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Externalizing psychopathology (EXT) is associated with low executive working memory (EWM)
capacity and problems with inhibitory control and decision-making; however, the specific cognitive
processes underlying these problems are not well known. This study used a linear ballistic accumulator
computational model of go/no-go associative-incentive learning conducted with and without a working
memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime
problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an
EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the
cognitive processes underlying disinhibited decision-making (more false alarms, faster evidence accu-
mulation rates for false alarms [vFA], and lower scores on a Response Precision Index [RPI] measure of
information processing efficiency). The WM load increased disinhibited decision-making, decisional
uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower
scores on the latent disinhibited decision-making variable (lower false alarms, lower vFAs and RPI
scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and
disinhibited decision-making under no-WM load, and completely mediated this association under WM
load. The results underline the role that EWM has in associative—incentive go/no-go learning and
indicate that common to numerous types of EXT are impairments in the cognitive processes associated
with the evidence accumulation—evaluation—decision process.
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Various types of externalizing psychopathology (EXT), such as
conduct disorder, ADHD, antisocial personality, and substance use
disorders, are associated with poor self-control, typically reflected in
impulsive decision-making and difficulties learning to avoid engaging
in behaviors that are likely to result in negative consequences (Bar-
kley, 2001; (Bobova, Finn, Rickert & Lucas, 2009; Finn, Mazas,
Justus & Steinmetz, 2002). Recent research also indicates that EXT
represents a spectrum of commonly occurring disorders or symptoms

that share a common disinhibitory vulnerability (Bobova et al., 2009;
Krueger et al., 2002). Evidence suggests that the psychological mech-
anisms thought to contribute to this disinhibitory vulnerability are not
unique to any one EXT disorder, rather they are common to the shared
covariance among different EXT disorders (Bogg & Finn, 2010).
Dual process models of self-regulation posit that poor self-regulation
is a result of an interaction between deficient cognitive control/
reflective processes, such as reduced executive working memory
(EWM) capacity, and strong impulsive processes, such as strong
reward–approach processes and weak punishment–avoidance pro-
cesses (Finn, 2002; Weirs, Ames, Hofmann, Krank & Stacey, 2010).
The present study investigates the association between compromised
EWM capacity, decision-making in an approach–avoidance associa-
tive learning context, and a dimensional characterization of EXT. We
used a novel computational model, which characterizes the rate and
efficiency of evidence accumulation in decision-making, and a work-
ing memory load to elucidate the dynamic cognitive processes that
may contribute to impaired self-regulation in EXT.

Executive Working Memory Capacity and
Externalizing Psychopathology

Working memory has been described as a limited capacity
information processing system comprising interdependent compo-
nent processes related to the executive control of attention (the
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central executive) and the active maintenance of short-term mem-
ory (STM; Baddeley, 2000; Cowan et al., 2006; Engle, Tuholski,
Laughlin & Conway, 1999; Miyake & Shah, 1999; Shipstead,
Redick, Hicks & Engle, 2012). Although models differ in their
emphasis on specific processes, all models acknowledge a role for
attention, or attention control, in the working memory system. In
fact, common to all models is a “central executive” component
(i.e., EWM) that directs the allocation of attention involved in
shifting attention, resisting distraction, and encoding/retrieving
information from long and STM buffers while maintaining and
updating working memory (Baddeley, 2000; Barrett, Tugade &
Engle, 2004; Cowan et al., 2006; Miyake & Shah, 1999). Research
suggests that the working memory system can be partitioned into
separate capacities for the scope of attention (basic capacity, STM)
and the control of attention (e.g., Cowan et al., 2006; Engle et al.,
1999; Shipstead et al., 2012). Research also suggests EMW ca-
pacity and STM capacity are differentially associated with
approach-avoidance learning and decision-making processes (En-
dres et al., 2011) and fluid intelligence (Engle et al., 1999). A
number of studies indicate that EWM capacity primarily reflects
the capacity to control attention, such as the capacity to retain
goal-related information in primary memory while simultaneously
retrieving information from long-term memory (Barrett et al.,
2004; Shipstead et al., 2012). This process of attention control is
inherent in the deliberation process involved in effective decision-
making (Finn, 2002).

Increasing evidence suggests that reduced EWM capacity
may be associated with the much broader phenotypic expression
of the disinhibitory vulnerability that characterizes EXT psy-
chopathology. Reduced EWM capacity has been associated
with increased trait impulsivity (Gunn & Finn, 2013; Romer,
Bentacourt, Gianetta, Brodsky & Farah, 2009) and a range of
EXT, such as ADHD symptomatology (Barkley, 1997; Barnett,
Maruff & Vance, 2009; Martinussen, Hayden, Hogg-Johnson,
& Tannock, 2005), childhood conduct problems (Barnett et al.,
2009; Finn et al., 2009), adult antisocial behavior (Finn et al.,
2009), and substance use disorders (Finn et al., 2009; Bechara
& Martin, 2004). In fact, studies by Finn and colleagues (Bogg
& Finn, 2010; Endres, Rickert, Bogg, Lucas & Finn, 2011; Finn
et al., 2009) suggest that reduced EWM capacity is common to
the covariance among a number of types of EXT and is not
unique to any one specific disorder. EWM capacity is critical
for the ongoing regulation of behavior (Barkley, 2001; Barrett
et al., 2004; Finn, 2002). Although reduced EWM capacity has
been consistently associated with both high levels of EXT and
poor self-control/impaired decision-making, the specific cogni-
tive processes underlying this association have not been well
studied.

