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Abstract

Does the similarity between two items change over time? Pre-
vious studies (Goldstone & Medin, 1994; Gentner & Brem,
1999) have found suggestive results but have relied on inter-
preting complex interaction effects from “deadline” decision
tasks in which the decision making process is not well un-
derstood (Luce, 1986). Using a self-paced simple decision
task in which the similarity between two items can be isolated
from strategic decision processes using computational model-
ing techniques (Ratcliff, 1978), we show strong evidence that
the similarity between two items changes over time and shifts
in systematic ways. The change in similarity from early to
late processing in Experiment 1 is consistent with the theory
of structural alignment (Gentner, 1983; Goldstone & Medin,
1994), and Experiment 2 demonstrates evidence for a stronger
influence of thematic knowledge than taxonomic knowledge in
early processing of word associations (Lin & Murphy, 2001).
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Introduction
Similarity plays an important role in cognitive science. Theo-
ries of categorization, induction and memory are all substan-
tially reliant on some notion of stimulus similarity. Empiri-
cally, measures of stimulus similarity are used to supply men-
tal representations via statistical techniques like multidimen-
sional scaling, additive clustering and others. Yet similarity
itself is notoriously slippery. It cannot be defined logically,
on the basis of shared properties (Goodman, 1972), and it is
sensitive to a variety of factors that suggest that the sense of
similarity is not a primitive, but rather is constructed on the
fly by the cognitive system (Medin, Goldstone, & Gentner,
1993).

From this perspective, our theories must not merely de-
scribe the information people use to judge similarity: we must
also consider when different sources of information become
available to the decision maker. The answer to this question is
not obvious: stimulus features might vary in their salience, in
the amount of cognitive processing required to activate them,
and in the ease by which they can be cued and recalled from
memory. Any of these factors could influence when these fea-
tures can contribute to judging similarity. To the extent that
they do, the perceived similarity between two items should
systematically change during the time course of the decision.

Detecting these changes with empirical measures has
proven difficult. Some studies (Goldstone & Medin, 1994;
Gentner & Brem, 1999) have found suggestive results, rely-
ing on “deadline” tasks that force participants to respond after
a fixed amount of time. In these designs, an interaction effect

between choice probabilities and response deadline is inter-
preted as the signature of time-dependent similarity, gener-
ally using ANOVA or related techniques. Yet, as the literature
on choice response times indicates (Luce, 1986), there is no
reason to expect that human choice probabilities will be well-
described using the linear model underpinning ANOVA, nor
is there any reason to believe that people do not adapt their
decision criteria to suit a response deadline, opening up the
possibility that these effects are merely artifacts of strategic
behavior and do not reflect true differences in the underlying
similarity perceived by participants.

Our goal in this paper is to address these limitations us-
ing standard methods for modeling choice response times
(Ratcliff, 1978). In doing so we replicate effects pertaining to
structural alignment in similarity (Goldstone & Medin, 1994)
and the taxonomic/thematic distinction (Gentner & Brem,
1999), and in both cases are able to demonstrate novel find-
ings.

Choice response time in similarity based tasks
The experimental framework we rely on is a standard two
alternative forced choice task. Unlike “deadline” tasks
that force participants to respond before an experimenter-
controlled cutoff, we employ a subject-controlled design that
allows participants to respond when they are ready. This de-
sign is the standard task in the literature on simple decisions
(e.g. Luce, 1986). The response time is manipulated indi-
rectly using an instructional manipulation: participants are
asked either to respond as fast as possible or to respond as
accurately as possible. The advantage to this manipulation is
that its properties are well understood, and psychologists have
developed computational models that can cleanly disentangle
the accumulation of similarity evidence over time from the
decision strategies of how and when to use that information.
In essence, instead of relying on ANOVA to do the statistical
inference, we rely on customized statistical models that are
derived directly from standard psychological theory: in this
case, we rely on a hierarchical extension of the drift-diffusion
model (Ratcliff, 1978).

