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Abstract 

We present a model in which visual search behavior is 
assumed to result from a combination of controlled, serial 
search and automatic attraction of attention to target stimuli. 
The model provides a quantitative framework for how these 
different processes are combined, and despite a large number 
of constraints, it is highly successful in accounting for human 
search behavior at the level of full response time distributions 
and choice probabilities. 
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Visual search tasks usually require an observer to determine 
whether or not a pre-defined target object is present within a 
display of objects (the display size, D, is the number of 
objects in the display, and displays either contain all foils, or 
instead one target with the rest foils). Performance in such 
tasks is usually measured by response time, because 
accuracy tends to be quite high. The results have been used 
to understand the processes of visual search, the factors that 
determine attention allocation, and the use of automatic and 
parallel vs. controlled and serial processes of comparison. 
The last of these is the focus of this research.  

Various factors contribute to whether search is automatic 
or controlled. Low-level perceptual differences between 
targets and foils, for instance a green target amidst red foils, 
facilitate automatic search behavior, produce response times 
that do not vary (much) with display size, and are often 
termed to ‘popout’ in line with subjective impressions 
(Triesman & Gelade, 1980). Even when targets do not 
‘popout’ perceptually, consistent training (in which targets 
remain targets, and foils remain foils) in most cases 
gradually causes the targets to attract attention 
automatically, measured by the fact that the dependence on 
display size drops (Shiffrin & Schneider, 1977). However, 
the amount of such learning is dependent on the relation of 
the target shapes to foil shapes: For example, when a 
conjunction of features is needed to define targets, search 
generally appears more controlled (slower search rates) and 
automatic attraction of attention to targets is slower to 
develop.  

When the plot of mean response time, RT, to D has a 
slope near zero, search is considered parallel and automatic; 
when it has a large slope (usually roughly linear) search is 
often assumed to be serial (one item in the display at a 
time), or controlled. If the slope of target absent responses is 
about twice that for target present responses search is 

usually assumed to terminate once a target is found in the 
serial set of comparisons.   

Townsend and colleagues have argued convincingly, 
however, that analyses based on mean response times in 
standard visual search are relatively uninformative 
regarding the processes underlying search (e.g. Townsend & 
Nozawa, 1995). For example the function relating mean RT 
to D is insufficient for distinguishing serial from parallel 
search without strong additional assumptions. As we shall 
see, much more can be learned about visual search through 
analysis of full response time distributions. 

Complementing research identifying conditions in which 
search might be either automatic or serial (Thornton & 
Gilden, 2007), is research developing a unified model which 
can account for all search behavior (e.g., Wolfe’s guided 
search model, 2007). Our aim, in what follows, is to build 
upon these efforts and develop and implement a framework 
for how automatic and controlled search processes combine 
to produce the various types of observed visual search 
behavior. The model is fit to results partially reported in 
Cousineau and Shiffrin (2004), in which three participants 
received up to 80 sessions of training. It is similar to 
Wolfe’s Guided Search theory in a number of respects, 
including a serial search process that is guided to target 
items by an automatic parallel process.  

Model  
When a display appears a set of consecutive serial 

comparisons without replacement is initiated. The order of 
comparisons is chosen by the observer, and is random with 
respect to the actual target position. The order of 
comparisons can be interrupted, however, when search is 
guided by a separate parallel process that forces the next 
comparison to a target position. Search terminates when a 
comparison to a target occurs with a positive (i.e. target 
present) response, or with a negative response (i.e. target 
absent) when all display positions are compared 
unsuccessfully. As we will discuss later, however, a 
separate decision is sometimes made to terminate before all 
comparisons are finished (i.e. early termination of search).  

