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Debate continues over whether visual working memory has a single, fixed capacity.
Empirically, performance in working memory tasks worsens as the complexity of stimuli
increases. However, there exist two explanations for this result. One proposal is that visual
working memory is capable of holding fewer complex stimuli. The alternative proposal is
that visual working memory can store 3–4 items, irrespective of their complexity.
According to this fixed-capacity explanation, performance is worse for complex items
because discrimination between complex items is more difficult than discrimination
between simple items. These so-called comparison errors are more likely with complex
items, and when left unaccounted for, lead to an underestimate of the capacity of working
memory. Previous attempts at resolving this debate have relied on clever empirical manip-
ulations of the similarity between stimuli. However, such approaches change the task that
is given to the participant, and so may also change the way that participants use their
memory. Here, we use a standard change detection task, but use a measurement model
to estimate both the capacity of memory, and the probability of comparison errors. We
apply the model to two change detection experiments in which we varied the complexity
of the stimuli that participants must remember. Critically, we found that capacity esti-
mates, and not comparison error estimates, varied depending upon stimulus complexity.
Our results suggest that the number of items that can be stored is dependent on the com-
plexity of the stimuli.

� 2016 Elsevier Inc. All rights reserved.
Introduction

There is continuing debate within the field of visual
working memory (VWM) regarding the processes through
which items are stored and the capacity limits imposed by
these processes. The discrete slots view suggests that only
a limited number of items can be retained in memory
(Luck & Vogel, 1997), whereas the continuous resource
view suggests that a limited pool of resources may be flex-
ibly allocated across all items, with no necessary constraint
on the number of items that can be stored (Ma, Husain, &
Bays, 2014; Wilken & Ma, 2004).
Early evidence suggested that VWM capacity is limited
to around 3–4 visual items, and that this capacity was
invariant to changes in the number of stimulus features
(Fukuda, Awh, & Volgel, 2010; Luck & Vogel, 1997; Vogel,
Woodman, & Luck, 2001). However, there have since been
multiple demonstrations of a detriment to performance in
visual working memory tasks due to additional stimulus
complexity (Cowan, Blume, & Saults, 2013; Fougnie,
Asplund, & Marois, 2010; Hardman & Cowan, 2015;
Oberauer & Eichenberger, 2013; Olson & Jiang, 2002).
Though it is now largely agreed upon that performance
in visual working memory tasks is worse for more complex
stimuli, the cause for this result remains an open issue.

Alvarez and Cavanagh (2004) were one of the first to
demonstrate that performance worsened for more com-
plex stimuli. They showed that there was an inverse linear
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relationship between visual complexity and working
memory capacity, as operationalized by visual search time
and the conventional change detection task, respectively.
They found that capacity estimates were smaller for items
with slower search rates, and concluded that fewer visually
complex items can be held in visual working memory.
Alvarez and Cavanagh (2004) concluded that the limit on
the number of items that can be held in visual working
was not fixed, and is jointly affected by the number of
items that must be remembered and the complexity of
the stimuli.

Advocates of the slots model highlighted a critical flaw
in Alvarez and Cavanagh’s (2004) claim that people stored
fewer complex items than simple items. Alvarez and
Cavanagh (2004) used the standard method for calculating
capacity, which attributes all incorrect responses to a fail-
ure to store an item. As such, increased errors in a change
detection task are associated with smaller capacity esti-
mates; however, if another type of error is contributing to
incorrect responses in the change detection task, then
capacity will be underestimated. Awh, Barton, and Vogel
(2007) argued that errors in change detection tasks can also
arise through perceptual confusion between the contents of
memory and the test item, and that such confusion is
increasingly likely for more visually complex items. Funda-
mentally, Awh et al.’s argument is that participants are able
to store approximately 3–4 complex items in memory, but
a reduction in the mnemonic resolution for complex items
increases the probability of making a comparison error,
which ultimately confounds estimates of item capacity.

To support this claim, Awh et al. (2007) conducted an
experiment in which participants were asked to remember
stimulus sets that included two types of complex items –
shaded cubes and Chinese characters. At test two types
of changes could occur. A within-category change involved
a stimulus being swapped for another member of the same
category; e.g., one Chinese character changes to another.
Conversely, a cross-category change involved a stimulus
being swapped for a member of the other category; e.g.,
a Chinese character being replaced by a shaded cube. The
critical finding was that participants struggled to detect
within-category changes. On the other hand, cross-
category detection was excellent; in fact, participants were
equally able to detect cross-category changes as they were
able to identify changes between simple colors. Awh et al.
(2007) concluded that within-category changes involving
complex stimuli increased the rate of comparison errors.

Scolari, Vogel, and Awh (2008), Barton, Ester, and Awh
(2009) and Umemoto, Scolari, Vogel, and Awh (2010) have
also shown that cross-category change detection of com-
plex items is superior to within-category discrimination,
and have further argued for a fixed number of discrete
slots. In Barton et al. (2009) and Umemoto et al. (2010),
the authors also attempted to estimate the error rate
associated with comparing complex within-category
stimuli. They reasoned that a participant’s ability to detect
cross-category changes provided a pure estimate of item
capacity. Thus, any additional errors committed in the
within-category change condition could be attributed to
the comparison of the test item with the contents of
memory. To address this issue they proposed a model that
could measure both the probability that an item was
stored and the probability that a comparison error was
made, given the item had been stored in memory.
However, despite the excellent motivation behind the
model, Morey, Morey, Brisson, and Tremblay (2012)
showed that this particular implementation was incorrect.