The diffusion model treats a choice problem as a process
of evidence accumulation that unfolds over time. The aver-
age rate of evidence accumulation is referred to as the drift
rate: in a similarity-based decision, it acts as a measure of
the relative similarity among the choice options. Evidence
accrues until a sufficient amount of evidence is reached. The
amount of evidence required is captured by a boundary sep-



Figure 1: A sample trial from Experiment 1 composed of two panels.
This trial shows a stimulus with 2 MIPs (yellow and brown squares
in identical positions) and 2 MOPs (the green and blue squares are
in different positions). Because the green and blue squares are not
in the same position, these are DIFFERENT items.

aration parameter, and is assumed to be under the control of
the participant. In these tasks drift rates capture the underly-
ing similarity signal and the boundary separation parameter
describes the decision strategy used to make choices about
similarity.1

Experiment 1: Structural alignment processes
An early investigation of how similarity unfolds over time
comes from the work of Goldstone and Medin (1994), and
focuses on structural alignment. Inspired by work on ana-
logical reasoning, Goldstone and Medin (1994) proposed a
formal theory of how people assess the similarity between
structured stimuli. To give a simple example, consider the
stimuli shown in Figure 1. Each “cross” stimulus consists of
four “slots” each of which can be occupied by squares of dif-
ferent color. The spatial arrangement of the slots ensures that
the stimuli are not merely four blobs of color: instead, they
are organized into a specific configuration, ensuring that the
two items shown in Figure 1 are distinct.

Inspired by theories of analogical reasoning (Falkenhainer,
Forbus, & Gentner, 1989; Gentner, 1983, 1989), Goldstone
and Medin (1994) proposed a formal model of similarity
(SIAM) that makes a clear prediction about how such stim-
uli are processed. The raw featural information (i.e., which
blobs of color are present) is processed quickly and provides
the first impressions of similarity, not dissimilar to how sim-
ilarity is assessed in simple featural models (Tversky, 1977).
The relational information that allows the colors of one stim-
ulus to be matched against colors in another stimulus arrives
more slowly, because the cognitive system is engaged in an
active process of aligning the representations of one stimulus
against the other (Falkenhainer et al., 1989; Gentner, 1983,
1989).

Experiment 2 from Goldstone and Medin (1994) tested this
idea using the “cross” stimuli shown in Figure 1. Participants
were presented with pairs of stimuli and asked to judge if
they were identical or not (i.e., a same-different task). To
characterize a pair of stimuli, they introduced the following

1The full diffusion model is somewhat more complex than this,
but given that it is a standard model for choice tasks we omit all the
details in the interests of brevity. In all our model fitting, the only
parameters that were allowed to vary across conditions were drift
and boundary separation, so we restrict the discussion only to these
relevant aspects of the model.

Condition Stimulus A Stimulus B Count
0 MIPS 0 MOPS ABCD EFGH 50
0 MIPS 2 MOPS ABCD BAEF 50
2 MIPS 0 MOPS ABCD ABEF 50
0 MIPS 4 MOPS ABCD BCDA 50
2 MIPS 2 MOPS ABCD ABDC 50
SAME (4 MIPS) ABCD ABCD 250

Table 1: The six stimulus conditions in Experiment 1. The letters
A through H indicate unique randomly chosen colors, and each col-
umn corresponds to one of the four positions in the cross. Condition
names reflect the number of MIPs and MOPs in each condition, and
the count column indicates the number of presentations of each con-
dition.

terminology. If the same color appears in the same position
for both stimuli, that feature is a match in place (MIP). If
the same color appears in a different position it is a match
out of place (MOP). A color that appears in one stimulus
but not the other is a mismatch. The qualitative prediction
made by Goldstone and Medin (1994) is that during the ini-
tial stage of processing there is no difference between MIPs
and MOPs, because the featural information (color) is present
but no relational mappings between the stimuli have been at-
tempted. In essence: under time pressure, MOPs and MIPs
should both count as evidence in favor of choosing “same”,
but when more time is presented only MIPs should count as
evidence for choosing “same” and MOPs should count as ev-
idence for “different”.

Method
Participants 262 workers on Amazon’s Mechanical Turk
were recruited, 13 of whom were excluded for failing to com-
plete the task. Of the remaining 249, 43% were female. Ages
ranged from 18 to 66 years (mean: 34). 84% were from the
USA, 14% from India, and 2% from other nations.

Materials & Procedure The stimuli used in the task are il-
lustrated in Figure 1. Each colored square was 40 pixels wide,
and the positions of the crosses jittered slightly from trial to
trial. Across all trials, there were 8 colors used (red, blue,
green, yellow, turquoise, brown, gray, and orange). Colors
were assigned randomly subject to the constraints outlined in
Table 1, which lists 6 logically distinct stimulus conditions.
On half of the 500 trials the two items were identical (i.e.,
4 MIPS). On the other half of trials, there was at least one
MOP or one mismatch. However, there were 5 distinct ways
in which the items were different, as outlined in Table 1. In
the 0 MIPS 0 MOPS condition, for instance, the items shared
no color features, whereas in the 0 MIPS 4 MOPS the items
share the same four colors, but no color appeared in the same
position. In potentially the most confusing condition (2 MIPS
2 MOPS) the same four colors appear in both items, two in
the same positions of both items and two with their positions
swapped.