Decision-making and Executive Working
Memory Capacity

Research indicates that reduced EWM capacity is associated
with poor decision-making on a variety of tasks, such as delay
discounting (Bobova et al., 2009; Shamosh et al., 2008), Iowa
gambling task (Bechara & Martin, 2004), and associative-
learning go/no-go tasks with incentives (Endres et al., 2011). In
addition, a WM load has been shown to impair decision-making
on delay discounting tasks (Hinson, Jameson & Whitney, 2003)

and the Iowa Gambling task (Fridberg, Gerst & Finn, 2013;
Hinson, Jameson & Whitney, 2002).

The current study uses a go/no-go, associative learning
decision-making task to model the key self-control processes
involved in learning in which contexts approach behavior is
appropriate and in which contexts approach behavior leads to
negative outcomes and behavior should be inhibited. The sub-
ject’s task is to use trial-and-error learning to discriminate
numerical stimuli that reflect either approach/Go cues or
avoidance/No-go cues. Correct Go responses (hits) result in
rewards (monetary gain) and incorrect Go responses result in
negative consequences (monetary loss). These types of tasks
have been useful in illustrating that those with EXT have
relative difficulty learning to make decisions to inhibit behavior
to avoid negative outcomes, as exemplified in their elevated
false alarm rates (Endres et al., 2011; Finn et al., 2002; Newman
& Kosson, 1987). Although an insensitivity to punishment or
poor modulation of approach behavior are motivational indi-
vidual differences that might underlie impaired go/no-go
decision-making in EXT, the current study seeks to characterize
the extent to which individual differences in aspects of the
cognitive processes associated with EWM capacity are associ-
ated with impaired go/no-go decision-making in EXT.

Although prior research clearly demonstrates that different
forms of EXT are associated with more false alarms on incentiv-
ized go/no-go associative learning tasks, studies have not charac-
terized the cognitive processes underlying these faulty choices. We
theorize that EWM capacity plays a central role in the decision-
making processes in go/no-go associative learning tasks. First,
good performance rests on the capacity to store in, and retrieve
from, long-term (secondary memory) information about which
numbers are Go and which are No-go. On each trial, the individual
must compare the current number (in primary memory) with
information stored in long-term memory about its association with
response outcomes (win or lose). Thus, response accuracy depends
upon the capacity to shift attention between primary and secondary
memory, which is essentially the attention control mechanism of
EWM described by Engle and colleagues (Barrett et al., 2004;
Shipstead et al., 2012). Second, to learn whether any numerical cue
is a Go or No-go cue, one must respond to either cue, encode the
associated response outcome (win or lose), and then store these
cue-contingency associations in long-term memory. In theory, this
involves the shifting of attention from a ‘cue—respond’ mode on
Go trials to a ‘cue—inhibit’ mode on No-go trials. Shifting atten-
tion to cue-inhibit mode is needed to avoid a false alarm, and is
hypothesized to reflect the attention control mechanism associated
with EWM capacity (Barrett et al., 2004; Finn, 2002).

During this dynamic deliberative process, the approach–
avoidance conflict resolves as the attention-switching process ac-
cumulates evidence (drifts) toward an internal criterion for suffi-
cient evidence (threshold) in favor of either the Go response or
No-go nonresponse decision. In theory, this process of scanning
secondary memory traces and then shifting attention back to pri-
mary memory requires that attention control be efficient so that
learned associations will be based on accurate information. Effi-
cient attention control is characterized by good discrimination
between Go and No-go cues, fast evidence accumulation for cor-
rect Go responses (hits), and slow evidence accumulation for
incorrect Go responses (false alarms). Consistent with this notion,
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Endres et al. (2011) reported that greater EWM capacity was
associated with better discrimination (higher d-prime) between Go
and No-go stimuli and lower false alarm rates, and EWM capacity
completely mediated the effect of greater EXT on poor Go/No-go
discriminability and high false alarm rates. Although Endres et al.
(2011) suggested that the poor discrimination between Go and
No-go stimuli associated with EXT reflected a relative insensitiv-
ity to punishment, their Signal Detection model of Go/No-go task
performance did not tap the dynamic trial-level deliberative pro-
cesses noted above. For those with low EWM capacity, the delib-
eration process would be less accurate or efficient in terms of

having more false alarms and less resolution of the conflict be-
tween ‘Go-approach’ and ‘No-go-avoid’ processes. Here, the cen-
tral hypothesis proposed is that EXT and reduced EWM capacity
are responsible for less efficient evidence accumulation processes
while deliberating over Go-approach and No-go-avoid decisions.
On No-go trials, the rate of evidence accumulation for incorrect
(false alarm) responses is hypothesized to be too high relative to
that for correct inhibitions, which leads to higher false alarm rates
(see Figure 1D) and reflects a tendency to jump to the conclusion
that a given stimulus is a Go cue when in fact it might be a No-go
cue.