Brady and Alvarez (2015) also raise concerns regarding
the validity of capacity estimates derived from cross-
category changes. They instead suggest that participants
form global representations of the study array which facil-
itate detection of change. For example, on some arrays the
Chinese characters (or cubes) may be clustered more
closely together, whereas on others the items may be
located more diffusely. They found that when items of
one category were clustered together, cross-category
changes could be made without having to attend to the
item characteristics, because the change was quite obvi-
ous. Conversely, as the items became more dispersed,
cross-category change detection grew poorer. To further
support their claim, they demonstrated that when the
study arrays were more heterogeneous (consisting of more
complex items than just cubes and Chinese characters),
and so limit the ability to form global representations,
capacity estimates dropped to approximate 1–2 complex
items for cross-category changes, consistent with the find-
ings from Alvarez and Cavanagh (2004). Brady and Alvarez
(2015) conclude that performance using large changes
overestimates capacity, which challenges the assumption
of a fixed working memory capacity.

Given the foregoing, it is unclear as to whether item
capacity remains invariant to item complexity. However,
the two positions are clear and distinct. One proposal is
that the number of items stored in memory is invariant
to stimulus complexity, but that complex items will lead
to comparison errors. The alternative proposal is that
working memory can hold fewer complex items than
simple items, irrespective of comparison errors. We set
out to discern between these two very specific hypotheses.

Our approach differs from previous attempts to answer
the question of a fixed capacity of visual working memory.
We develop and apply a computational model that simply
infers both comparison errors and capacity from perfor-
mance in a standard change detection task. As such, we
do not require within- and cross-category changes, and
thus leave the task for the participant as simple as possible,
free from any potential issues with the encoding of items
from different categories (Brady & Alvarez, 2015). The
model we use is inspired by that of Barton et al. (2009),
but corrects the issues raised by Morey et al. (2012).

We apply the model to two experiments in which we
vary the particular stimuli that participants must remem-
ber. By estimating both capacity and comparison errors,
we provide a direct test of the two claims over the influ-
ence of complexity on visual working memory. According
to Alvarez and Cavanagh (2004), we should expect that
the effect of complexity influences the number of items
that can be held in memory (i.e., smaller capacity). Accord-
ing to Awh et al. (2007), we should expect that the same
number of items will always enter into memory, but more
complex items will yield a greater number of errors once
the items are in memory (i.e., more comparison errors).
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Experiment 1

In Experiment 1 we used the single-probe change
detection paradigm (Cowan et al., 2005). Participants are
presented with an array of items to study and must decide
whether a single test item is the same as one of the study
items, or has changed. Participants completed four ses-
sions, and in each session they were presented with only
one of four different types of stimuli: letters, words, colors,
or complex shapes.

Participants

Twenty participants were recruited via an on-line
recruitment system at the University of New South Wales.
Participants completed four experimental sessions, in the
lab, each of which lasted approximately one hour. Partici-
pants had the option to complete multiple sessions per
day, though a minimum break of one hour was required
between sessions. All participants were paid $15 per
session.

Stimuli

The experimental stimuli consisted of four sets of stim-
uli, as shown in Fig. 1. There was a list of 10 letters (B, D, G,
H, K, L, M, P, R, and S), and a list of 10 words (BRIM, DUSK,
GLUE, HERB, KNOT, LUMP, MAST, PORK, RAIL and SEAM).
The words were approximately matched for frequency
according to the Kucera-Francis written frequency norms
(Kucera & Francis, 1967). The visual stimuli were com-
posed of either 10 highly-discriminable colors (dark-
blue-green, purple, cyan, orange, yellow, green, blue, red,
white and black), or 10 novel complex shapes. Stimuli were
presented using a 24 inch LCD monitor located approxi-
mately 60 cm from the participant. All stimuli were made
to be of a similar size, having an approximate visual angle
of .75 � .75 degrees. On a given trial, the set of study items
were randomly positioned within a 8.8 � 7.3 degree array,
subject to the constraint that there be at least a 2 degree
separation between all items, and from any item to the
center of the array.

Design

All participants completed a single session with each
stimulus type. For each session participants completed
540 trials, which were broken into 9 blocks of 60 trials.
Fig. 1. The four sets of stimuli used in each experiment. The top left are the color
and right are letters and words, respectively. Note that the white color stimulus d
this figure legend, the reader is referred to the web version of this article.)
Within each session both set size, N = [2,5,8], and the pro-
portion of trials on which the test item changed from the
study item, p = [0.3,0.5,0.7], were manipulated. Set size
was manipulated across trials and probed equally often
for same and change trials. Change proportion was manip-
ulated across blocks, subject to the constraint that all
change proportion conditions were completed before they
were repeated. Within any given session the stimulus type
remained unchanged, though the order participants
received each stimulus type was randomized.

Procedure

Participants were instructed that they would undergo a
simple memory task. At the start of each session, partici-
pants were introduced to the stimulus set to be shown dur-
ing that hour. Prior to each block the participant was
informed of the proportion of change trials in the current
block (with a verbal description, and a pie graph). Trials
began with a fixation cross presented in the center of the
screen for 500 ms. Next, a study array consisting of N items
was presented on the screen for 1000 ms. Following the
study array a black screen was displayed for 500 ms, which
was then followed by a 500 ms screen containing multicol-
ored mask stimuli at the location of each of the study
items. A single test item was then presented in one of
the locations in which a study item was presented. On
change trials, the test item was a stimulus that had not
been presented during the study phase. A circular cue sur-
rounded the test item. The participant was asked to
respond as to whether the test item matched the study
item presented in that location by pressing the ‘‘J” key, or
whether the test item had changed by pressing the ‘‘F”
key. Responses were self-paced. Once a response had been
made a 1000 ms feedback screen indicated whether the
response was correct or not, after which a 1000 ms blank
screen was presented before the next trial began.