The “cross” stimuli and the same-different task were ex-
plained to all participants. For the 116 participants assigned
(randomly) to the speed condition, the instructions asked
them to respond as quickly as possible. During the task it-
self, if they did not respond within 1000 ms they were in-
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Figure 2: Median response times across stimulus types split into
Speed and Accuracy instruction conditions. Response times in the
Accuracy condition are influenced by the stimulus type but response
times for the Speed condition are relatively constant. Error bars de-
pict one standard error.
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Figure 3: Accuracy across stimulus types split into Speed and Ac-
curacy instruction conditions. Participants in the Speed instruction
condition incorrectly classify the 2 MIPS 2 MOPS stimuli in which
all of the colors matched between the two panels but two colors were
not in the same positions. Error bars depict one standard error.

formed that they were “too slow” after that trial. The remain-
ing 133 participants were assigned to the accuracy condition
and were encouraged to answer as accurately as possible, and
were provided with “incorrect” feedback when their answer
was wrong. Feedback was presented for 700 ms. Every 50
trials participants were given a break and told their accuracy
and average response time in the previous block. During these
breaks between blocks participants were reminded to be fast
or accurate depending on their condition.

Results
Figure 2 plots the median response time (RT) for each of the
six stimulus types under both speed instructions and accuracy
instructions. Figure 3 shows the corresponding plots for ac-
curacy. Visual inspection of the plots suggests substantial and
systematic differences in RT and accuracy across the stimu-
lus types and instruction conditions. Bayesian mixed effects
ANOVA (see Rouder, Morey, Speckman, & Province, 2012)
confirms this: Bayes factors for all main effects and inter-

actions indicate that the odds of an effect exceed 1025 in all
cases.2 However, the mere fact that the experimental manip-
ulations were effective does not make clear precisely how the
conditions influenced people’s perceptions of similarity and
their decision strategy. To investigate this, we analyze the
data in a more principled fashion using the diffusion model.

Modeling
We use the diffusion model (Ratcliff, 1978) to jointly model
the response time and accuracy at the individual subject level.
To avoid overfitting the data we used a Bayesian hierarchi-
cal approach to estimate individual subject parameters (i.e.
drift and boundary separation) as well as group-level distri-
butions over these parameters (assumed to be normal).3 The
boundary separation parameter was allowed to vary only as a
function of the speed/accuracy instructions. A separate drift
rate parameter was fit to each unique combination of stimulus
condition and speed/accuracy instructions because previous
work suggests that different information was likely to con-
tribute early and late to similarity judgments for some stimu-
lus conditions.

The posterior distributions over drift and boundary sepa-
rations are plotted in Figure 4. Not surprisingly, boundary
separation is much smaller under speed instructions,4 indi-
cating that people made their decisions faster and using less
evidence. Similarly, the pattern of results for the drift pa-
rameter are very sensible with positive drift rates indicating
evidence for “different” judgments. The most visually dis-
tinct stimuli (0 MIPS, 0 MOPS) have the highest drift rates,
implying they are the most dissimilar. The identical stimuli
(4 MIPS, 0 MOPS) have negative drift rates, indicating that
people correctly detect them.

The critical result arises when we compare drift rates for
the same stimulus conditions under time pressure (speed con-
dition) and without pressure (accuracy condition). The gen-
eral pattern is similar, but there are two stimulus conditions
that show noteworthy differences: whenever the items were
different but only differentiated by the positions of the colors
(i.e., 0 MIPS 4 MOPS and 2 MIPS 2 MOPS), the drift rate is
much lower in the speed condition than the accuracy condi-
tion, even after accounting for the fact that drift rates decrease
generally.

This suggests that under time pressure people are differ-
entially impaired at distinguishing between items that differ
only in the configuration. In fact, in the most confusable
case where only a single transposition differentiated the items

2Model comparisons used a Bayesian analog of Type II tests in
orthodox ANOVA to define relevant null and alternative hypotheses.

3Model implementation used JAGS (Plummer et al., 2003;
Wabersich & Vandekerckhove, 2014), ran three MCMC 1000-
sample chains with a 500-sample burn-in to approximate the pos-
terior distribution over parameters.

