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Cognitive models of choice and response times can lead to deeper insights into the processes underlying
decisions than standard analyses of accuracy and response time data. The application of these models,
however, has historically been reserved for the authors of the models, and their associates. Recently,
choice response time models have become more accessible through the release of user-friendly software

for estimating their parameters. The aim of this tutorial is to provide guidance about the process of
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using these parameter estimates and associated model fits to make conclusions about experimental data.
We use an application of one response time model, the linear ballistic accumulator, as an example to
demonstrate the steps required to select an appropriate parametric characterization of a data set. We
also discuss how to evaluate the quality of the agreement between model and data, including guidelines
for presenting model predictions for group-level data.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Evidence accumulation models of choice response time (RT) are
increasingly used to examine the psychological processes underly-
ing rapid decisions. The central assumption of these models is that
the decision maker accumulates evidence for potential choices and
makes a decision once the evidence reaches a threshold amount.
The predicted time to make a response is the time taken to accu-
mulate evidence, plus “non-decision time”, which is the time for
other necessary processes, such as stimulus encoding and response
execution. The parameters of evidence accumulation models quan-
tify different aspects of the decision process, such as the rate of
evidence accumulation, response caution (the amount of evidence
required for a response) and response bias (different caution for
different responses). Variations among experimental conditions in
these parameters, and in non-decision time, can provide insights
into latent psychological processes beyond those available from
traditional approaches, such as independent analyses of accuracy
and mean RT.

Theories based on the idea of evidence accumulation have
been successfully applied to many different paradigms, includ-
ing: simple perceptual decisions (Usher & McClelland, 2001), visual
short-term memory (Smith & Ratcliff, 2009), absolute identifica-
tion (Brown, Marley, Donkin, & Heathcote, 2008), lexical decision
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(Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, Gomez,
& McKoon, 2008), the link between depression and anxiety (White,
Ratcliff, Vasey, & McKoon, 2009, 2010), and the neural correlates of
behavioral measures (Farrell, Ratcliff, Cherian, & Segraves, 2006;
Forstmann et al., 2008; Ho, Brown, & Serences, 2009). Many dif-
ferent evidence accumulation models have been proposed, includ-
ing Ratcliff's diffusion model (Ratcliff, 1978), the Poisson counter
model (Pike, 1966; Van Zandt, Colonius, & Proctor, 2000), the
accumulator model (Smith & Vickers, 1988), the leaky competing
accumulator model (Usher & McClelland, 2001), and ballistic accu-
mulator models (Brown & Heathcote, 2005, 2008). We will focus
on the recently proposed linear ballistic accumulator (LBA) model
because it is mathematically simple, and because it was the model
used by the authors of the data set we use as an example in this
tutorial (Forstmann et al., 2008). Although our focus here is on the
LBA model, the techniques we illustrate for model selection and
evaluation are applicable to all evidence accumulation models.
Applying an RT model to data involves - at minimum -
estimating parameters from data. Brown and Heathcote (2008)
and Donkin, Averell, Brown, and Heathcote (2009) provide
computational routines for LBA parameter estimation. Similarly,
Vandekerckhove and Tuerlinckx (2007) provide methods and
advice for estimating the parameters of Ratcliff's (1978) diffusion
model (see also Tuerlinckx, 2004; Tuerlinckx, Maris, Ratcliff, & De
Boeck, 2001; Vandekerckhove & Tuerlinckx, 2008). More generally,
Myung (2003) and Van Zandt (2000) provide excellent tutorials on
how to estimate parameters for psychological models. However,
when using a choice RT model, it is not a trivial step to go from
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Fig. 1. A typical LBA decision for the task in Forstmann et al. (2008). In the
illustrated trial, a left-moving stimulus has been presented and so drift rates for the
left and right accumulators have been sampled normal distributions with means v
and 1 — v, respectively, and a common standard deviation s.

estimating parameters to drawing psychologically meaningful
conclusions. The aim of the current tutorial is to bridge the gap
between estimating parameters and interpreting data. We present
a step-by-step analysis of data from a simple perceptual task
(Forstmann et al., 2008) to illustrate this process. The aim of this
tutorial is to provide new users with guidance about conventions
and assumptions that are often not reported, or only briefly
reported, in applications of choice RT models.