A measurement model for capacity and comparison errors

Model overview
The model that we apply was designed to reflect the

two assumptions that are fundamental to the Awh et al.
(2007) theory. First, we assume that the observer is cap-
able of storing a subset, k, of the N items they are asked
to remember. Second, if an item has been stored in mem-
ory, then there is some probability that the observer will
make a comparison error, and thus give an incorrect
stimuli, the top right are the complex shape stimuli, while the bottom left
id not have a black border. (For interpretation of the references to color in
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response. In other words, the model does not assume that
items stored in memory can be recalled with perfect
precision.

In certain instantiations of the slots model there is an
assumption that responses based upon memory will be
perfect. This assumption has been referred to as the ’cer-
tainty assumption’ (Rouder, Province, Swagman, & Thiele,
submitted for publication). However, the model detailed
here is based upon that outlined in Rouder et al.
(submitted for publication) and relaxes this assumption.
Specifically, we assume that responses based on memory
may be incorrect due to a poor mapping between the test
item and the contents of memory, which results in a com-
parison error. Like Barton et al. (2009), our model proposes
two independent processes that influence an observers
ability to detect change: the probability that an item has
been stored in memory, and the probability of making a
comparison error.
Model specification
We assume that study items are allocated to a limited

number of slots. The average number of available slots,
denoted by the capacity parameter, k, is assumed to
remain fixed across changes in both set size, N, and change
proportion, p. Note that the slots model assumes that
capacity is a discrete quantity. However, conventionally
capacity is estimated as if it were a continuous quantity,
which approximates variability in capacity across trials.
While our model does not explicitly assume that the num-
ber of slots varies across trials, we adopt the convention of
estimating an average capacity value.

The probability that the probed item is successfully
stored in memory, given the ith set size, is given by
Fig. 2. Description of the comparison error slo
di ¼ min k
Ni
;1

� �
. The ‘min’ function simply says that if the

number of study items is smaller than the available capac-
ity, then all items are stored with probability 1. If an item is
stored in memory, then there is some probability of a com-
parison error at test, though this probability depends on
whether the trial is a change or same trial. If the test item
changed, then a correct change response is made with
probability aj. If the test item is the same as the study item,
then an incorrect change response is given with probability
bj. If the test item at the probed location was not stored in
memory, the participant will be forced to guess. We esti-
mate the probability that the participant guesses change
in the jth change proportion condition to be gj. That is,
we assume that participants will adjust their guessing
behavior in response to the base-rate of change trials
(see Fig. 2).

The model outlined in Fig. 2 says that for the ith set size
and the jth change proportion, the probability of making a
correct change response on a change trial, hcij, or an incor-

rect change response on a same trial, hsij, is given by

hcij ¼ diaj þ ð1� diÞgj

hsij ¼ dibj þ ð1� diÞgj

ð1Þ
Implementation of comparison errors
Note that both aj and bj are conditional upon the item

having successfully made it into memory. They do not
affect the probability that an item is stored. In essence,
they are conditional hit and false alarms rates, respectively,
and determine the probability that a correct response is
made given that an item is in memory. Note also that the
probability of a comparison error, given that an item is in
ts model for the change detection task.
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memory, depends on the change proportion condition. The
probability of a comparison error depends on change pro-
portion because aj and bj represent errors in change and
same trials, respectively, and are simply a proportion of
change responses. So, if the proportion of change trials is
large, then both aj and bj will be larger than if the propor-
tion of change trials is smaller. This assumption allows par-
ticipants to require different levels of evidence of a match
between test items and the contents of memory depending
on the probability of a change trial. Note also that because
both aj and bj can vary across change proportion, it is pos-
sible to produce curvilinear ROC functions. This behavior is
typically not possible in the discrete-slots framework.

We also assume that the probability of a comparison
error is constant across all set size conditions. In other
words, we assume that an item in memory is stored with
the same resolution, regardless of how many items were
presented to the participant. Such an assumptions follows
directly from the simplest versions of slot-based models of
visual working memory. However, the slots plus averaging
model in Zhang and Luck (2008) proposes that items can
be stored with higher resolution when the capacity of
memory is larger than N. The idea is that items may be
stored in multiple slots, and these multiple representations
can be aggregated to yield better memory. As such, we also
fitted a version of our model that estimated one set of a
and b parameters for the N ¼ 2 conditions, and another
for the N ¼ 5 and N ¼ 8 conditions. The results for this
alternative model were extremely similar to those pre-
sented here, and certainly yield the same conclusions.
We have placed the details and results for this model in
the Supplementary Materials.
1 For rate parameters we truncated the normal distributions between 0
and 1. Another approach is to model individual differences as normally
distributed latent variables that are transformed into probabilities through
a logistic function. We considered this latter approach also. The fits to the
data were virtually identical. We subsequently report the fits based upon
the original truncated normals. Plots and code for both model implemen-
tations are available on the OSF.
Model inference
We estimate the parameters of the model separately

for each of the four different stimulus types. So, for the
mth participant, completing the task with the sth stimu-
lus type, the relevant parameters are: ksm, ajsm, bjsm, and
gjsm. Each individual produces a number of correct change
responses, or hits hijsm, and a number of incorrect change
responses, or false alarms f ijsm. We assume that a
Binomial process generates these observed hits and false
alarms, such that

hijsm � Binðhcijsm;nc
ijsmÞ

f ijsm � Binðhsijsm;ns
ijsmÞ

ð2Þ

where nc
ijsm and ns

ijsm are the number of change and same
trials completed by an individual in each condition.