4For the sake of brevity we avoid quantifying the obvious fact
that the results are significant. In every case when we refer to a
difference, the posterior distributions in question are entirely non-
overlapping, implying that the data provide extremely strong evi-
dence for a real difference.
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Figure 4: Experiment 1 posterior distributions of hierarchical dif-
fusion model parameters. The left panel shows the posterior dis-
tributions of the boundary separation parameters of the Speed and
Accuracy instructions conditions. The right panel shows the poste-
rior distributions of the drift rate parameters of the stimulus types
across instruction conditions. The drift rate parameters are plotted
such that positive drift rates are consistent with making DIFFERENT
responses.

we see a qualitative reversal: the drift rate for the 2 MIPS 2
MOPS condition is toward the incorrect response in the speed
condition. This indicates that even after accounting for strate-
gic effects people were substantially worse than chance when
put under time pressure for that stimulus condition. Yet the
drift rate for the same condition is toward the correct response
in the accuracy condition, suggesting that later processing
correctly interprets those items as different.

Discussion
The pattern of results outlined above exactly matches the pre-
dictions made by Goldstone and Medin (1994) in a different
task, and arguably provides stronger evidence than the orig-
inal work. For the 2 MIPs 2 MOPs condition in particular
we find a qualitative reversal: under time pressure people ap-
pear to process only the raw featural information, and because
they do not detect the structural difference between the items
they perform below chance. When more time is allowed par-
ticipants are able to process the relational information in the
stimuli and correctly detect the difference between the items.
More generally, we see broad evidence that during the initial
stages of processing stimulus similarity is heavily reliant on
raw featural information, and only later do structural align-
ment processes shape perceived similarity.

Experiment 2: Thematic and taxonomic
knowledge

We illustrate the generality of the diffusion modeling ap-
proach to disentangling the time course of similarity by ap-
plying it to a different kind of similarity judgment problem.
In this experiment we look at a choice task in which people
are shown a target word and asked to select which of two
words is more closely related to the target. In particular, we
consider decisions in which people must choose between the-
matic and taxonomic word associates. A taxonomic relation
exists when two words pick out entities of the same kind (e.g.,
dog and wolf), whereas a thematic relation picks out entities
that appear in similar situations (e.g., dog and bone).

The exact fashion in which taxonomic and thematic knowl-
edge shape similarity is somewhat unclear. Developmentally,
there is evidence that thematic knowledge is acquired before
taxonomic knowledge (Markman, 1991; Smiley & Brown,
1979). Although most studies assume taxonomic knowledge
is central to categorization (Rosch, 1978), there is strong evi-
dence that thematic knowledge can be just as powerful if not
more so (Lin & Murphy, 2001), as well as studies suggest-
ing that people are able to integrate both kinds of knowledge
depending on task demands (Wisniewski & Love, 1998; Wis-
niewski & Bassok, 1999).

Do both thematic and taxonomic knowledge follow the
same time course? A “deadline” study by Gentner and Brem
(1999) found modest evidence that when given a taxonomic
judgment task thematic lures interfere with taxonomic pro-
cessing. In experiment 2 we set out to determine the degree
to which the Gentner and Brem (1999) results were due to a
strategic shift in responding due to task constraints, a result
of source confusion under time pressure, or an actual change
from early to late processing in the similarity of taxonomic
and thematic words. Furthermore, we test the degree to which
the Gentner and Brem (1999) results are an asymmetric effect
of thematic knowledge interfering with taxonomic processing
or an overall interference between these two types of knowl-
edge in early processing.

Method
Participants 416 workers were recruited through Amazon
Mechanical Turk, 27 of whom were excluded for not com-
pleting the task or completing a substantially similar one. Of
the 389 included participants, 43% were female. Ages ranged
from 18 to 69 years old (mean: 35). 90% of participants 90%
were from the USA, 9% from India, and 1% other.

Materials & Procedure Stimuli consisted of 93 triads
composed of a target word, a taxonomically-related word and
a thematically-related word. The triads were drawn from 6
previous studies (Gentner and Brem (1999), Lin and Mur-
phy (2001), Ross and Murphy (1999),Smiley and Brown
(1979), Wisniewski and Love (1998), Wisniewski and Bas-
sok (1999)), presented in a random order, and can be found
online.5 During the task the three items were displayed in a
triangle with the target word at the top and the two response
options positioned below to the left and right. Participants
responded using the keyboard to select a response option.