VFA(Go) ≈ .3 

VNoGo ≈ .7  

VFA(Go) ≈ .7 

VNoGo ≈ .3

VNoGo ≈ .15 

VHT(Go) ≈ .85 

VHT(Go) ≈ .55 

VNoGo ≈ .45  

A 

b 

|--t0---|-- Decision Time ---� 750ms 

Panel A 

High Efficiency Process  

Low Efficiency Process  

Go Trials 

A 

b 

|--t0---|-- Decision Time ---� 750ms 

NoGo Trials 

Panel B 

Go Trials NoGo Trials 

Panel C Panel D 

-------------------------------------------------------------------------------------------------------------------------------------------------

Hit Correct 
inhibition 

False Alarm Hit* 

A 

b 

|--t0---|-- Decision Time ---� 750ms 

A 

b 

|--t0---|-- Decision Time ---� 750ms 

Figure 1. Hypothetical Liner Ballistic Accumulator (LBA) units illustrating the accumulation of evidence that leads
to 4 possible Go/No-go stimulus-response-outcome scenarios. Decisions are governed by LBA unit parameters:
nondecision time (t0), starting position (A), threshold (b), and mean rate of evidence accumulation (v). After initial
nondecision time (t0) related sensory processing, evidence accumulations rates (vector arrows) for the Go responses
and No-go nonresponses (i.e., inhibition) begin at the same starting position (A) and then race over time (decision
time) toward the decision threshold (b) reflecting the amount of evidence accumulated that is sufficient for a decision.
VNo-go is the evidence accumulation rate for an inhibition. There are two types of evidence accumulation rates for Go
responses, a Hit (VHT(Go)) and a False Alarm (VFA(Go)). Whichever accumulator crosses the decision threshold (b) first
governs the response or inhibition on a given trial. The top panels depict high efficiency evidence accumulation
processes characterized by a large separation between evidence accumulation rates for Go (left) and No-go (right)
trials. Bottom panels depict low efficiency evidence accumulation processes with a small separation between evidence
accumulation rates for Go and No-go trials. In the top left panel, VHT(Go) rates (value of .85) accumulate faster than
VNo-go rates (.15; a response wins over an inhibition), which correctly leads to a “hit” on a Go trial. In the top right
panel, VFA(Go) rates (.3) accumulate slower than VNo-go rates (.7), which leads to a “correct rejection” (inhibition) on
a No-go trial. The VFA(Go) rate of .3 reflects what is observed in the no Load condition. � In the bottom left panel,
VHT(Go) rates (.55) accumulate faster than VNo-go rates (.45), leading to a “hit” on a Go trial, but the close proximity
of the vectors illustrates the greater competition between Go responses and No-go inhibitions (approach–avoidance
conflict), which leads to a slower RT. In the bottom right panel, VFA(Go) rates (illustrated as a rate of 0.7) accumulate
faster than VNo-go rates (.3), which leads to a “false alarm” on a No-go trial. The VFA(Go) rate of .7 reflects what is
observed in the WM Load condition.
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A Computational Model Approach to Studying EWM
in Go/No-Go Learning

The current study used a linear ballistic accumulator (LBA)
computational model (Brown & Heathcote, 2008) to estimate the
rates of evidence accumulation for Go and No Go cues as well as
other decision parameters, such as decision threshold. Previous
studies have utilized other computational models, such has the
Expectancy Valence model (Busemeyer & Stout, 2002; Yechiam
et al., 2006) or the Signal Detection model (Endres et al., 2011), to
investigate different biases in choice behaviors. However, these
models are not suited to investigate the dynamic processes asso-
ciated with EWM capacity during the deliberative decision-
making process, because they do not account for reaction time
(RT) performance, which is invaluable to estimate evidence accu-
mulation rates in the deliberative process. The LBA model uses
full RT distributions for correct and incorrect responses and choice
accuracy to estimate the rate (v) at which evidence is accumulated
for both correct Go responses (v for hits or vHT) and incorrect Go
responses (v for false alarms or vFA), as well for correct and
incorrect nonresponses (vNo-go in Figure 1). Whichever accumu-
lation process crosses an internal decision threshold (b) first,
governs the decision. Figure 1 depicts high and low efficiency
evidence accumulation processes and their parameter values (top
and bottom rows, respectively) for Go and No-go trials (left and
right columns, respectively). Figure 1 panels A and B illustrate a
clear separation (good discrimination) between Go and No-go
responses that characterize high efficiency processes, whereas
panels C and D illustrate greater conflict (poor discrimination) in
evidence accumulation that characterize low efficiency processes.
Note, high efficiency and accuracy is characterized by greater
differences between the overall rate of evidence accumulation for
correct (vHT) versus incorrect (vFA) Go responses, such that vHT
is far greater than vFA (compare panel A with B). This difference
is quantified by the model-derived Response Precision Index
(RPI).

The current study tested the hypotheses that (i) high scores on an
EXT latent factor will be associated with low EMW capacity, and
that both will be associated with a composite measure of disin-
hibitory decision-making indicated by poor response inhibition
(high false alarms), lower accuracy and efficiency of the evidence
accumulation process (low RPI values), and a faster evidence
accumulation process for incorrect responses (higher vFA values),
(ii) that a WM load will increase disinhibited decision-making
(increases in false alarms and vFA values and decreases in RPI
values), and (iii) that EMW capacity will mediate the association
between EXT and the composite measure of disinhibited decision-
making.