We use hierarchical Bayesian estimation to fit the
model to data. The hierarchical model assumes that the
parameter values of individual participants are drawn from
a population-level Normal distribution. For example, we
assume that the mth individual’s capacity for the sth stim-
ulus type comes from a Normal distribution with mean Ks

and standard deviation rK , such that ksm � NðKs;rKÞ. For
the remaining parameters, we chose to set the standard
deviation of the population-level parameters to be r, in
order to constrain the model. For example, we assumed
that the mth individual’s guessing rate for the sth stimulus
type in the jth change proportion condition was
gjsm � NðGjs;rÞ.1 Since our focus was on parameter estima-
tion we used vague priors for our model parameters. We
placed a Beta distribution Beð1;1Þ prior on the population-
level means for rates (Ajs;Bjs, and Gjs) and a Uniform Uð0;8Þ
prior on the population-level mean capacity (Ks). Finally,
we placed a Uniform Uð:01;10Þ on both rK and r. Finally,
all posterior distributions were obtained using JAGS by run-
ning 6 chains of 5000 samples (after 500 burn-in samples).
Model validation
Because our conclusions depend entirely upon the

inferences drawn from our model, we ran a number of val-
idation analyses. The details of these are reported in full in
the Supplementary Materials section. Briefly, we first
report a simulation study that demonstrates that the
design of our experiment allows us to estimate the param-
eters of our model with sufficient precision to discriminate
between the two focal hypotheses. That is, our design
allows us to determine whether changes in performance
for more complicated stimuli are due to increased compar-
ison errors or reduced capacity.

Second, we show that the comparison error parameter
in the model captures what should be an increased rate
of comparison errors in actual data. We report the results
of an experiment in which the change between study and
test stimuli, when it occurred, was either small or large.
Critically, since all of the stimuli were colored squares,
there should be no difference in capacity estimates for
small- and large-change trials. Rather, we should expect
the number of comparison errors to increase when the
change between study and test items is smaller. We fit
our model to the small- and large-change trials separately,
and found large changes in the comparison error parame-
ter, while the capacity parameter (and all other parame-
ters) remain relatively constant between the two
conditions. That is, we find that our model attributes the
difference between small- and large-change conditions to
the comparison error parameter, and not to the capacity
parameter.
Model predictions
We focus our inference on the means of the population-

level distributions, Ks, Ajs, Bjs, and Gjs. The values of Ks will
tell us how many items of each stimulus type are stored in
memory. Ajs and Bjs will tell us about the rate of compar-
ison errors that occur for each of the different types of
stimuli. The way that the K , A and B parameters change
as a function of stimulus complexity will allow us to distin-
guish between our two hypotheses. According to Alvarez
and Cavanagh (2004), we expect that K will be smaller
for more complex items, while Awh et al. (2007) would
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predict that Kwill be constant for all stimuli, but that A and
1� B will be smaller for more complex stimuli.

Our primary analysis will be to estimate parameters
from the data. However, to facilitate a more qualitative
interpretation of our data, we plot the predicted hit and
false alarm rates for a range of parameter settings of our
model in Fig. 3. In the top panels of the figure, we hold
the capacity parameter constant and change the probabil-
ity of a comparison errors. If we imagine that moving from
the top left to the top right panel is equivalent to increas-
ing the complexity of a stimulus, then we see the pattern of
data we expect based on Awh et al. (2007). The bottom
panels of the figure demonstrates the effect of reducing
the capacity of working memory. The difference between
the top left and the bottom left panels shows the effect
of increasing stimulus complexity according to Alvarez
and Cavanagh (2004). The key difference between the
two accounts is that when the capacity for complex stimuli
is reduced, we expect to see a greater difference between
the small set size and the larger set sizes. That is, we expect
performance to remain good when there are only 2 stimuli,
but participants should get much worse for the N ¼ 5 and
N ¼ 8 conditions.
Fig. 3. Predicted hit and false alarm rates for four different parameter settings
would expect for simple color stimuli. The top right panel shows the predictio
figures reflect the predictions for complex stimuli that are consistent with Alvar
color in this figure legend, the reader is referred to the web version of this artic
Results

Turning first to the model parameter estimates, Fig. 4
plots the posterior distributions for the mean of the
population-level parameter distributions in our model.
The posteriors are plotted as violin plots, which are com-
posed of a central box-plot that is surrounded by a
smoothed density. These plots represent the relative likeli-
hood of the values that each parameter could take to
account for the observed data. There are two critical results
to take away from these posterior distributions. First, we
find that the capacity estimates, K, for letters, words, and
colors are consistent with the standard upper limit for
short term memory of 3–4 items. However, the capacity
for complex shapes is markedly lower, at around 2 items.
This finding is consistent with previous arguments that
there is a smaller capacity for more complex items
(Alvarez & Cavanagh, 2004; Brady & Alvarez, 2015).

Second, we observe negligible changes in the compar-
ison error parameters, A and B, across the different stimu-
lus types. This result implies that items stored in memory,
regardless of their complexity, yield the same probability
of a correct or incorrect change response. More specifically,
of our model. The parameters in the top left panel reflect those that one
ns for more complex stimuli according to Awh et al. (2007). The bottom
ez and Cavanagh’s (2004) account. (For interpretation of the references to
le.)



R. Taylor et al. / Journal of Memory and Language 93 (2017) 67–81 73
we see that changes to items that make it into memory are
identified with near perfect accuracy.

Finally, though not of particular theoretical relevance,
we see a typical pattern of guessing behavior. Participants
appear to do something akin to probability matching,
where they increase the rate at which they guess change
as the proportion of change trials increases (as opposed
to the more rational approach of maximizing, such as
always guessing change when the probability of a change
trial is greater than 50%). This pattern is observed for all
stimulus types, though there seems to an inflated rate of
responding change to color stimuli.

To assess the fit of the model to the data we generated
posterior predictive distributions. We do this by simulating
hit and false alarm rates, defined by Eq. (1), using the val-
Fig. 4. Posterior distributions for the population-level parameter means. The top
panel displays the mean comparison error probability across both stimulus type
displays the guessing rates across each level of change proportion for each stim
ues contained within the population-level posterior distri-
butions. So, we generate distributions of hits and false
alarms based upon our model’s most likely parameter val-
ues. We then compare the posterior model predictions to
the observed data. We estimated the observed hit and false
alarm rates by fitting a hierarchical data model that simply
estimates a binomial rate across all conditions. This
ensures that the observed rates have also undergone the
shrinkage imposed by hierarchical models, as did our com-
putational model. As before, the model assumes that
individual-participant hit and false alarm rates are drawn
from population-level normal distributions.