The Serial Comparison Process  
Each comparison involves a decision as to whether an 

item in the display is either a target or a foil. We model this 
decision using a relatively simple evidence accumulation 
model, based on the Linear Ballistic Accumulator (LBA) 
model (Brown & Heathcote, 2008). Figure 1 contains a 
graphical depiction of the comparison process. We assume 



that evidence is accumulated for “target” or “foil” responses 
in separate, independent, accumulators. When a target is 
being compared evidence tends to accumulate quickly in the 
target accumulator and slowly in the foil accumulator. 
When a foil is being compared, the tendency reverses. Each 
accumulator has a threshold and the output of the 
comparison and its time is determined by the accumulator 
that reaches its threshold first (each comparison is therefore 
a race). It should be noted that this LBA model of a 
comparison closely mimics predictions of common 
alternative models for a comparison, such as the diffusion 
model of Ratcliff (1978). We use the LBA for reasons of 
computational convenience.  

According to the LBA, evidence accumulates ballistically 
in each accumulator (i.e., without noise) at a linear rate until 
either threshold is reached. However, the rate at which each 
accumulator proceeds is chosen from a normal distribution, 
independently for the two accumulators. The winner of the 
race, and the time of the comparison, is therefore 
determined by the rate choices for that comparison (which 
depend on whether the comparison is of a target or foil) and 
the thresholds for each accumulator.  

For simplicity we use only two Gaussians to determine 
the rates, each with a to-be-estimated variance, s. The target 
accumulator when a target is being compared, and the foil 
accumulator when a foil is being compared (i.e. the 
accumulators that would produce a correct response) have 
rates chosen from separate Gaussians with to-be-estimated 
means, vT and vF, respectively; the two remaining 
accumulators (those that would produce an incorrect 
response) have rates chosen from a Gaussian with fixed 
means, 1 – vT and 1 – vF, for target and foil comparisons 
respectively. We assume that the threshold for the target and 
foil accumulators can be different, and thus estimate two 
threshold parameters, bT  and bF. 

 

 
Figure 1 An LBA comparison process when a target is being 
compared (so the mean drift rate is higher for the target 
accumulator). The target accumulator and its threshold are given 
by the dashed lines, and the foil accumulator and its threshold are 
given by the solid lines. The drift rates shown are samples from 

normal distributions with the indicated means and common 
variance s. These sampled rates will cause the target accumulator 
to reach threshold first, so a correct result of the comparison will 
occur.   
 
This gives a total of five parameters for the LBA 
comparison process. Looking ahead, let us note that in our 
application to the empirical data reported in Cousineau and 
Shiffrin (2004) all five are chosen to provide a best fit to the 
response time distributions and accuracy when display size 
is one, for each of the three participants. We are assuming, 
therefore, that comparisons are equivalent, and driven by the 
same parameters, regardless of the number of items in the 
display size.   

If the target accumulator wins the race then the search 
ends and a positive response is initiated. If the foil 
accumulator wins the race, then if all display items have 
been compared a negative response if initiated. If there are 
more display items to be compared, then there are three 
possibilities: 1) Another comparison is initiated; the item to 
be compared is chosen by the participant, and is a random 
choice from the items that have not yet been compared. 2) 
Another comparison is initiated; the item to be compared is 
determined by an automatic parallel process, whose details 
will be given shortly. 3) The search is terminated early with 
a negative response, according to a process whose details 
will be given shortly. Note that even the selection of the first 
item to be compared can be driven by the parallel guiding 
process.  

The total response time is a sum of the time occupied by 
the above serial comparison process, plus a taken for non-
decision elements of making a response, such as the time 
taken to encode the stimuli and execute the motor response. 
The non decision time assumptions are given below.  

The Parallel Guidance Process 
There is considerable evidence in the literature to suggest 

that a purely serial model will often fail to account for 
visual search performance. For example, the model fails to 
predict that the time to find the target does not depend on 
display size when there is perceptual pop-out (e.g., 
Treisman & Gelade, 1980). Even when perceptual popout 
does not occur, a purely serial process can fail. This is the 
case for the data reported in Cousineau and Shiffrin (2004), 
where the purely serial model failed in several respects; 
most notably, participants responded much more quickly 
than would be expected from a purely serial self-terminating 
search. We note that positive responses exhibited multi-
modal response time distributions, with the modes roughly 
corresponding to the serial position in which the target 
happened to be compared. However, the positions of the 
modes showed that the participants were comparing the 
target earlier in the serial search than would have been the 
case had each comparison been chosen randomly. 
Furthermore, these fast responses were clearly not guesses 
because their accuracy was essentially perfect.  