2. The linear ballistic accumulator

Fig. 1 illustrates decision processing in a pair of LBA units.
Suppose that the figure represents a single trial in Forstmann etal.’s
(2008) experiment, in which participants must choose whether
a cloud of dots appears to be moving to the left or to the right,
requiring a “left” or “right” response, respectively. Presentation
of the stimulus causes evidence to accumulate for both the “left”
and “right” responses separately, as indicated by the two lines
(one solid and one dotted) in Fig. 1. The vertical axis of the figure
represents the amount of evidence that has been accumulated, and
the horizontal axis shows how much decision time has passed.
The amount of evidence in each accumulator increases linearly
with time. The choice made corresponds to the accumulator whose
evidence total reaches the response threshold first. Decision time
corresponds to the time taken for that accumulator to reach
threshold. The predicted RT is the sum of decision time and non-
decision time, quantified by parameter t,.

The slopes of the lines in Fig. 1 indicate the rates at which
evidence is accumulated for each response, and are usually referred
to as the drift rates. If the physical stimulus favors a “left” response,
the drift rate for the “left” response accumulator will usually be
larger than that for the “right” response accumulator. Drift rates
are assumed to be set by physical stimulus properties and by the
demands of the task. For example, in Forstmann et al.’s (2008) task,
a correct “left” decision is made easier by making the displayed
dots drift more steadily to the left. This would provide more
evidence that “left” was the correct response, and so the drift
rate for that response would increase. Drift rates are also assumed
to be modulated by sensory and attentional processing, and the
overall efficiency of the cognitive system. For example, Schmiedek,
Oberauer, Wilhelm, Sii8, and Wittmann (2007) found larger drift
rates for participants with higher working memory capacity and
fluid intelligence. In the LBA there is one drift rate for each

accumulator, corresponding in this application to “left” and “right”
responses. The relative size of drift rate parameters describes
differences in task performance between different conditions or
groups. Although not explicitly illustrated in Fig. 1, drift rates in
the LBA are assumed to vary randomly and independently between
accumulators from trial-to-trial according to a normal distribution
with mean v and standard deviation s, reflecting trial-to-trial
fluctuations in factors such as attention.

The amount of evidence in each accumulator before the
beginning of the decision process also varies from trial-to-trial.
The starting evidence for each accumulator is assumed to follow
a uniform distribution whose minimum value is set (without loss
of generality) at zero evidence for all accumulators, and whose
upper value is determined by a parameter A. Hence, the average
amount (across trials) of evidence in each accumulator before
accumulation begins is ';4. The response threshold is quantified by
parameter b, represented by the horizontal dotted line in Fig. 1.
The value of b is constrained to be greater than A so that a
response cannot be made without accumulating some evidence.
The difference (b — g) provides a measure of average “response
caution”, as it is the average amount of evidence that must be
accumulated to trigger a response. In Fig. 1, both accumulators
have the same b and A parameters so the same amount of evidence
isrequired, on average, before either response is made. Participants
can choose to favor one particular response (i.e., a response bias),
by setting a smaller value of b for the corresponding accumulator.
Such response bias leads to a speed-accuracy trade-off, as the
preferred response is made more quickly, but it is also made more
often when incorrect, reducing accuracy. Bias towards a response
by a particular accumulator can also be caused by increasing its A
parameter, but changes in the A parameter are not usually assumed
to be under the participant’s control.

The time taken for each accumulator to reach threshold on
any given trial is the distance between the response threshold
and the start point of activation, divided by the rate of evidence
accumulation. The observed decision time on any given trial,
however, is the time for the fastest accumulator to reach threshold.
The formula for the distribution across trials of the time taken for
the fastest accumulator to reach threshold is given by Brown and
Heathcote (2008). This formula makes it possible to estimate the
model’s parameters from data.