Fig. 5 displays the empirical data (in white) and the
model fits (in color) for each stimulus condition. Looking
first at the data, we see that the shape stimuli show a dif-
panel displays the capacity means across each stimulus type; the middle
and change proportion for change, A, and same, B, trials; the bottom panel
ulus type.
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conclusions from this experiment, are practically identical when vague
priors are used to analyze the data from Experiment 2. All of the materials
necessary to carry out this analysis are available on the OSF.
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ferent qualitative pattern to the other stimuli. Compared
with the letter, word, and color stimuli, the shapes show
a smaller difference between the N ¼ 5 and N ¼ 8 condi-
tions than between the N ¼ 2 and N ¼ 5 conditions. Recall
that this is the hallmark pattern of a reduction in capacity,
based on Fig. 3.

The posterior predictive distributions in Fig. 5 suggest
that the model provides a reasonable fit to the data. The
model is able to capture the general pattern in the
observed data, in terms of the effect of set size, change pro-
portion, and stimulus type. Though the model certainly
does not capture all of the patterns in the data, recall that
we aim to use this model as a measurement tool. As such,
we are more tolerant of some of the misfits, as we do not
think that these speak directly to the measurement of
comparison errors and capacity. For example, the model
fails to capture the false alarm rates when p ¼ 0:3 for color
and shape stimuli. However, to foreshadow, we do not see
such patterns in Experiment 2, suggesting that such misfits
may not be a large problem.

Discussion

Our results indicate that participants stored fewer of
the complex shape items than they did letters, words, or
colors. However, interestingly, we find that participants
made almost no comparison errors with any of the stimuli
that were contained in memory. These results differ from
previous suggestions that comparison errors provide the
key limit upon capacity estimates for complex stimuli
(Awh et al., 2007; Barton et al., 2009). That is, our results
are more in line with the conclusions of Alvarez and
Cavanagh (2004). What’s more, we are able to draw these
conclusions while having allowed for the possibility of
comparison errors.

We now demonstrate the same empirical effect in a sec-
ond change detection experiment. In the previous experi-
ment we had participants complete a change detection
task with stimuli that varied in complexity. In the change
detection paradigm, participants are presented with all
stimuli simultaneously, and so are allowed to choose
how to allocate items into memory. However, participants
only have a limited amount of time during which item
encoding can be preformed. For example, one could reason
that there was not enough time to encode the complex
stimuli, and so the number of items that could be stored
was limited by encoding limitations.

In Experiment 2 we sought to replicate our previous
findings, though allow for more time to view the study
array when there are more items in the array. Specifically,
we allowed 250 ms encoding time per item. Accordingly,
when participants were shown an array of five items they
had a total of 1250 ms (5 � 250 ms) encoding time. Addi-
tionally, we also incorporate the knowledge we have
gained from Experiment 1 to update our computational
model. When fitting the model to the data from Experi-
ment 1 we had very little substantive knowledge about
what values the model parameters might take. As a result
we sought only to estimate the model parameters and so
placed uninformative priors on the population-level
parameter means.
The resulting posterior distribution reflects the reallo-
cation of credibility to the most likely parameter values.
That is, it encapsulates what has been learned from the
observed data and how we should revise our beliefs about
the value of a specific model parameter. Moreover, this
new information can be used to update the model specifi-
cation. Specifically, we can use the posterior distributions
estimated in Experiment 1 as priors on the population-
level model parameters in Experiment 2 (Kary, Taylor, &
Donkin, 2016). Using informed priors also allows us to per-
form Bayesian inferential tests on differences in the model
parameters across conditions.

Experiment 2

Method

Twenty new participants were recruited into Experi-
ment 2. All methodological details regarding participants,
design, stimuli, and modeling were the same as in Experi-
ment 1. The only procedural difference was the length of
time the study items were presented to the participant.
We allowed 250 ms encoding time per item within the
study array. The total presentation time was thus equal
to the number of study items in the array multiplied by
250 ms. Accordingly, for the N = [2,5,8] set size conditions,
total presentation time was equal to 500 ms, 1250 ms, and
2000 ms, respectively.

Model updating

Our model is hierarchical, and so participant-level
parameters are draws from population-level normal distri-
butions. Each population-level distribution has a mean and
a standard deviation parameter; for example, the
population-level capacity parameter for a given stimulus
type has a mean of Ks and a standard deviation of rK . Recall
that in Experiment 1, we placed uninformative priors on
the mean and standard deviations of these normal distri-
butions. For example, we placed a Uniformð0;8Þ prior on
the mean of the population-level capacity parameter, Ks.
In Experiment 2, we will instead use informative
priors, based upon the posterior distributions from
Experiment 1.2

We need an informative prior for the mean and stan-
dard deviation of each population-level normal distribu-
tion. First, for the means, we defined our informative
priors by fitting Normal and Beta distributions to the
population-level mean posterior distributions shown in
Fig. 4. We assumed that the population-level mean capac-
ity parameter, Ks would be normally distributed. So, for
each stimulus type, we fitted normal distributions to the
posterior distributions shown in the top row of Fig. 4,
and used the maximum-likelihood estimates as our prior.
For example, for Letter stimuli, the best-fitting normal dis-
tribution to the posterior distribution plotted in the far left



Fig. 5. Posterior predictive distribution for the comparison error model across each stimulus condition in Experiment 1. Each color band corresponds to a
different set size condition: red = set size 2; green = set size 5; and blue = set size 8. Within each band there are three distinct clusters, each of which
correspond to the different change proportion conditions. The white data points are the mean hit and false alarms rates for the observed data, with 2
standard deviations indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

R. Taylor et al. / Journal of Memory and Language 93 (2017) 67–81 75
of the top row of Fig. 4 had a mean of 3.3 and a
standard deviation of 0.35, and so our prior on KL was
Nð3:3;0:35Þ. The prior distributions for all population-
level mean capacity parameters are given in the top row
of Table 1.