To explain these faster than expected and accurate target 
present responses the model includes an automatic parallel 



process that guides search to the target position in a display, 
and is learned as training proceeds. In line with the research 
and model of Shiffrin and Schneider (1977), and given the 
fact that the Cousineau and Shiffrin (2004) study used 
consistent mapping in which targets remained targets and 
foils remained foils throughout training, we assume that 
targets come to attract attention automatically, and that this 
process operates in parallel across the entire display.  

There are several plausible ways to operationalize a 
parallel process. For example, it could be allowed to race 
with the serial comparison process, with a target decision 
made when either process discovers a target. We decided 
instead to let the parallel process guide the next comparison 
of the serial process. The parallel process is initially weak 
and gradually strengthens over training. We thus think of it 
as unreliable from trial to trial, so that its tentative location 
of a target needs to be checked by a direct comparison. For 
simplicity this parallel guiding process is implemented as a 
single accumulator, which gathers evidence in parallel from 
the entire display concerning the presence and location of a 
target. If a target is present then the rate of evidence 
collected (which is again assumed to be linear and without 
noise) is selected from a normal distribution with mean vPAR 
and standard deviation sPAR. The accumulator is assumed to 
collect evidence for some time tPAR before the first item is 
selected for comparison. If evidence is already at threshold 
bPAR at this time, then the first comparison is guided, 
otherwise search continues as per usual and an item is 
selected at random (according to the observer’s plan). When 
evidence in the parallel process does reach threshold, then 
the current serial comparison is allowed to finish, but if that 
comparison does not lead to a response, then the next 
comparison is guided to the position identified (correctly) 
by the parallel process.  

The rate of accumulation in the parallel process should of 
course increase as training proceeds and automatic attention 
attraction to targets is learned. Also, although the Cousineau 
and Shiffrin (2004) study did not vary the target and foil 
stimulus properties, we note that the rate of accumulation 
parameter in the parallel guiding process should in principle 
vary with factors such as the perceptual similarity between 
targets and lures. Indeed, we find this is true when we fit 
response time distribution data reported by Wolfe, Horiwitz 
& Palmer (2010), in which the perceptual features of stimuli 
were manipulated. Unfortunately, we are unable to present 
these results here, but they will be available in a larger 
manuscript currently in preparation for submission.  

Processes that Produce Rapid Negative Responses 
We found that the model as described thus far could 

predict very well the distributions and accuracy levels for 
positive responses. However this model failed badly when 
applied to the negative response distributions (we note that 
the negative response times have proved a problem for other 
investigators, e.g., Thornton & Gilden, 2007; Wolfe, 2007). 
The main problem is its prediction of too large a proportion 
of very slow negative responses because these only occur 

when all comparisons fail. We believe it reasonable that the 
search process can be terminated with a negative response 
before all comparisons are completed. To take an extreme 
example, suppose there is a very large display (as in ‘Find 
Waldo’). If say, 967 comparisons out of 1000 have been 
completed without finding a target, it would be reasonable 
to stop searching and respond negatively, because such a 
response would likely be correct. This reasoning is 
especially enhanced if a parallel guiding process is 
operating: the fact that this process has not yet reached 
threshold provides additional evidence that a target is not 
present. Cutting search short is also likely for participants 
who are motivated to finish the experimental session as 
rapidly as possible. With these factors in mind, we explored 
two possibilities for the way in which participants may 
terminate their search early – collapsing thresholds and 
early terminations.  