2.1. Example LBA application

Choice RT models are most appropriate for paradigms requiring
simple and rapid decisions.! Forstmann et al.’s (2008) participants
made simple decisions with average RTs around one second, so
the paradigm is appropriate. Their experiment investigated the
neural correlates of the trade-off between speed and accuracy,
by testing predictions from a neurophysiological theory of how
response caution is implemented by sub-cortical decision circuits.
They presented participants with a cloud of 120 moving dots, of
which 60% moved coherently to either the left or right of the screen,
while the remaining 40% moved in random directions. Participants
were asked in which direction (either “left” or “right”) the cloud
appeared to move. Several seconds before the decision stimulus
participants were given one of three cues, indicating whether they
should try to make a very accurate response (accuracy emphasis),
or avery fast response (speed emphasis), or try to balance accuracy
and speed (neutral emphasis). Twenty participants each completed
280 trials per emphasis condition; other methodological details
can be found in the original article.

1 Although similar models have been extended to more complicated judgments
(e.g., Busemeyer & Townsend, 1992, 1993).
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The manipulation of response caution had the expected effect.
On average, participants were faster under speed emphasis (RT =
429 ms) than under neutral emphasis (RT = 515 ms) or accuracy
emphasis (RT = 555 ms). The faster responses came at the cost
of lower accuracy: in the speed condition 77% of responses were
correct, whereas in the neutral and accuracy conditions 86% and
87% of responses, respectively, were correct. This data pattern
- trading accuracy for speed - is consistent with the effects of
manipulating response caution in a choice response model (i.e.,
moving the response threshold higher and lower). However, it is
also possible that participants were doing something more com-
plicated. For example, non-decision processes (to) might also have
been faster under speed emphasis, or the quality of informa-
tion (drift rate, v) might have been greater under accuracy em-
phasis. Forstmann et al. (2008) examined these possibilities by
comparing the fit of the LBA model using a range of different
parameter constraints. This analysis allowed them to infer which
cognitive processes were influenced by the experimental manip-
ulation. In the next section we address in detail the problem of
selecting the best set of parameter constraints. First, however,
we briefly review parameter estimation for choice RT models and
some other assumed knowledge.

3. Fitting the model

3.1. Parameter estimation

A choice RT model, like any quantitative theory, is defined by
numerical parameters, and changing these parameters changes
the model’s predictions about RT and accuracy. For example,
increasing the response threshold parameter increases accuracy
and both slows and increases the variability of predicted RTs.
Increasing the drift rate also increases accuracy, but it has the
opposite effect on RT, reducing both its mean and variability. Non-
decision time affects mean RT, but has no effect on RT variability
or on accuracy.

The initial aim of fitting a model is to find parameter
values which yield model predictions that adequately match the
observed data. The degree of match is quantified by an objective
function, which takes into account both decision accuracy and the
distribution of RTs for each type of response. Automated search
algorithms are used to find the best-fitting parameter values -
those that optimize the objective function - given a particular set
of parameter constraints.

There is a vast amount of literature, including several tutorials,
dealing with the choice of objective function and optimization
algorithm (e.g., Heathcote, Brown, & Mewhort, 2002; Myung, 2003;
Ratcliff & Tuerlinckx, 2002; Van Zandt, 2000). For the purpose of
this tutorial we assume that the reader has a reasonable grasp
of the issues associated with parameter estimation. Our starting
assumption is that the reader is capable of finding the best-
fitting values of a set of parameters, defined by a particular set of
parametric constraints. The Appendix contains a general review
of issues related to fitting and parameter estimation for choice
RT models, with a particular emphasis on the model and fitting
methods used here. Readers less familiar with the LBA model might
also benefit from reviewing the software and methods described
by Donkin et al. (2009).