Method

Participants

Sample characteristics. The sample consisted of 510 young
adults (271 men, 239 women; mean age � 21.2 SD � 2.4) with a
range of lifetime EXT diagnoses and problems (conduct disorder,
ADHD, adult antisocial behavior, alcohol, and other drug prob-
lems). EXT Diagnoses and problems were ascertained with the
Semi-Structured Assessment for the Genetics of Alcoholism

(SSAGA-II; Bucholz et al., 1994) using Diagnostic and Statistical
Manual of Mental Disorders, 4th ed. (DSM–IV) diagnostic criteria
(American Psychiatric Association, 1994).The sample was 77%
white, 8% African American, 6% Asian, Indian, or Middle East-
ern, 6% Hispanic or Latino, and 3% multiple ethnicities. Thirty-
four percent (n � 173) had a lifetime DSM–IV diagnosis of alcohol
dependence, 27% (n � 138) had lifetime alcohol abuse, 28% (n �
145) had lifetime other drug dependence, 18% (n � 94) had
lifetime other drug abuse, 11% (n � 56) had a lifetime ADHD
diagnosis, 19% (n � 99) had lifetime conduct disorder, and 12%
(n � 63) had lifetime antisocial personality disorder. Thirty-one
percent (n � 160) had no lifetime EXT diagnoses, 22.5% (n �
115) had one lifetime diagnosis, 25% (n � 129) had two, 9% (n �
48) had three, 8% (n � 40) had four, 3% (n � 17) had five, and
one participant had six lifetime EXT diagnoses. For the analyses,
EXT was measured as a latent variable representing the covariance
among lifetime problems of ADHD, conduct disorder, adult anti-
social behavior, alcohol, and other drugs.

Recruitment. Participants were recruited using advertisements
placed in local and student newspapers and around the community.
This approach has been effective in attracting responses from indi-
viduals who vary in EXT problems and disorders (cf., Endres et al.,
2011; Finn et al., 2002; 2009). Advertisement respondents were
telephone screened for inclusion criteria of being between 18 and 30
years of age, read/speak English, at least 6th grade education, and no
history of psychosis or head trauma. If they met these criteria, they
were interviewed about current and lifetime alcohol, drug, ADHD,
childhood conduct, and adult antisocial problems. Subjects were in-
vited to participate in the study if they fell within the range of these
EXT problems that were targeted for the sample composition (25%/
50%/25% with low, moderate, and high EXT problems) based on the
distributions observed our earlier studies that employed a dimensional
model of EXT (e.g., Endres et al., 2011; Finn et al., 2009). On the day
of testing subjects were further screened to ensure no alcohol or drugs
use in the past 12 hours, a breath alcohol level of 0.0%, and no current
withdrawal symptoms or fatigue. None of the subjects failed this
screening.

Assessment Procedures and Materials

Executive Working Memory Capacity was assessed using two
different complex-span tests, the Operation-Word Span test (Con-
way & Engle, 1994) and a modified version of the Auditory
Consonant Trigram test (Brown, 1958), that we refer to as the
Auditory Consonant test (Endres et al., 2011; Finn et al., 2009).
These tasks operationalize EWM capacity as the total number of
memory items that can be correctly recalled after performing a
second unrelated cognitive task. For example, recalling word or
letter strings of various sizes in their correct order of presentation
after solving a mathematical operation or counting backward by
threes for a predetermined length of time. Studies indicate that
these types of tests are valid measures of executive WM capacity
(Endres et al., 2011; Engle, Tuholski, Laughlin & Conway, 1999).
EWM capacity was measured as a latent factor of the covariance
among the total number of items correctly recalled on the opera-
tion word span and Auditory Consonant tasks (Endres et al., 2011;
Engle et al., 1999; Finn et al., 2009).
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The Go/No-Go Associative Learning Task

The go/no-go associative learning task was similar to that used
by our research group in the past (Endres et al., 2011; Finn et al.,
2002). The task involved the serial presentation on a computer
screen for 750 msec of 10 different 2-digit numbers (five “go” and
five “no-go” cues) pseudo randomly presented within 9 blocks of
10 trials. The two-digit stimuli were counterbalanced for odd and
even values both above and below 50. Responses made after a go
cue within the 750-msec presentation (i.e., a hit) resulted in win-
ning $0.25 (WIN $0.25 on green background presented for 1000
msec). Responses after the no-go cue (i.e., a false alarm) resulted
in losing $0.25 (LOSE $0.25 on red background presented for
1000 msec). Subjects were informed that they had a limited
amount of time to respond and that they could only win or lose
money if they correctly or incorrectly pressed the spacebar. Sub-
jects also were instructed that, “to maximize wins and minimize
losses,” they should “attempt respond as quickly and as accurate as
possible.”

Working Memory (WM) Load Manipulation. Subjects were
randomly assigned to a WM load or no-WM load condition. The
WM load involved performing a secondary task after the conclu-
sion of each trial. The secondary task involved presentation of a
3-digit number (1000 ms), counting backward by 3s for 8 sec, and
then recalling the 3-digit number. We assume that the WM load
depletes EWM capacity by requiring the constant shifting from the
primary go/no-go task to the secondary WM load task throughout
the task. The WM load also interferes with any memory rehearsal
between go/no-go trials. The no-WM load condition involved
waiting for 10 sec after each trial.

Dependent Measures of Associative - Go/No-go
Learning

Dependent measures of go/no-go learning were the standard
measures of false alarm rates and hit rates and the parameter
estimates derived using the Linear Ballistic Accumulator (LBA)
model (Brown & Heathcote, 2008). The LBA model was used
rather than a full Diffusion model (Ratcliff, Spieler & McKoon,
2000), because the LBA model is computationally and parametri-
cally simpler, and both models yield the same conclusions
(Donkin, Brown, Heathcote & Wagenmakers, 2011).