 
Collapsing Thresholds 

The first possibility is based on Thorton and Gilden’s 
(2007) implementation of early terminations in a purely 
serial search model; that observers do search exhaustively 
through all items in the display (until a target is located) but 
that the threshold for responding negatively decreases as the 
number of items compared increases. In other words, we 
allow bF to get smaller as comparisons continue: The 
response threshold for the target absent accumulator for the 
jth item compared, where j>1, was bF – (ΔbMAX – ΔbITEM (D – 
j)). Such an assumption has two effects: 1) It reduces the 
average amount of time required to respond negatively 
especially by decreasing the longest response times. 2) It 
decreases the variability in the predicted response time 
distributions, again because the longest response times tend 
to be eliminated. 

 
Early Terminations 

The second possibility is an early termination decision not 
tied to a particular evidence collection process, but instead 
to the display size and the number of comparisons or time 
taken searching without success. We implemented this idea 
by assuming a probability of terminating search with a 
negative decision that increases with the proportion of 
display items thus far compared unsuccessfully. This 
assumption will decrease the average response times, of 
course, but unlike collapsing thresholds, will increase the 
variance (because terminations that do not depend directly 
on the evidence being collected adds additional variability).  

In line with the thought that participants will become 
increasingly likely to terminate with the increasing passage 
of time and unsuccessful comparisons, we set the 
probability of terminating early to be a logistic 
transformation of the proportion of the display items 
compared unsuccessfully thus far: pNO = (1-e(p-µ)/σ)-1, where 
µ and σ are the location and scale parameters of the 
transform, and p is the proportion of the display thus far 
compared. This sigmoid function gets especially large as the 
search nears completion, thus making the probability of 



terminating early very large as the proportion of items 
searched increases. Note that we chose to set σ to be fixed 
across participants, allowing only µ to vary between 
participants. 

Non-Decision Times and Switch Times 
Fits of the model as described thus far revealed two small 

but systematic mispredictions that we fix by adding 
assumptions about non-decision time variation and switch 
times between comparisons. 

First, the data show that the very fastest responses (the 
leading edge of the distributions) slowed as a function of 
display size. We therefore assumed that non-decision time 
varies from trial-to-trial according to a uniform distribution 
with mean TER and range sT.., but allowed TER to increase 
linearly with display size, with a parameter ΔTER. 

Second, the modes of the observed response time 
distributions were farther apart than predicted by the model 
as described thus far. We therefore assumed that there is an 
extra time required to switch from one comparison to the 
next, tSWITCH.  

 

Fits to the Cousineau and Shiffrin (2004) Data 
Cousineau and Shiffrin (2004) reported the results of a set 

of standard visual search conditions that were part of a 
much larger study. We have fit the model to many other 
conditions but will show here only fits of the model to 
response time distributions from each of the three 
participants for the standard conditions in training sessions 
34 to 44. We show the detailed predictions for sessions 34 
to 44 because inspection showed that learning had slowed 
enough to allow collapsing of the data across sessions to 
take place without undue distortions.  

Methods 
More details can be found in Cousineau and Shiffrin 

(2004). There were four target and four foil stimuli, all 
composed of a circle with short line segments (spokes) 
pointing outwards at eight different positions around the 
circle. Items maintained their role as targets and lures 
throughout the entire study. Target items were defined by a 
conjunction of features (i.e., the spokes on the circles), such 
that at least one foil item shared at least one feature with all 
target items. Targets were defined by a conjunction of 
features so as to inhibit perceptual pop-out. The extended 
and consistent training should have produced what Shiffrin 
and Schneider (1977) termed automatic categorization by 
which the set of four targets comes to act as a single 
category that can be compared in one step (analogous to 
searching for a letter among numbers without checking each 
possible letter). Thus in applying the model we assume that 
there is a single target rather than four. 