The purpose of this tutorial is to go beyond finding the best
estimates for free parameters by describing how to find the best set
of free parameters to estimate. This issue is critical since choice RT
models are often used to draw inferences about which cognitive
processes are influenced by experimental manipulations. These
conclusions are drawn by determining which parameters of the
model systematically vary across a set of conditions produced by
experimental manipulations. In most applications of choice RT

models, the authors present only the best parameterization of
a model—the smallest set of parameters needed to vary across
experimental conditions in order to account for the data. Little
discussion, however, is generally given to the many assumptions
and decisions which yield these parameters. The aim of this tutorial
is to go step-by-step through the process of identifying a best set
of parameters. To illustrate, we analyze Forstmann et al.’s (2008)
data, discussing many of the issues regarding the selection of which
parameters can and should change across experimental conditions.

3.2. Which parameters change across conditions?

Forstmann et al’s (2008) experiment had three emphasis
conditions (speed, neutral and accuracy), and in each of these
conditions there were two types of stimuli (coherent motion to
the left or to the right). One of the central tasks of cognitive
modeling for these data is to investigate which aspects of cognitive
processing were influenced by the experimental factors. In model
terms, we want to know which parameters changed across each
condition.

3.2.1. A priori assumptions

To begin, we first decide which parameters potentially could
change. The LBA model has five parameters that determine
behavior in any condition (b, A, s, tg, v). When there are two
choices there are two accumulators, one for each decision (e.g.,
one corresponding to the response “left” and one to the response
“right”). This means that there could be up to 10 parameters that
vary for each particular combination of stimulus and emphasis
conditions, for a total of 60 parameters. Fortunately, this type of
freedom, though possible, is not usually required, because sensible
a priori constraints can be placed on parameters across conditions.
We elaborate these constraints by considering three factors in
succession: “left” vs. “right” responses; left-moving vs. right-
moving stimuli; and decision caution conditions (speed, neutral or
accuracy emphasis).

The two possible responses (“left” and “right”, corresponding
to the two accumulators) should share many parameters. Usually,
to can be fixed at the same value for both because, for example,
in most cases it is reasonable to assume that the time to execute
each response is the same. This assumption is plausible for the
present data, but may break down in unusual paradigms, such
as when one response is harder to produce than another. In
contrast, the evidence threshold parameter (b) and the starting
point distribution parameter (A) might reasonably vary between
responses—because participants might be biased toward one
response over the other. For example, if participants are biased to
respond “left” rather than “right”, this can be reflected in a smaller
value of b and/or a larger value of A for the “left” accumulator than
the “right” accumulator.

Response biases may or may not occur, depending on individual
differences between participants. However, when choice accuracy
is above chance, every participant ought to demonstrate a
difference in drift rates between “left” and “right” accumulators
as a function of which response is correct for a given stimulus. For
example, on trials where the stimulus drifts to the right, the mean
drift rate should be higher for the accumulator corresponding to
the “right” response than for the “left” response. Often, greater
simplification can be obtained by fixing the mean drift rate for the
incorrect response at one minus the mean drift rate for the correct
response. This restriction has commonly been applied because it
also satisfies a scaling property applying to all choice RT models,
which requires at least one parameter to be fixed in order to obtain
unique estimates of the remaining parameters. However, applying
this restriction to drift rates across all conditions provides greater
constraint than necessary to satisfy the scaling property, and can
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Fig. 2. Parameter estimates averaged over participants across emphasis conditions, responses and stimuli. Error bars are 1 standard error.

result in poor fits. We advise careful consideration about whether
this restriction is justifiable on theoretical grounds, before applying
it (for further discussion see Donkin, Brown, & Heathcote, 2009).2

Finally, though it is possible that between-trial variability in the
drift rate, s, can differ across responses, it has been fixed to the
same value in all applications of the LBA to date, and the same is
true, to our knowledge, of analogous parameters in other evidence
accumulation models. We follow this convention here, but note
that this is an additional, and untested, assumption.

