the opposite – that micro-variability reduces
the functional form complexity of a model. We do not mean
our results as conclusive evidence of such a result, however,
particularly because micro-variability is not the only differ-
ence between the LBA and diffusion models. We direct the
reader to our General Discussion for suggestions of how the
effects of micro-variability could be more investigated more
specifically.

Our second measure of flexibility, how often the alternative
model can better fit data from the generating model, gives a
less clear result. This is largely because both models seem
relatively incapable of better capturing the other model’sdata,
at least for the sample size we use. When we repeated our
landscaping analysis with a greatly reduced sample size (just
20 observations per condition) we observed an interesting re-
sult, consistent with our first measure of flexibility – the LBA
better fit diffusion data in almost one in ten samples, while the
diffusion still only better fit LBA data in less than one in two
hundred samples. The results reported in Figure 3, however,
suggest that the two models are distinguishable based on fit
alone for the types of sample sizes typically used. In other
words, in the unlikely case that one of the two models was
truly responsible for empirical data, then our results suggest
that the alternative model would rarely be mistakenly chosen
as the best fitting model, provided at least 100 observations
were recorded per condition. However, this result is not very
useful since we do not believe that a diffusion model with-
out between-trial variability is appropriate. We now repeat
our landscaping using a diffusion modelwith between-trial
variability in non-decision time, paying particular focusas to
whether or not the models remain distinguishable.

Comparing the LBA and the Full Diffusion

The method for creating the following two landscapes was the
same as for the previous two landscapes, however, between-



trial variability in non-decision time was assumed for the dif-
fusion model (but not the LBA).

Difficulty Manipulation Figure 4 suggests that a full dif-
fusion model may be slightly more flexible than the LBA
when only difficulty is manipulated. In particular, though
largely overlapping, the grey histogram looks like a slightly
left-shifted version of the black histogram, suggesting that the
difference between quality of fit for the data-generating and
alternative models was smaller when the LBA generated the
data. In other words, the diffusion model was slightly better
able to fit LBA data than vice versa. When we look at just the
cases in which the alternative model fits better than the data-
generating model we see that the same pattern continues, the
LBA model better fits data simulated from a diffusion model
in 6% of simulated data sets, while the diffusion model better
fits LBA data 10% of the time.
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Figure 4: Difference in log-likelihood values between the
data-generating model and the alternative model. The data
come from a difficulty manipulation, and the diffusion model
makes the additional assumption that non-decision time has
between-trial variability.

Caution and Difficulty Manipulations The landscape in
which both caution and difficulty were manipulated was cre-
ated using 200 simulated data points in each of the six con-
ditions. From Figure 5 it is not clear which of the full dif-
fusion model or the LBA is more flexible. In particular, the
grey histogram has more mass than the black histogram at
both very small and very large positive values, suggesting
that the diffusion model fit LBA data both very well and very
poorly. In terms of how often the alternative model fit bet-
ter than the data-generating model, when the diffusion model
was the generative model then the LBA never fit better, while
the diffusion model fit LBA data better in only 0.8% of the
simulated data sets.

Discussion The first two landscapes we created suggested
that the LBA and the diffusion models were distinguishable,
such that each model was relatively incapable of better fit-
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Figure 5: Difference in log-likelihood values between the
data-generating model and the alternative model. The data
come from a caution and difficulty manipulation, and the
diffusion model makes the additional assumption that non-
decision time has between-trial variability.

ting the other model’s data. These second pair of landscapes
looked at whether these results extended to the full diffusion
model (with between-trial variability in non-decision time).
The first landscape we created suggested that this might not
be the case. When data came from a design in which only dif-
ficulty, i.e. drift rate, varied then both models displayed some
reasonable mimicry, such that the LBA looked more like a
diffusion model in 6% of the simulated data sets and the diffu-
sion model looked more like an LBA 10% of the time. These
proportions are not overly large, but they do suggest that if
one of the models actually was the true model, that we would
observe the alternative model fitting data better for about one
in ten to twenty participants.

The results of our fourth and final landscape suggest that
the models become highly distinguishable when both diffi-
culty and caution are manipulated. Indeed, the results suggest
that if one of the two models were the true model then the al-
ternative model would be mistaken as the best fitting model
for fewer than one in a hundred participants. The difference
in distinguishability between these two final landscapes isre-
markable, however it is possible that the difference occursbe-
cause there are twice as much data under the design with both
caution and difficulty manipulations. Equating total sample
size using a simplified diffusion model, however, had little
effect on distinguishability – doubling sample size meant that
the largest confusion occurred 0.4% of the time instead of
0.2%. We expect, therefore, that it is something about the de-
sign rather than sample size which causes such a large change
in distinguishability. Consistent with this idea, Donkin et al.
(2009) showed that the boundary parameters of the LBA and
diffusion model do not have a similar effect on model pre-
dictions. These results further cement the idea that the key
to distinguishing between these two models may lie in the
differential effect of manipulating the response boundarypa-



rameter in each of the models.

General Discussion
We compared the flexibility of the LBA model, which con-
tains no micro-variability in evidence accumulation, witha
simplified version of the diffusion model, which does contain
micro-variability. Our results suggest that micro-variability
does not necessarily make a model more flexible than one
without micro-variability. We can not, however, confidently
conclude that micro-variability does not increase flexibility at
all. This is because the LBA and the diffusion model, even
a simplified version without between-trial variability in non-
decision time, do not have identical frameworks. In particu-
lar, the LBA has multiple, independent, accumulators while
the diffusion has a single accumulator, which implies that
evidence for one response is perfectly negatively correlated
with evidence for the alternative response. Without further in-
vestigation, we can only confidently conclude that a ballistic
multiple-accumulator framework gives the LBA more flexi-
bility than a stochastic single-accumulator framework gives
the diffusion. Further investigation into the effects of micro-
variability might directly compare a multiple accumulator
framework with and without micro-variability (e.g. the LBA
compared to a simplified version of Usher and McClelland’s,
2001, model). Such a study will be more difficult than that
carried out here because analytic expressions do not exist for
Usher and McClelland’s model.

We finish by questioning the usefulness of our results con-
cerning the distinguishability of the LBA and the full diffu-
sion model. The results of our final landscape suggest that a
manipulation of both caution and difficulty would provide a
design in which the two models are almost completely distin-
guishable, at least for the sample sizes we typically collect.
This conclusion, however, assumes that one of the models is
the true model, an assumption which is in all likelihood false.
This means that the results of our final landscape tell us very
little about the complexity of our models. Any complexity
analysis must, of course, assume a model is true, but to learn
of the relative complexities of the models then we would be
better reducing the sample size of our landscapes until there
was reasonable overlap between the models. Of primary in-
terest in these final two landscapes, however, was the increase
in distinguishability which arises out of the inclusion of acau-
tion manipulation. This increase is quite remarkable, when
only difficulty was manipulated the models show the largest
overlap of any landscape we analysed, but when caution is
added there is almost no overlap between the models’ predic-
tions. Even if we are not to believe that either of the models
are the true data-generating process, such a result suggests
that a combined caution and difficulty manipulation might be
useful in determining which model is at least closer to the
truth.
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