The LBA model assumes that over the course of the task
participants learn which are the Go or No-go cues by collecting or
accumulating evidence for when to respond (Go) and when to
avoid a response (No-go). The model also assumes that trial-level
decisions are driven by the competition between two separate
‘evidence accumulators,’ one for Go and one for No-go decisions.
These accumulators begin each trial with a random starting level of
activation, and evidence rises toward a decision threshold. Once
the evidence in a particular accumulator reaches the threshold, the
person makes the associated decision, either a making a response
or withholding a response. If the Go-approach accumulator is first
to reach threshold, a Go response is made, but if the No-go-avoid
accumulator is first then no response is made (Brown & Heathcote,
2008).

The LBA model had six free parameters (A, b, vHT, vFA, s, and
t0). The t0 parameter reflects the time taken for nondecision pro-
cesses, such as stimulus encoding time. The A parameter repre-

sents the maximum amount of initial evidence in favor of a Go or
No-go decision with which each accumulator could begin a trial.
The b parameter represents the threshold for sufficient evidence
for a decision. The v parameters reflect the average rate of evi-
dence accumulation for a given response or nonresponse. The s
parameter represents decision uncertainty, or randomness in
decision-making, and is the standard deviation of the evidence
accumulation rate across trials. We estimated v for approach re-
sponses only, letting accumulation rate for avoid responses be 1 �
v. For Go trials we estimated accumulation rate for correct re-
sponses (vHT) and incorrect “avoid” responses were 1 � vHT. For
No-Go trials we estimated accumulation rate for incorrect re-
sponses (vFA) and correct “avoid” responses were 1 � vFA. The
vHT parameter is estimated using hit rates and RTs for hits.
Likewise, the vFA parameter is estimated using observed values of
false alarm rates and RTs for false alarms. Thus, vHT is partly a
function of hit rates and vFA is partly a function of false alarm
rates. High values of v reflect faster accumulation of evidence for
a response. The rate at which evidence accumulates is assumed to
vary between trials, according to a normal distribution with mean
v and standard deviation s.

The LBA model was fit to each individual’s data using the
quantile maximum product estimation methods outlined in Heath-
cote, Brown and Cousineau (2004); for a similar approach see
Farrell, Ludwig, Ellis & Gilchrist, (2010).1 Best-fitting parameters
were found using SIMPLEX in the R statistical package (The R
Foundation for Statistical Computing, 2012). Figure 1 illustrates
the evidence accumulation process for Go responses and No-go
avoidance nonresponses and illustrates their association with hits,
correct inhibitions, and false alarms.

Finally, we also derived two global decision-making process in-
dexes that characterize response precision (RPI) and response caution.
RPI reflects the overall accuracy and efficiency of the evidence
accumulation process (and is similar to d-prime in signal detection
theory). Whereas d-prime is a function of both hit rates and false
alarm rates, and reflects the discriminability of the signal (targets or
Go cues) in the presence of noise (nontargets or No-go cues), RPI is
a function of the evidence accumulation processes for both correct
responses (vHT) and incorrect responses (vFA). High RPI values
(illustrated in the top panels of Figure 1) reflect a larger difference
(separation) in the accumulation rates (illustrated as vectors) for
correct (vHT in panel A) and incorrect responses (vFA in panel B).
Whereas, lower RPI values reflect smaller differences in these two
factors (panels C and D). Thus, the RPI is considered as measure of
the strength of evidence accumulation processes for instances when
an approach response is made. We compute RPI as follows:

RPI �
vHT � vFA

s

Because v takes into account both RT and accuracy, our RPI
measure is a more sensitive measure of performance than d-prime,
as it takes into account the relative speed of hit and false alarm
responses. The inclusion of s into RPI acts to normalize the
difference between hit and false alarm rates based on overall

1 Because “avoid” responses yield no response times, the model was fit
to choice probability and response time distribution for approach re-
sponses, and to the overall probability that avoid responses were made.
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variability in processing (i.e., it transforms accumulation rate pa-
rameters into an “effect size”). In a manner similar to d-prime,
increases in vFA will result in decreases in RPI, if vHT and s
remain about the same, or if vHT decreases and/or s increases. In
fact, when increases in vFA are accompanied by decreases in vHT
and/or increase in s, the RPI measure decreases dramatically and
reflects decreased efficiency in the evidence accumulation pro-
cesses. Thus, the RPI measure provides more overall information
about the decision process that cannot be obtained simply by
examining vFA and vHT. Information about all three parameters
allows for interpretation of changes in RPI.

In contrast, the response caution index is a measure of the
distance traveled by the evidence accumulation process. It is
given by

Reponse Caution Index � b � A

The response caution index is a function of both the b parameter
(amount of information required to make a response) and the A
parameter (the amount of initial information in favor of a Go or No
Go decision). The Response Caution Index reflects the subject’s
preference for accuracy over speed, such that high values reflect a
tendency for slower, more cautious deliberation over decisions.
Often when people are more cautious in their decisions, they
require more information before making a decision (i.e., the b
parameter increases). If increases in b are accompanied by no
change in the A parameter, or decreases in A, then the response
caution index will increase. Likewise, when people are more
cautious in their decisions, they may start each decision process
afresh without initially favoring a particular choice. This would
reflect a lower A parameter value. Thus, reductions in the A
parameter value in the presence of the same or increasing values in
the b parameter would be reflected in high Response Caution
Index values as well. In this way, the Response Caution Index
provides an overall measure of the degree of caution in a decision
and information about b and A parameter values allows for the
interpretation about what is driving the changes in response cau-
tion.