In summary, the only parameters that we allow to take on
different values for “left” than “right” response options are b and A.
We will further assume that v is constrained to sum to one across
“left” and “right” response accumulators within any condition.
This is a reasonable assumption for Forstmann et al.’s (2008)
experiment, corresponding to the idea that increased evidence
for one response (e.g., more dots moving left) necessarily implies
decreased evidence for the other response (e.g., fewer dots moving
right).

Next, consider which parameters could vary between left- and
right-moving stimuli. In Forstmann et al.’s (2008) experiment, left-
and right-moving stimuli were randomly ordered over trials. It is
typically assumed that changing response threshold settings is a
relatively slow process, so threshold parameters (b and A) do not
depend on the stimulus presented for the current decision (Ratcliff,
1978). The general version of this principle is that b and A are
kept fixed across conditions whenever the participant is unable to
predict which of those conditions will occur next. Since the other
parameters (v, s and tg) are assumed to be influenced by stimulus
properties, they should be free to vary across stimulus types. For
example, left-moving stimuli might provide more salient motion
cues than right-moving stimuli, which should be reflected in a
higher left-moving stimulus drift rate.

Finally, consider which parameters might vary between speed,
neutral and accuracy emphasis conditions. Following convention,

2 An even greater restriction is often applied: the mean drift rate for correct
responses is constrained to be less than one. This ensures that the mean drift rate
for incorrect responses is greater than zero, but again the appropriateness of this
further restriction must be examined.

between-trial variability in drift rate (s) is usually fixed across
experimental conditions, particularly those not stimulus-based—
although this assumption is not strictly necessary. All other
parameters (b,A,v and tp) could feasibly be influenced by
response emphasis. Indeed, this was the central question for
Forstmann et al.’s (2008) data analysis—which cognitive processes
(i.e., parameters) were influenced by the response caution
manipulation?

Together, this relatively liberal set of constraints, based on
conventions and theoretical plausibility, reduces the number of
free parameters from 60 to 26. To keep notation compact, we
subscript parameters differing between left-moving and right-
moving stimuli with “left” and “right”, and use “L” and “R”
subscripts to indicate parameters corresponding to evidence
accumulators for “left” and “right” responses. With this notation,
the 26 free parameters are: Sieft, Srigh and three sets of by, bg, A, Ag,
Vleft, Uright» foje, aNd L0yigne» OIE for each emphasis condition.

3.2.2. Which parameters need to change to fit the data?

We next assess which of the 26 free parameters are actually
needed to fit the data. There are two ways this has been approached
in the literature. The first is to fit the model to each participant’s
data with all 26 free parameters, and then examine how parameter
estimates differ across conditions. To demonstrate this approach,
we fit each individual's data from Forstmann et al’s (2008)
experiment using maximum likelihood estimation (MLE) and a
SIMPLEX search algorithm (see the Appendix for computational
details). As discussed in the Appendix, obtaining good parameter
estimates for such a complex model (26 free parameters) is not
easy—a drawback of this first approach.

Fig. 2 suggests some general ideas about which parameters
need to vary across conditions. For example, on average both
the drift rate (v) and its standard deviation across trials (s) were
larger for left-moving than right-moving stimuli. However, the
much smaller corresponding difference (relative to the standard
error bars) in the non-decision time plot suggests that ty probably
did not change between stimulus types. Similarly, the evidence
threshold (b) and start point variability (A) parameters did not
change much between “left” and “right” responses. These two
parameters, however, changed substantially between the three
response caution conditions (left to right across the plots). In
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contrast, non-decision time and drift rate showed much smaller
changes between emphasis conditions.