The task used two between-subjects manipulations, with
participants assigned randomly. As before, participants were
given speed instructions or accuracy instructions, with feed-
back given whenever the participant was slower than 1500ms
(in the speed condition) or chose the wrong option (in the
accuracy condition).

The second manipulation instructed participants to focus
on one kind of relation or the other. In the taxonomic con-
dition they were asked to select the taxonomic associate,

5https://gist.github.com/drewhendrickson/
e01dff14823b54ca54df
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Figure 5: Probability of selecting the thematic candidate word as a
function of the four instructional conditions. There was a significant
interaction between Speed and Accuracy instruction conditions and
Thematic and Taxonomic response conditions. Error bars indicate
one standard error.

whereas in the thematic condition they had to select the the-
matically related item. In both conditions, participants were
shown an example of a target word (computer) and the task
explained whether they were supposed to pick the taxonomic
associate (calculator) or the thematic one (desk).

Results
The average accuracy in all four conditions is plotted in Fig-
ure 5, and the median RT is shown in Figure 6. For the ac-
curacy data, Bayesian mixed effects ANOVA suggests that
the data provide evidence of both a main effect of response
instruction and an interaction term (Bayes factors for the rel-
evant model comparisons are all > 1085), but evidence for
a null effect of speed instruction (Bayes factor: 0.1). For
the RT data, there is evidence only for a main effect of
speed/accuracy (Bayes factor: 1020), but evidence for a null
effect of response instruction (Bayes factor: 0.1). As before,
however, a clearer picture emerges when we use the diffusion
model to jointly model choice and response time.

Modeling
Once again, we applied a hierarchical diffusion model in
which boundary separation is influenced only by speed in-
structions, but allowed separate drift rates to be estimated for
all four conditions. The posterior distributions over the rele-
vant parameters are shown in Figure 7. On the left side the
boundary separation is plotted. As one would expect, telling
people to respond quickly caused the boundary separation to
decrease: as before, people responded faster using less evi-
dence.

Of more interest is the fact that the effects on drift rates on
the right side of Figure 7. This plot is drawn so that the cor-
rect answer always corresponds to positive drift rate. Under
accuracy instructions, the drift rates are high and the poste-
rior distribution for the taxonomic condition overlaps heavily
with that of the thematic condition. When there is no time
pressure, people find it equally easy to identify a thematic re-
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Figure 6: Median response times across Thematic and Taxonomic
response instructions and split by Speed and Accuracy instruction
conditions. Reaction time is strongly influenced by Speed instruc-
tions but shows no difference due to the response instructions. Error
bars indicate one standard error.
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Figure 7: Experiment 2 posterior distributions of hierarchical dif-
fusion model parameters. The left panel shows the posterior dis-
tributions of the boundary separation parameters of the Accuracy
and Speed instructions conditions. The right panel shows the poste-
rior distributions of the drift rate parameters of the Taxonomic and
Thematic instructions conditions in both the Accuracy and Speed in-
struction conditions. The drift rate parameters are plotted such that
positive drift rates are consistent with the correct word choice.

lation as a taxonomic one.
Under speed instructions, this symmetry breaks. It is not

merely the case that the drift rates are lower, which would
imply that people find it difficult to detect the differences be-
tween thematic-relatedness and taxonomic-relatedness under
time pressure. In addition to this, the effect is asymmetric.
The fact that drift rates are lower in the taxonomic condition
than in the thematic condition implies that the thematic “sig-
nal” arrives faster than the taxonomic one.

Discussion
As with Experiment 1, we find evidence that the time course
of comparison is not homogeneous. When participants are
given sufficient time to make choices, the information pro-
cessing shows no bias towards thematic or taxonomic knowl-
edge. However, under time pressure, people are better able to
detect a thematic link than a taxonomic one. This result mir-
rors the developmental trajectory (Smiley & Brown, 1979),
suggesting that not only is thematic knowledge acquired at a
younger age, but that the processing of this information re-
mains faster even in adulthood. Alternatively, it may be that



taxonomic information requires more deliberative processing
and thus is slower and has less effect when people are pres-
sured to respond quickly (Wisniewski & Bassok, 1999; Wis-
niewski & Love, 1998; Gentner & Brem, 1999).