Data Analyses

First, multiple regression with SPSS version 20.0 (IBM SPSS,
2011) was used to test the primary hypotheses regarding the effect
of the WM load manipulation on the primary dependent measures,
false alarm rate, log(vFA), and RPI. Models assessed the main
effects of load, the EXT latent factor and sex, and all interactions.
The significance tests for the primary dependent measures were
corrected using the Bonferroni method. We used the natural log
transformation (loge) to ensure that the distribution of v parameters
across participants was normal. These models also were run for the
each additional LBA parameter and index with Bonferroni correc-
tions. Measures were log transformed as necessary. For these
regressions the EXT factor score was computed using
maximum-likelihood factor analysis of the lifetime problem
counts (alcohol, other drug, ADHD, childhood conduct, and
adult antisocial behavior problem counts). The respective
weights of each indicator variable are depicted in structural
equation model (SEM) in Figure 4.

SEM with AMOS 18.0 (Arbuckle, 2009) was used to assess the
hypotheses regarding EWM capacity mediating the association

between an EXT factor and latent factor reflecting the cognitive
processes underlying disinhibited decision-making (false alarm
rates, log(vFA), and RPI). Higher values on this latent disinhibited
decision-making variable reflects higher false alarm rates, higher
evidence accumulation rates for false alarms (log(vFA)), and lower
RPI scores. Mediation was assessed using the bootstrapped (k �
20,000) and bias-corrected 95% confidence intervals (CIs) around
the indirect and direct effects (Preacher, Rucker, & Hayes, 2007).
Sex was not included in this model because it was not associated
with the EWM capacity latent variable, or either of its indicators,
ts(508) � �.2–1.06, ps � .3–.8).

Results

LBA Model Results

The fit of the LBA model was examined by assessing whether
the model can predict participants’ accuracy and response time
data. As can be seen in Figure 2, the LBA model’s predicted values
for RTs closely match the actual values (data) indicating an ex-
cellent fit to the data. Sample data and LBA model predictions
were comparable in terms of (a) cumulative probability of RT
quantiles for Hits and RT quantiles for false alarms, and (b) the
specific effect of WM load on RT quantiles for false alarms.
Similar to the effects present in the sample data, the LBA model
predicted an increase false alarm rates in the WM load condition.

Externalizing Psychopathology and WM Load

Regression analyses of the primary dependent measures re-
vealed significant main effects of EXT and WM Load on false
alarm rates, ts(502) � 2.8 & 14.3, ps � .01, log(vFA), ts(502) �
2.9 & 11.7, ps � .01, and RPI, ts(502) � �2.8 & �10.6, ps � .01.
The close mirroring of effects on false alarm rates, log(vFA), and
RPI in part reflects the fact that these variables are partly a
function of each other. EXT was associated with higher false alarm
rates, higher log(vFA) values, and lower RPI values. The WM load
significantly increased false alarm rates, and log(vFA), and lowered
RPI values. There were significant EXT by Load by Sex interac-
tions on false alarm rates and log(vFA) ts(502) � �2.4 & �2.7,
ps � .05. These interactions revealed that EXT was significantly
associated with higher false alarm rates for men in both load and
no-load conditions (ps � .005), but for women, only in the no WM
Load (p � .01) and not the WM Load condition (r � �.15, p �
.11). On the log(vFA) measure, EXT was associated with faster
log(vFA) values in men in both no-load and load conditions, �s �
.24 & .20, ps � .01 & .05, while for women EXT was associated
with faster log(vFA) values in the no-load, � � .30, p � .005, but
slower vFA values in the load condition, � � �.19, p � .05. Figure
3 displays these results.

The additional regressions revealed that WM Load increased s
values (p � .005) (No-Load: M � .20, SD � .14 / Load: M � .27,
SD � .18), Response Caution Index scores, p � .005, (M � .092,
SD � .10 vs. M � .145, SD � .10 and b values, p � .001 (M �
.30, SD � .09 vs. M � .34, SD � .13), and decreased hit rates, p �
.001 (M � .87, SD � .09 vs. M � .84, SD � .11) and log(t0)
values, p � .001 (M � �.81, SD � .64 vs. M � �1.27, SD �
.90). The WM did not affect the A or log(vHT) parameters,
ps � �.0.9. Changes in the b and/or the A parameters can be
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associated with changes in the Response Caution Index. The
pattern of results observed here indicates that the increase in
response caution after the WM load is due to the increase in the b
parameter, because the A parameter was unchanged by the load.

Externalizing Psychopathology, EWM Capacity,
WM-Load, and LBA Decision Parameters

Tests of mediation by EWM capacity were conducted for the
full sample and within the WM load and no load conditions.
Mediation effects were examined via significance tests of the
indirect effects of EXT (via EWM capacity) on disinhibited
decision-making. The EXT factor accounted for 67.4% among the
indicators, the disinhibited decision-making factor accounted for
85.5% of the variance among indicators, and the EWM capacity
factor accounted for 75.3% of the variance among its indicator
variables, justifying the use of each factor in the SEM model.

The SEM with the full sample fit the data adequately, �2(31) �
56.3, p � .004; NFI � .98; RMSEA � .04. In the full sample
model the effect of EXT on disinhibited decision-making was
completely mediated by EWM capacity. The indirect effect of
EXT on disinhibited decision-making was significant, � � .065,
p � .015, 95% CI [.032, .102], but the direct effect was not
significant, � � .039, p � .42, 95% CI [�.039, .110]. EXT was
significantly associated with EWM capacity, � � �.270, p �
.001, 95% CI [�.35, �.18]. EWM capacity was significantly
associated with disinhibited decision-making, � � �.241, p �
.001, 95% CI [�.33, �.14].