Differences between average parameter estimates can be tested
for statistical reliability using a repeated measures analysis of
variance (ANOVA). The results of these tests help to decide which
parameters were affected by which manipulations. However, such
tests bear only on the question of whether the population means
for the parameters vary between conditions. It is possible that
there is no difference in population means between conditions and
yet each individual differs systematically between conditions in
a way that cancels out on average. In this case fixing parameters
to be the same over conditions in all individual participant fits
may distort the selection of the best set of parameter constraints
(i.e., model selection). A full solution to this dilemma requires a
“random effects” approach, which produces explicit estimates of
population means and variability for each parameter type by fitting
the model to all data from a group of participants simultaneously
(Averell & Heathcote, in press; Lee, in press; Morey, in press; Pratte
& Rouder, in press). Vandekerckhove, Tuerlinckx, and Lee (in press)
develop this approach for Ratcliff's diffusion and we are presently
doing the same for the LBA (see Donkin et al., 2009). However,
random effects models impose a greater computational burden,
and so in this tutorial we focus on methods based on fitting each
participant’s data separately.

Given the limitations of this initial individual participant free-
fitting method, we recommend it to be augmented with a second
method based on sequential model building. This method also
uses individual analysis, but it is still sensitive to the need to
allow for individual differences. The key to this approach is to fit
many different versions of the model, beginning with the simplest
version (identical parameters for all conditions; only five free
parameters in our example) and ending with the most complex
(with 26 free parameters in our example). This approach can be
computationally demanding because there might be very many
intermediate models to analyze. The intermediate models are
formed by considering all factorial combinations of parameter
constraints. For example, after estimating the simplest model, one
might next estimate a model where drift rate was free to vary
between left-moving and right-moving stimuli. After that, both of
those first two models would be used to start parameter searches
for even more complex models, perhaps with the boundary
separation parameter free to vary across speed/accuracy emphasis
conditions. This process continues through to the most complex
model.

After estimating the parameters of all the intermediate mod-
els, one model is selected that best satisfies the trade-off between
simplicity and goodness-of-fit. When each intermediate model is
nested within a more complex version, as is assumed here, each
model’s goodness-of-fit must necessarily improve with the num-
ber of estimated parameters. However, when the improvement is
small it may be due to “over-fitting”, where the extra parameters
serve only to account for unsystematic variation in the data. Such
over-fitting is undesirable because it leads to a model that predicts
new data poorly, and may produce theoretically misleading pat-
terns of parameter estimates (for additional details see the follow-
ing special issues on model selection: Myung, Forster, & Browne,
2000; Wagenmakers & Waldorp, 2006).

One method of identifying over-fitting is to choose the model
with the smallest AIC (Akaike Information Criterion, Akaike,
1974) or BIC (the Bayesian Information Criterion, Schwarz,
1978). Parameter estimation using maximum likelihood is most
appropriate for this purpose as both information criteria are
calculated by adding a penalty to minus twice the log-likelihood of
the model. The penalty quantifies model complexity based on the
number of estimated model parameters, k (2k for AIC and log(N) x k
for BIC, where N is the number of data points).

We use BIC in our application, as the AIC prefers overly complex
models in large samples, although we acknowledge that this
preference is debatable. Both methods are limited because they
do not take account of differences in functional form complexity
(Pitt & Myung, 2002) between models: that is, both statistics treat
all parameters equally in terms of model complexity, but this may
not be true. For example, even when two models have the same
number of parameters one model may have more flexibility in
fitting data due to differences in the way that the models restrict
interactions amongst parameters. Model selection methods that
address this issue, such as the Deviance Information Criterion
(DIC, Spiegelhalter, Best, Carlin, & van der Linde, 2002) require
Bayesian estimation, which we do not address here (see Donkin
et al., 2009, for details of Bayesian LBA estimation).

The ideal data driven version of this second, nested model, ap-
proach requires fitting of all factorial combinations of restrictions
on the 26 parameters. However, that is not always feasible be-
cause it can require estimating parameters for many thousands of
models. If the computational load is too great, one can make an
initial simplification by fixing parameters whenever the free es-
timates (from Fig. 2) strongly suggest that those parameters do
not change across conditions. For example, non-decision time does
not appear to be influenced much by either different stimulus
or emphasis conditions, suggesting that just one ty estimate will
do for all six conditions. Similarly, response threshold and start
point variability appear not to vary across emphasis conditions
but not across responses. Based on these observations we can nar-
row down the options to constrain the most complicated model
to one with 15 free parameters: b, A, vief; and vyighe Varying across
the three emphasis conditions, s;ignc and sief;, and o fixed across all
conditions. It is important at this point to remember the limita-
tions, discussed above, of making inferences about the population
parameters based on average parameter estimates from the min-
imally constrained model. These limitations mean that the short-
cut method we used to move from the 26-parameter model to the
15-parameter model should only be employed when the compu-
tational burden associated with exhaustively estimating the inter-
mediate models is too great.