General Discussion
Employing the hierarchical drift-diffusion model to isolate
the changes in similarity between early and late processing
we find evidence in both experiments that the similarity be-
tween items changes in predictable ways over time. Both ex-
periments show compelling evidence that the similarity be-
tween two items is not a static, stable value but one that
emerges, shifts, and qualitatively changes signal over the first
few seconds of processing. Critically, this difference between
early and late similarity signals is not uniform across all con-
ditions, in both experiments we find that the change in simi-
larity influences some conditions and stimuli more than oth-
ers.

Interestingly, these conclusions are not straightforward or
clear from statistical tests of the accuracy and reaction time
data themselves. The strongest conclusions in both experi-
ments emerge from the interpretation of the posterior distri-
butions of the diffusion model evidence accumulation param-
eters after the effect of shifting decision strategies due to in-
structional manipulations are accounted for by the boundary
separation parameters.

These results appear to complement recent work showing
that drift rates show systematic differences across speed and
accuracy instructions in lexical decision tasks (Rae, Heath-
cote, Donkin, Averell, & Brown, 2014). In the current work
we not only find that drift rates for accuracy conditions are
larger than those for speed conditions, but we find that the
difference between these two depends on the type of infor-
mation in the choice task. Furthermore, these results suggest
that changes over time to the set of included features, due to
complexity, difficulty, or speed of processing, may be an ad-
ditional explanation for the difference between early and late
evidence accumulation.

Acknowledgments
DJN received salary supported from ARC grant
FT110100431. Research costs and salary support for
ATH were funded through ARC grant DP110104949.

References
Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The

structure-mapping engine: Algorithm and examples. Arti-
ficial Intelligence, 41(1), 1–63.

Gentner, D. (1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science, 7(2), 155–170.

Gentner, D. (1989). The mechanisms of analogical learning.
Similarity and Analogical Reasoning, 199, 199–241.

Gentner, D., & Brem, S. K. (1999). Is snow really like a
shovel? distinguishing similarity from thematic related-
ness. In Proceedings of the twenty-first annual meeting of
the Cognitive Science Society (pp. 179–184).

Goldstone, R. L., & Medin, D. L. (1994). Time course of
comparison. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 20(1), 29–50.

Goodman, N. (1972). Seven strictures on similarity. In Prob-
lems and projects. Bobs-Merril.

Lin, E. L., & Murphy, G. L. (2001). Thematic relations
in adults’ concepts. Journal of Experimental Psychology:
General, 130(1), 3–26.

Luce, R. D. (1986). Response times. Oxford University
Press.

Markman, E. M. (1991). Categorization and naming in chil-
dren: Problems of induction. MIT Press.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Re-
spects for similarity. Psychological Review, 100(2), 254–
278.

Plummer, M., et al. (2003). JAGS: A program for analysis of
bayesian graphical models using gibbs sampling. In Pro-
ceedings of the 3rd international workshop on distributed
statistical computing (DSC 2003). March (pp. 20–22).

Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown,
S. (2014). The hare and the tortoise: Emphasizing speed
can change the evidence used to make decisions. Journal
of Experimental Psychology: Learning, Memory, and Cog-
nition, 40(5), 1226–1243.

Ratcliff, R. (1978). A theory of memory retrieval. Psycho-
logical Review, 85(2), 59–108.

Rosch, E. H. (1978). Principles of categorization. In
E. H. Rosch & B. B. Lloyd (Eds.), Cognition and catego-
rization. Hillsdale, NJ: Erlbaum.

Ross, B. H., & Murphy, G. L. (1999). Food for thought:
Cross-classification and category organization in a com-
plex real-world domain. Cognitive Psychology, 38(4), 495–
553.

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province,
J. M. (2012). Default bayes factors for anova designs.
Journal of Mathematical Psychology, 56(5), 356–374.

Smiley, S. S., & Brown, A. L. (1979). Conceptual preference
for thematic or taxonomic relations: A nonmonotonic age
trend from preschool to old age. Journal of Experimental
Child Psychology, 28(2), 249–257.

Tversky, A. (1977). Features of similarity. Psychological
Review, 84(4), 327–352.

Wabersich, D., & Vandekerckhove, J. (2014). Extending jags:
A tutorial on adding custom distributions to jags (with a
diffusion model example). Behavior Research Methods,
46(1), 15–28.

Wisniewski, E. J., & Bassok, M. (1999). What makes a man
similar to a tie? Stimulus compatibility with comparison
and integration. Cognitive Psychology, 39(3), 208–238.

Wisniewski, E. J., & Love, B. C. (1998). Relations versus
properties in conceptual combination. Journal of Memory
and Language, 38(2), 177–202.