The same basic approach applied when estimating the
distributions placed on the population-level rate parame-
ters (i.e., Aj;Bj, and Gj), only here the parameters must lie
in the interval ½0;1�. We thus used a Beta distribution for
each of these parameters. So, for the jth change proportion
condition we assumed that Aj, Bj, and Gj were distributed
as a Beða; bÞ, where a and b were estimated by fitting the
posterior distributions from Experiment 1. The full set of
distributions used to inform the population-level mean
parameters are contained in Table 1.
We also used informative priors for the population-
level standard deviation parameters. We used normal dis-
tributions to characterize the posterior distributions for
the variance parameters. We required only two such pri-
ors: one for the standard deviation on the rate parameters,
r, and one for the standard deviation of the capacity
parameter rK . For the variance of the rate parameters,
the updated prior was r � Nð:11; :01Þ, whereas the vari-
ance for the capacity parameter was rK � Nð1:43; :18Þ.

Bayesian hypothesis tests

Weapplied the Savage-Dickey density ratio test to assess
the differences between the capacity posterior distribution,
denoted as d, for each stimulus type. The Savage-Dickey test



Table 1
Prior distributions placed on Ks for Experiment 2.

Parameter Stimulus type

Letter Word Colour Shape

K Nð3:30; :35Þ Nð2:67; :40Þ Nð3:05; :35Þ Nð1:15; :46Þ
A:3 Beð51:55;1:08Þ Beð25:41;1:23Þ Beð51:55;1:10Þ Beð26:17;1:30Þ
A:5 Beð69:64;1:08Þ Beð46:53;1:13Þ Beð71:16;1:06Þ Beð28:09;1:45Þ
A:7 Beð59:33;1:08Þ Beð67:30;1:05Þ Beð82:11;1:06Þ Beð38:00;1:16Þ
B:3 Beð1:10;67:59Þ Beð1:05;77:23Þ Beð1:07;66:48Þ Beð1:11;52:03Þ
B:5 Beð1:08;60:85Þ Beð0:99;48:10Þ Beð1:12;50:84Þ Beð1:29;31:13Þ
B:7 Beð1:25;31:83Þ Beð2:13;24:77Þ Beð1:47;28:99Þ Beð1:29;27:17Þ
G:3 Beð71:05;132:52Þ Beð66:63;145:42Þ Beð107:34;132:89Þ Beð92:76;179:66Þ
G:5 Beð120:01;95:74Þ Beð117:79;112:19Þ Beð140:81;90:64Þ Beð160:33;129:14Þ
G:7 Beð112:97;33:19Þ Beð147:54;70:13Þ Beð82:74;16:82Þ Beð161:35;56:93Þ

Note: Nðl;rÞ denotes Normal distribution and Beða; bÞ denotes Beta distribution.
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uses the prior andposterior distributionon d to testwhether
the difference is reliably different from zero. Accordingly,
the test corresponds to a conventional two-tailed hypothe-
sis test insofar as the null hypothesis assumes that there is
no difference between the capacity posterior distributions,
H0; d ¼ 0, and the alternative hypothesis assumes that there
is a difference, H1; d– 0. However, unlike conventional
hypothesis tests we can obtain evidence for both the null
and alternative hypothesis. This permits an evaluation of
the relative odds that the data were generated by the null
hypothesis relative to the alternative.

The prior placed on the population-level difference
between stimulus capacity, pðdÞ, was simply the difference
between the priors placed on the population-level mean
capacity for each stimulus type (i.e., Ks). So, as an example,
for the capacity differences between letters and colors,
denoted as pðdLCÞ ¼ pðKLÞ � pðKCÞ, where pðKLÞ and pðKCÞ
are the informative priors as described in the previous sec-
tion (also see Table 1), samples were first drawn from pðKLÞ
and pðKCÞ and then the difference between each pair of
samples was calculated. This procedure yields the prior
for the difference in capacity between color and letter
stimuli. Similarly, the posterior distribution on the capac-
ity differences is the difference between the obtained pos-
terior distributions for KL and KC . Finally, we used a
logspline density estimator to obtain the prior and poste-
rior density estimates of the capacity differences
(Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).

The Savage-Dickey density ratio is the ratio of the prior
and posterior densities at the given point of interest. In the
present case, the point of interest is d ¼ 0. This ratio is
called the Bayes factor and it quantifies the degree of sup-
port for the null hypothesis relative to the alternative,
denoted here as BF01. A Bayes factor greater than 1 pro-
vides support for the null hypothesis, whereas a Bayes fac-
tor less than 1 indicates support for the alternative.
Conveniently, we may also express the degree of support
for the alternative hypothesis relative to the null hypothe-
sis in the following way: BF10 ¼ 1=BF01.

Results

Fig. 6 displays the posterior distributions of the model
parameters for each stimulus type. The immediate impres-
sion from the figure is that the population-level means
exhibited a very similar pattern to the estimates from
Experiment 1. There was, however, a slight increase in
the capacity estimates across stimulus type. However, we
again see that the capacity for complex shapes was smal-
ler, at around 2 items. Also, the comparison error parame-
ters again remain fairly constant across all stimuli types.
Our results also suggest that, while ostensibly participants
may have been able to use the additional presentation time
to encode a little more information into memory, they do
not appear to use that extra time to remember a large
number of shapes, at a cost of more comparison errors.
That is, even with more time to encode items, the number
of complex items that can be stored is smaller than that for
simpler items, and this limit is below the assumed fixed
capacity of 3–4 items. Crucially, the results from Experi-
ment 2 replicate the results reported for Experiment 1.