We also note that the interpretation of Fig. 2 and the subsequent
choices about which parameters should be fixed have a subjective
element. For example, we chose to fix A across responses but let
it vary across emphasis conditions.? It is certainly arguable from
the upper left plot in Fig. 2 that other ways of constraining the
A parameter are plausible. A more formal method would be to
perform ANOVA on the parameter estimates, but we are cautious
about recommending the blind application of this approach given
its inherent limitations in terms of providing positive evidence in
favor of a null difference. Instead, when it is not clear whether
a parameter might vary across conditions, it is best to use the
methods outlined in the next section to further investigate.

3.3. Model selection example

The 15 free parameters that may account for our data
are generated from five ways that parameters vary across
experimental conditions; b, A, and v vary over emphasis condition,
and v and s also vary across left- vs. right-moving stimuli. We will
call these variations the five “features” of the model. One way to
determine which features are required by the data is to fit all 32
possible combinations of models made up of these features, i.e. one
model with all five features, the five models with four features, the

3 Further investigation not reported here, using the methods outlined below,
confirmed that A should be fixed across responses.
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Table 1

The most complex, and the BIC-best model: which parameters varied across
responses, stimuli, and emphasis conditions; also the number of parameters (k),
and total BIC.

Model Factor k X BIC
Responses  Stimuli ~ Emphasis

Most complex - v s b A v 15 —15226

Best intermediate - v - b - - 8 —15653

10 models with three features, etc., and select the best model using
BIC values. This method is by far the most comprehensive, and
indeed could be extended to all nine parameter variation features
that were earlier deemed plausible. Such an approach using all
nine features would require 512 models to be fit separately to
each participant’s data. Forstmann et al.’s (2008) model selection
analysis was based on an exhaustive evaluation of set of models
of this size, although with slightly different features. It is a
matter of judgment for the individual researcher to balance the
computational burden of exhaustive search using all features
against the subjectivity of identifying short-cuts to reduce the
number of features.

We estimated the parameters for all 32 possible combinations
of models made up of the five features. Models were fit individually
to each of the 20 participants, and for each participant a set
of parameters and a corresponding BIC were obtained. We use
BIC summed over participants, which we will call “total BIC”, to
describe group-level results. The results of the total BIC analysis
for the most complex model and for the intermediate model which
yielded the smallest total BIC value are reported in Table 1. The
most complex model, with all five features, has a much larger
BIC value (—15226) than the best intermediate model (—15653)
indicating that this intermediate model provides a much better
compromise between goodness-of-fit and model complexity.’
The best intermediate model has only two features, and eight
parameters. Averaged across participants, those parameters were:
Vet = 0.72 s7! and vygny = 0.67 s7', baee = 0.29,bpey =
0.27, bspeed = 0.17,s = 0.22s",A=0.15and to = 0.11>s.

The drift rate estimates for the eight-parameter model suggest
that the participants studied by Forstmann et al. (2008) were
able to extract information from left-moving stimuli around 8%
faster than for right-moving stimuli. The eight-parameter model
also implies that the response caution manipulation affected only
one cognitive process: the amount of evidence required before
responding. Relative to the neutral condition, participants set
evidence thresholds 7% higher under accuracy emphasis and 37%
lower under speed emphasis. Note that the final model chosen in
the present analysis is very similar to that selected in the original
paper, except that the model selected here equated between-
trial drift rate variability for left- and right-moving stimuli (this
possibility was not examined in the original analysis). Our results
are thus consistent with the major conclusion of the original paper,
that the emphasis instructions selectively affect the response
threshold.