Figure 4 presents the models for the no WM load and WM load
conditions. The model in the no WM Load condition fit the data
well, �2(31) � 40.3, p � .122; NFI � .97; RMSEA � .035. This

model revealed that the effect of EXT on disinhibited decision-
making was partially mediated by EWM capacity. There was
significant indirect effect of EXT on disinhibited decision-making,
� � .071, p � .01, 95% CI [.02, .138], and a significant direct
effect was well, � � .172, p � .01, 95% CI [.068, .272]. The
model in the WM Load condition fit the data adequately, �2(31) �
73.9, p � .001; NFI � .95; RMSEA � .073. This model revealed
that the effects of EXT on disinhibited decision-making was com-
pletely mediated by EWM capacity The indirect effect of EXT on
disinhibited decision-making was significant, � � .069, p � .01,
95% CI [.024, .116], but the direct effect was not significant,
� � �.020, p � .81, 95% CI [�.14, .105]. Finally, none of the
indicators of the EXT latent variable were uniquely associated
with the decision-making variable over and above their covariance
with other EXT indicators in either the no WM load or the WM
load conditions. This was assessed via modification indices and
model respecification analyses.

Discussion

This study used a linear ballistic accumulator (LBA) computa-
tional model of go/no-go associative-incentive learning conducted
with and without a working memory (WM) load to investigate the
dynamic cognitive processes associated with impaired inhibitory,
no-go decisions in those with EXT. The primary results of the
study were that (i) high scores on an latent EXT factor were
associated with low EWM capacity and higher scores on a disin-
hibited decision-making latent variable indicated by the three
interrelated measures of false alarm rates, evidence accumulation
rates for false alarms, and response precision (RPI), (ii) low EWM
capacity was associated with more disinhibited decision-making
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Figure 2. Reaction time (RT) distribution quantiles for the LBA model predictions (hashed lines) plotted
against participants’ actual RT data (solid lines) for Hits (HT) and False Alarms (FA) by working memory (WM)
Load. Panel A depicts the distribution for the No WM Load condition. Panel B depicts the distribution for the
WM Load condition. RT quantiles reflect the cumulative probability of observing HT or FA responses on or
before six different decision-time intervals. Panels A and B illustrate that LBA model predicted HT (“X”) and
FA (“X”) were a close fit to the actual HT (open square) and FA (filled square) data. Comparisons suggests the
LBA model is sensitive to the experimental effects of WM load, as indicated by a significant increase in actual
and predicted FA under the load condition relative to the no-load condition. RTqsHT (Data) � RT quantiles for
Hits—observed data. RTqsHT (LBA) � RT quantiles for Hits – LBA model predicted values. RTqsFA (Data) �
RT quantiles for False Alarms—observed data. RTqsFA (LBA) � RT quantiles for False Alarms – LBA model
predicted values.
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regardless of the WM load and partially mediated the association
between EXT and disinhibited decision-making, (iii) the WM load
increased disinhibited decision-making for all subjects, and (iv)
EXT was associated with disinhibited decision-making for men,
regardless of WM load; however, EXT was associated with dis-
inhibited decision-making for women only in the no-WM load
condition.

The secondary analyses suggested additional ways that the WM
load interfered with information processing that were unrelated to
either EXT or EWM capacity. The WM load increased general
uncertainty in decision-making (s parameter) and response caution.
As noted below, the WM-load related increases in the uncertainty
(s) parameter along with the increase in logvFA (evidence accu-
mulation rate) resulted in the decrease in the RPI (efficiency in
evidence accumulation) measure after WM load. In addition, be-
cause WM load did not affect the A parameter, the WM load
related increase in the response caution index was solely due to
increases in the thresholds (b parameter) for the amount of infor-
mation necessary for a decision. The higher decision thresholds
under WM load suggests that the WM load resulted in more
cautious decisions due to subjects needing to collect more evi-
dence before making a decision. Finally, the WM load also de-
creased the nondecision t0 parameter values, suggesting that sub-
jects spent less time encoding the stimulus under WM load.

Consistent with studies of different types of EXT (e.g., Endres
et al., 2011; Finn et al., 2002; Newman & Kosson, 1987), the EXT

latent variable was significantly associated with poor passive
avoidance learning (high false alarms), but not with hit rates.
However, our results extend this research by including measures of
the rate of evidence accumulation for hits (vHT) and false alarms
(vFA) and our response precision index (RPI) measure of the
overall efficiency of the evidence accumulation process. Both the
EXT and the EWM capacity latent variables were associated with
lower scores on the RPI measure of efficiency in the evidence
accumulation process. Examination of the data indicate that these
associations were attributable to the association between EXT (and
EWM capacity) and lower evidence accumulation rates for false
alarms (vFA values), because neither EXT or EWM capacity were
associated with differences in the evidence accumulation process
for hits (vHT) or the measure of decision uncertainty (the s
parameter), which, together with vFA, are the basis of RPI scores.
Thus, our results suggest that the lower RPI efficiency scores
associated with EXT and low EWM capacity reflects a tendency to
decide too quickly that a No-go cue is in fact a Go cue (higher vFA
values and false alarm rates). In other words, the less efficient
evidence accumulation process observed in those with high EXT
and/or low EWM capacity is mostly due faulty evidence accumu-
lation process on No-go trials reflecting a pattern of not deliber-
ating long enough in contexts when one really should be inhibiting
a response. This may be partly due to difficulty switching from a
Go mode to a No-go mode, an insensitivity to punishment, or both.