Turning next to the Bayesian hypothesis tests, our
immediate inferential focus was on the differences
between the capacity estimates for complex shapes rela-
tive to all other stimulus types. The Bayes factors for all
capacity differences are displayed in Table 2, though we
present only the prior and posterior distributions for the
shape stimuli comparisons in Fig. 7. It is worth noting that
because we used informative priors, we expect that capac-
ity is different for shapes and other stimuli – the prior dis-
tributions fall to the right of the dotted horizontal line in
Fig. 7. The posterior distributions from Experiment 2 indi-
cate a solidification of such beliefs, such that the posterior
distributions shift slightly further away from 0. The poste-
rior distributions also have smaller variance than the pri-
ors, indicating increased certainty about the difference
between the capacity for shape and other stimuli. When
the difference between prior and posterior at 0 was quan-
tified via a Bayes factor, we found that the alternative
hypothesis was 608 times, 62 times, and 16 times more
likely than the null model, which expects no difference in
capacity, respectively (cf: Table 2). These results provide
decisive evidence for capacity differences between the
shape and other stimuli.

Finally, we performed a posterior predictive check to
assess the fit of the model predictions to the empirical
data. The empirical data (white) and model fits (color) for
Experiment 2 are displayed in Fig. 8. The data exhibited a



Fig. 6. Posterior distributions for the population-level parameter means. The top panel displays the capacity means across each stimulus type; the middle
panel displays the mean comparison error probability across both stimulus type and change proportion for change, A, and same, B, trials; the bottom panel
displays the guessing rates across each level of change proportion for each stimulus type.

Table 2
BF10 for the posterior difference between capacity estimates across
stimulus type.

Letter Word Colour Shape

Letter 0 1.37 2.68 608.84
Word – 0 0.57 62.48
Colour – – 0 15.97
Shape – – – 0
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very similar pattern to Experiment 1. The model again
appeared to capture the general pattern of results across
both set size and stimulus type. Most critically, the model
describes the attenuation in the hit and false alarms rates
for set sizes 5 and 8 for shape stimuli. Analogous to Exper-
iment 1, the model did not perfectly capture all the empir-
ical data patterns. For example, we see that the model
predicts worse performance than was observed for letter
and word stimuli. This mis-prediction is likely because
performance for letters and words was better in Experi-
ment 2 than Experiment 1, and our model used informa-
tive priors that were based on Experiment 1. That said,
we do not think that these mis-predictions necessarily
threaten the validity of our conclusions about capacity
and comparison errors. For example, with the exception
of the set size 2 condition for shapes, none of the misfits
are systematic across the two experiments. That is, while
the model may under predict performance in a particular



Fig. 7. Top Panel: Prior on the difference between the population-level mean capacity estimates across stimulus type in Experiment 2. These prior
distributions are derived by taking the difference between the informative prior distributions placed upon the population-level means. Bottom Panel:
Posterior distribution of the difference between the population-level mean capacity estimates across stimulus type. These distributions are derived by
taking the difference between the posterior population-level mean estimates across stimulus type having conditioned on the data from Experiment 2.
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condition in Experiment 1, no such misfit appears in Exper-
iment 2. Furthermore, the misfits relate less to the pattern
of attenuation (or squashing) in the rates for the set size 5
and 8 conditions for the shape stimuli, which was the sig-
nature pattern of smaller capacity we highlighted in Fig. 3.
General discussion

Our results suggest that changes in stimulus complexity
produce negligible changes in the rate of comparison
errors across stimulus types. Instead, the present findings
indicate that item capacity is sensitive to changes in the
complexity of the stimuli, and suggest that the original
interpretation of the result in Alvarez and Cavanagh
(2004) was correct – observers store fewer complex stim-
uli. Specifically, we find that when people undergo change
detection tasks using perceptually simple stimuli (i.e, let-
ters, words, and colors), capacity estimates tend to hover
about the accepted item limit of approximately 3–4 items.
However, when participants are subjected to stimuli that
are more complex (i.e., abstract polygons) we find capacity
estimates drop to between 1 and 2 items. Our results are
thus more consistent with the conclusions made by
Alvarez and Cavanagh (2004) and Brady and Alvarez
(2015) regarding capacity limits for complex stimuli.

Our conclusions differ from those of Awh et al. (2007),
who showed that cross-category change detection for com-
plex stimuli was as good as change detection for simple
stimuli. However, our experiment differs from that of
Awh et al. (2007), in that participants only ever needed
to remember items from just one stimulus category. In
the Awh et al. (2007) experiments, perhaps when partici-
pants were asked to remember items from multiple cate-
gories, they encoded only enough information to be able
to identify the particular type of stimulus. In that way, par-
ticipants would have been able to make accurate cross-
category decisions, but would have made more errors on
within-category decisions (Brady & Alvarez, 2015). The
participants in our experiments, however, appear to have
encoded more information about a given stimulus, allow-
ing for more accurate within-category decisions, but were
thus only able to store a smaller number of those items.
Such an explanation for our results suggests that partici-
pants are capable of allocating their mnemonic resource
in a flexible manner. That is, they can store fewer items



Fig. 8. Posterior predictive distribution for the comparison error model across each stimulus condition in Experiment 2. Each color band corresponds to a
different set size condition: red = set size 2; green = set size 5; and blue = set size 8. Within each band there are three distinct clusters, each of which
correspond to the different change proportion conditions. The white data points are the mean hit and false alarms rates for the observed data, with 2
standard deviations indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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but with higher resolution, or more items with poorer
precision.