Each trial began with a fixation star presented in the 
center of the display for 1000ms. The participants were then 
shown, for 500ms, a set of featureless stimuli (i.e., circles 
without spokes) where the stimuli for that trial were to be 

presented, after which time the features arrived (i.e., spokes 
were added to the empty circles) and remained until a 
response was made. Display size, D, was either one, two or 
four, with each display size occurring equally often within a 
block of trials. Stimuli were presented in the four corners of 
an imaginary square so that the entire display viewed at 
50cm was within 2° vertically and 3° horizontally. For 
display sizes less than four, positions in the square were 
chosen randomly. One of the four target items was present 
on 50% of the trials in a block, with the order of target 
present and target absent trials chosen randomly, and with 
the target location being chosen randomly. Feedback on the 
speed and the accuracy of the response was given after each 
trial. Each block consisted of 108 trials, and each session 
had 6 blocks. 

 
Table 1 Parameter estimates for each participant. Dashes (-) 
indicate parameters not used. a Indicates parameters whose units 
are seconds. b Indicates parameters whose units are per second. 
Other parameters have arbitrary units. 
 

 Participant 

 A B C 
vT

b 1 0.9 0.85 
vF

b 0.95 0.92 0.82 
sb 0.25 0.26 0.23 
bT 0.21 0.1 0.11 
bF 0.17 0.135 0.12 

TER
a 0.2 0.25 0.205 

ΔTER
a 0.02 0.025 0.03 

sT
a 0.05 0.1 0.075 

vPAR
b - 4 7 

tSWITCH
a 0.045 - 0.025 

µ - 0.57 0.46 
ΔbMAX 0.075 - - 
ΔbITEM 0.0325 - - 

 

Results and Model Fits 
Figure 2 contains histograms of response time 

distributions for correct and incorrect responses (black and 
grey, respectively) for display sizes one, two and four (top, 
middle and bottom rows, respectively), for target present 
and target absent trials (left and right columns, respectively) 
for each of the three participants (A-C). The model 
predictions are given by the triangles  

Probably most striking in the observed data are the 
distinct modes observed for target present trials when 
display size was greater than one, modes arguing strongly 
that search does include a serial comparison process. The 
procedure of identifying stimulus locations before each trial 
is atypical, but has the advantage of allowing the participant 
to plan an order of successive serial comparisons, thereby 
reducing some of the  ‘noise’ that is found in typical search 
tasks. We believe that this method is what allowed us to see 
multiple modes in the target present response time 
distributions.  



Participants B and C do not show modes as clearly as 
does A, and these participants appear to have been reliably 
guided to the correct location more often and sooner than 
was the case for A.  
 
Fitting the Model 

There are at most eleven freely estimated parameters per 
participant used to fit sessions 34-44, seven of which are 
associated with the comparisons to one display item in the 
serial process (a few other other parameters were fixed 
rather than estimated, as described below). The seven 
comparison parameters, vT, vL, s, bT, bL, TER, and sT, were 
estimated from the data for display size of one (i.e., the top 
row of Figures 2A-2C). Fitting this way aligns with the 
assumption that the serial comparison process is identical 
for all items, regardless of the progress of the ongoing 
search. It also provides a great deal of constraint on the 
predictions of the model.  

With these parameter values fixed, we next estimated the 
values of the residual time and switch time parameters, 
tSWITCH and ΔTER. Finally we estimated parameters for the 
parallel guidance process. To minimize the number of free 
parameters required for this parallel process, we freely 
estimate only one parameter, vPAR, used for all display sizes, 
while the other parameters were fixed at values of bPAR = .1, 
tPAR = .12 seconds and sPAR = 1.5 per second, for all three 
participants. 
 Finally, we fit three different versions of the model to 
each participant – a version with only collapsing thresholds, 
a version with only our early termination process, and a 
version that included both of these processes. We found that 
the early termination process alone worked reasonably well 
for participants B and C, and that the collapsing thresholds 
process was required for participant A, and show predictions 
for these models.  