Figure 3. Bar graphs for measures of disinhibited decision-making on the go/no go incentive learning task with
and without working memory (WM) load. The left panel depicts mean false alarms rates. The middle panel
depicts mean Log(vFA) parameter (log transformed evidence accumulation rate for false alarms). The right panel
depicts the mean RPI parameter (response precision index). The mean values (with standard errors) are presented
for the sample divided into low and high externalizing (EXT) psychopathology (median split), Sex, and WM
load condition (load/no WM load). Significant differences are illustrated using brackets and asterisks. Note: the
values and effects for each measure closely mirror each other, because, as explained in the text, each is, in part,
a function of the other. � p � .05; �� p � .01; ��� p � .001.
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The finding that lower scores on our measures of EWM capacity
were associated with disinhibited decision-making regardless of
the WM load condition suggests a role for attention control pro-
cesses in learning to adaptively avoid engaging in behaviors that
lead to negative outcomes. The analyses also show that EWM
capacity partially mediated the association between EXT and the
disinhibitory decision-making, suggesting low EWM capacity
plays an important role in the inhibitory control difficulties that are
known to characterize those with high EXT.

The WM load disrupted the passive-avoidance learning process,
resulting in dramatic increases in disinhibited decision-making for
all subjects. The load was associated with significant increases in
false alarms, evidence accumulation rates for false alarms (vFA
values), and decision uncertainty (s parameter), all of which are
reflected in a significant reduction in RPI. The reduced efficiency
of the evidence accumulation process (i.e., reduced RPI scores)
under WM load was due to the substantial increases in vFA values
and the decision uncertainty s parameter. In a kind of paradoxical
manner, the WM load also increased the decision threshold value
(b) meaning that subjects required more information before mak-
ing a decision. As noted above, the increase in b was responsible
for the observed increase in response caution, because the A
parameter was unaffected by the load. The WM load did not affect
the evidence accumulation rate for hits (vHT), suggesting that the
load was specifically affecting those cognitive processes associ-
ated response inhibition. The pattern of sex differences in the
association between EXT and disinhibited decision-making in the
WM load condition was unexpected and difficult to explain. In the
WM load condition, EXT was associated with more disinhibited
decision-making in men, but somewhat less disinhibited decision-
making in the women. The WM load resulted in greater increases
in disinhibited decision-making in the low EXT women on mea-

sures of false alarms and evidence accumulation rates for false
alarms. Our data do not provide any basis for the interpretation of
this unexpected sex difference.

Limitations

This study was not without limitations. First, we assumed that
our WM load specifically depleted EWM capacity. However, the
WM load effects may not have been specific just to the WM
system and may have depleted executive functions more broadly in
a manner similar to that conceptualized in studies of the effects of
different self-regulatory depletion (i.e., ego depletion) manipula-
tions shown to disrupt executive functions (Baumeister, Brat-
slavsky, Muraven, & Tice, 1998). Thus, we cannot be sure whether
the effects of the WM load on decision-making parameters were
specifically attributable to compromised WM capacity rather than
some broader depletion of executive function capacity beyond
EWM capacity. Second, our sample comprised mostly young
white adult college students and was biased toward those inter-
ested in participating in research studies. Participants were not
randomly selected and thus may not be representative of the
distribution and severity of EXT psychopathology in the general
population. Third, our data are cross-sectional by design and the
regression paths in the SEMs cannot be interpreted as causal
pathways. The models are structured as complex regression in
order to test predictions about mediation of associations.

Conclusion

Aside from these limitations, this study makes three important
contributions to the literature on the association between EXT,
EWM capacity, and disinhibited decision-making in incentive
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Figure 4. Structural equation model of the association between a latent Externalizing Psychopathology (EXT)
factor, a latent Executive Working Memory Capacity (EWM capacity) factor, and a latent Disinhibited
Decision-making (DISINH DEC) factor. Regression Path weights in the WM load condition are depicted in bold,
the no Load is depicted in italics. Path weights inside parentheses indicate the indirect effects of EXT on DISINH
DEC. CCD � lifetime childhood conduct problems; ASB � lifetime adult antisocial behavior problems; ADHD
lifetime attention deficit disorder problems; DRG � lifetime problems with drugs; ALC � lifetime alcohol
problems; ACT � Auditory Consonant Trigram performance; OWS � Operation Word Span performance. FA
rate � false alarm rate; Log vFA � log transformed evidence accumulation rate for false alarms; RPI � response
precision index. ns � nonsignificant. �� p � .01; All path weights are significant at p � .001.
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approach–avoidance learning contexts. First, the poor passive
avoidance associative learning (i.e., the high false alarms) of those
high in EXT was associated with measures of inefficient and faulty
evidence accumulation processes in the presence of cues that
behavior should be inhibited. The high evidence accumulation
processes and high false alarm rates of those with EXT suggest
that they lack proper attention control during the deliberation
process on No-go trials. Second, this pattern of disinhibited
decision-making was significantly associated with low EWM ca-
pacity, consistent with the important role that executive attention
control plays in learning to inhibit approach behavior. Low EWM
capacity partially mediated the association between EXT and
disinhibited decision-making. Third, a WM load dramatically in-
creased disinhibited decision-making in all subjects further high-
lighting the central role that WM processes play in this type of
associative incentive go/no-go learning task.
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