Our results, on the surface, appear inconsistent with
recent results reported in Jackson, Linden, Roberts,
Kriegeskorte, and Haenschel (2015). Jackson et al. (2015)
independently manipulated the similarity and complexity
of visual stimuli, and found that it was only the similarity
between stimuli, but not complexity, that increases the
rate at which errors occur in a change detection task. How-
ever, we note that the capacity estimates for the stimuli
used in this study hovered about 1.5–2 items, lower than
the usual capacity of 4 items. As such, despite manipulat-
ing the relative complexity of their stimuli, we expect that
Jackson et al. used a fairly complex set of visual stimuli. In
other words, we expect that their simplest stimuli were as
difficult to remember as the stimuli that are generally con-
sidered to be visually complex stimuli.

Our model makes no theoretical distinction between
whether comparison errors occur due to an increase in
similarity between items, or because the items become
more ‘complex’. However, this point is irrelevant with
respect to our fundamental conclusion. That is, if the com-
plex stimuli lead our participants to commit comparison
errors they might have occurred because the shapes were
more similar to one another, or because they were more
visually complex. Our model, however, is agnostic to such
descriptions; moreover, we found no evidence for these
types of errors in our data. If comparison errors did exist
in the data, our model has a demonstrated capacity to mea-
sure them. Simply, regardless of how one might describe
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the process for comparison error, our model classified the
poorer performance with complex stimuli as being due to
fewer items being stored, and not because of an increase
in comparison errors.

It is worth being explicitly clear that we are not propos-
ing the model we used here as a theoretical account of
visual working memory capacity. Rather, this model was
developed and used to distinguish between two very clear
and distinct explanations for an empirical effect. The
model was developed as a direct instantiation of Awh
et al.’s (2007) alternative explanation of the empirical
result reported in Alvarez and Cavanagh (2004). We then
used this model to learn that the original interpretation
of the result in Alvarez and Cavanagh (2004) was correct
– observers store fewer complex than simple stimuli. There
remains, however, a question of what particular process
gives rise to such differences in capacity estimates.

One potential explanation may be the degree with
which each stimulus type can be verbally encoded. While
it is surely the case that the abstract shapes used here
are not amenable to verbal encoding, it might be the case
that categorical labels supplement encoding and improve
performance with the color stimuli. For example, capacity
for color stimuli was virtually identical to the capacity
for letters and words. Accordingly, the capacity observed
for complex shapes suggests that perhaps the true capacity
of visual working memory is closer to 1–2 items and that
simpler stimuli readily exceed this limit via the recruit-
ment of verbal encoding mechanisms.

With respect to this line of reasoning, a recent paper by
Sense, Morey, Prince, Heathcote, and Morey (2016) demon-
strated that verbal recoding of visual stimuli is unlikely to
occur during change detection tasks. Sense and colleagues
found that whether articulatory suppression was included
or not during the study phase had no differential effect
upon change detection performance with simple colors.
Additionally, the null effect persisted regardless of whether
study items were presented in an array or sequentially. A
state-trace analysis further suggested that there was no
interaction between articulatory suppression and perfor-
mance. That is, performance could be adequately summa-
rized by invoking a single latent dimension relating to
visual memory. Sense et al. (2016) conclude that if individ-
uals had employed any verbal strategies then these strate-
gies had no demonstrable effect upon performance. In light
of these findings it is unlikely that the differences between
capacity estimates reported here are merely an artifact of
comparing stimuli that differ in how well they can be ver-
balized. Instead, the complexity of the stimulus imposes a
limit that is fundamentally different to the limit imposed
by simpler items.

Our belief is that visual working memory is a continu-
ous resource, but that not all items may be encoded into
memory on a given trial (Donkin, Kary, Tahir, & Taylor,
2016; Donkin, Nosofsky, Gold, & Shiffrin, 2013; Donkin,
Tran, & Nosofsky, 2014; Nosofsky & Donkin, 2016). That
is, though we have presented a model that is firmly rooted
within the ‘‘slots” framework, our position is that these
changes in capacity estimates point to the allocation of a
flexible resource. Simple stimuli require less of that
resource, and so more of those stimuli can be encoded.
Complex stimuli, however, require a larger amount of
mnemonic resource to be encoded with the same preci-
sion, and so fewer items can be remembered. It is interest-
ing to note that such an account does allow for the
possibility that participants would allocate less resource
to more complex items, and so be able to remember more
complex items. Had participants used such an encoding
strategy, then our results may have turned out to have
been in agreement with Awh et al. (2007). Thankfully, it
appears that participants prefer to have high-precision
representations for fewer complex items, thus allowing
us to discriminate between our two competing
hypotheses.

An alternative explanation for our results may be pro-
vided by a ‘‘slots + averaging” account. According to the
slots + averaging theory, it is possible to encode an item
into multiple slots. An item that has been stored in multi-
ple slots will yield a more precise representation. One
could argue that participants choose to allocate multiple
slots to more complex items, in order to gain a precise rep-
resentation of those items. Though possible, we think that
the distinction between slots and continuous resource
models becomes largely semantic once such possibilities
are introduced. If one allows resource to be allocated
within a slots framework then the resolution, or granular-
ity, of that resource is simply a matter of degree. Further,
slots + averaging models have not fared well when their
quantitative predictions have been contrasted with
continuous resource alternatives (e.g., van den Berg, Awh,
& Ma, 2014; van den Berg, Shin, Chou, George, & Ma,
2012). Moreover, our Supplementary Materials contains
an instantiation of this type of model. We found that the
model provided virtually identical results and loaded
the poorer performance for the complex stimuli onto the
capacity parameter. The model also yielded noisier
posterior predictions and did not provide an improved
description of the empirical data.

In summary, we presented a model that allowed for the
simultaneous estimation of capacity and comparison
errors in a simple working memory task. Across two such
change detection experiments we found that participants
were able to store fewer complex items than simpler
objects. Our results are inconsistent with the notion of a
single, fixed capacity of visual working memory.
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