The fits of the model are shown by the connected 
triangles in Figure 2. Model predictions were generated by 
simulating 20,000 trials per display size per target presence 
condition (i.e., present or absent). The parameters of the 
model were estimated by hand, in the order previously 
outlined, and were chosen to produce visual agreement 
between histograms of model predictions and observed data. 
Table 1 contains the parameter values that produced the 
predictions in the figures. 
 The parameter values show what is evident from 
inspection of the data: Participants B and C had much 
stronger parallel guidance processes than participant A. The 
rate of accumulation in the parallel guidance process was 
large for participant C, 7u/s, smaller for B, 4u/s, and very 
small for A (in fact we set it to 0 for A).  

The choice to use just one early termination process for B 
and C leads to what is probably the only serious 
misprediction, the multi-modality predicted for their target 
absent responses. We found that adding a collapsing 
thresholds assumption in addition to early termination fixed 
this problem, but decided to show predictions of the simpler 
model. 

 
Figure 2 Response time distributions for correct responses in each 
of the display size conditions (rows) and target present or absent 
conditions (columns) in the simultaneous presentation (i.e., 
control) conditions for each of the three participants A-C. 
Observed data are represented by histograms and model 
predictions by joined triangles. The proportion of correct 
responses, both observed and predicted are shown by  and , 
respectively. 
 

Discussion 
The model has at its heart a parallel process that guides 

the order of serial comparisons. However, to fit the exact 
shape of each participant’s full response time distributions 
requires auxiliary assumptions that do add complexity to the 
model. The extra complexity is in our view justified because 
this is essentially the first time that a model has been fit to 
complete distributions of visual search data, and because the 
assumptions are plausible and applied in reasonable ways 
across participants and display size conditions. Another and 
perhaps even stronger justification lies outside of the present 
article, because this model has been applied successfully to 
many more conditions with response time distributions 
collected by Cousineau and Shiffrin (2004) and to many 



additional conditions with response time distributions 
reported in Wolfe et al. (2010). A much longer article is 
being prepared reporting those applications.  

Aside from the general success of this model combining 
parallel and serial processes in the form of a guided search, 
the model provides noteworthy insights into individual 
differences in the way the participants carry out visual 
search: Even though they carried out identical tasks, they 
varied enormously in the extent to which they allowed the 
parallel process to guide serial comparisons. Participants B 
and C enjoyed strong parallel guidance, suggesting that they 
had developed a form of perceptual attraction to the target 
stimuli, and allowed that attraction to guide comparisons. 
Participant A, on the other hand, appeared not to use such 
guidance, either because targets did not come to attract 
attention or because such learning was overwritten and 
ignored.  

In a recent study of stereotype threat on learning in visual 
search Rydell et al. (in press) showed that women under 
stereotype threat did not show improvement over training in 
rates of search, although such improvement was seen for 
control groups of women. The authors hypothesized that the 
women under threat may have tried very hard to search 
without error and in a chosen order of comparison. Since 
guidance would have interfered with the chosen order, the 
learning of automatic attention attraction may have been 
inhibited. That learning had not occurred (as opposed to 
being ignored) was demonstrated in an incidental transfer 
task in which trained targets produced interference for the 
control women but none for the women under threat. It is 
possible that participant A inhibited learning for related 
reasons. The idea that participant A may have been ‘trying 
too hard’ is consistent with another finding suggested by the 
modeling, that A chose not to terminate search early. That 
is, instead of an arbitrary early termination late in search, A 
instead moved thresholds closer to the start point, so that the 
search did end with some specified resolution. Participants 
B and C terminated their search with a target absent 
response on almost every trial in which they had not found a 
target after two items had been scanned. One could argue 
that this behavior was appropriate for these participants 
because when the target was present they were reliably 
guided to the target before having to scan more than two 
items.  

It is probably obvious both that the model development 
reported here was constrained and guided by the data and 
that a number of alternative assumptions are plausible and 
need to be tested. Such testing could and should be carried 
out on the present data sets, on the additional data sets to 
which the model has been applied but not reported in this 
paper, and on response time distributions collected in new 
studies designed to test particular assumptions. Nonetheless, 
the application to the fitting of full response time 
distributions is an excellent starting point, and has provided 
new insights into the nature of visual search and its 
component processes.   
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