4. Evaluating and presenting model fit

Another important model selection criterion is the descriptive
adequacy of the model, which can assessed graphically. A model is

4 Sequential model selection techniques, such as the forward, backward and
stepwise methods commonly used in linear regression model selection, provide
an alternative method of reducing computational cost. Such techniques could be
applied to selection amongst choice RT models, either based on likelihood ratio
tests, or based on BIC (Hoeting, Madigan, Raftery, & Volinsky, 1999), but as in linear
regression they are not guaranteed to find the best model.

5 See Wagenmakers and Farrell (2004) for formal methods of comparing BIC
differences that can be employed when results are not so clear cut.

inadequate if it fails to describe theoretically important patterns
in the data. Similarly, if the parameter estimates vary across
conditions in ways that make no psychological sense, the model
is suspect in terms of its theoretical adequacy. The average
parameter estimates for the best intermediate model given in the
last section appear to be adequate on the latter grounds, as did
the corresponding parameter estimates for all individuals. In this
section we describe how to graphically check model adequacy.

The match between model and data should be assessed for
each individual participant. However, the final communication of
results almost always requires a summary of the grouped data.
Such averages can fail to represent the individual participants,
depending on how they are constructed. As an extreme example,
suppose that an experiment had just two participants, one who
responded very quickly and another who responded very slowly.
In this case, an “average” histogram formed by pooling participant
data could be bimodal, and so not be representative of either
individual.5 Because of this issue it is often better to first calculate
statistics which summarize the RT distribution and then average
those. Regardless of the method used, one should always check
how well averaged data matches the individual participants.

The agreement between model and data is usually assessed by
plotting together predicted and observed statistics that summarize
RT distributions and response probabilities. Histograms depicting
the observed RT distribution are often overlaid with the predicted
probability density function (PDF) from the model, to assess
model fit. Such plots are simple to interpret, but do not always
highlight the shortcomings of the model. Cumulative probability
plots (e.g. Forstmann et al., 2008), or quantile probability (QP) plots
(e.g. Ratcliff & Smith, 2004), are more complicated to produce and
read, but can better illustrate differences between the model and
data. Group QP or cumulative probability plots, which are obtained
by averaging quantiles for each individual, also have the advantage
that they tend to be more representative of individual results (e.g.,
such averages do not suffer from the bimodality problem that can
occur with histograms). To represent the model predictions using
group plots, one calculates the model’s predicted quantiles for each
individual and averages these together in the same way as the data.
This means that we apply the same averaging process to create
summary information for model predictions as for the data, and
so both summaries are equally subject to any distorting effects of
averaging.

Fig. 3 summarizes Forstmann et al.’s (2008) data and the
corresponding LBA model fits using group QP plots. QP plots are an
efficient way of displaying the important information from a set of
choice RT data—the horizontal axis displays response probability
(accuracy) information and the vertical axis displays information
about the RT distribution. There are six QP plots in Fig. 3, with
each plot representing average results from a single experimental
condition. Each plot contains two sets of vertically aligned points,
illustrating the RT distributions for correct and incorrect responses
from one experimental condition. The horizontal position of a set
of vertically aligned points represents the proportion of responses
making up that RT distribution. For example, in the top left panel
of Fig. 3 the observed quantiles (solid squares) sit above 0.89 on
the horizontal axis, indicating that on average 89% of responses
were correct in that condition (left-moving stimuli under accuracy
emphasis). Note also that this implies that 11% (i.e., 100%-89%) of
responses were incorrect. Hence, the quantiles for these errors are
displayed at 0.11 on the horizontal axis. In general, points to the
left and right of 0.5 on a QP plot indicate incorrect and correct

6 Even though data grouped this way will not necessarily look like any
individual’s data, a similarly grouped graph of the model predictions still provides
a valid assessment of model adequacy.
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Fig. 3. A quantile probability plot for the data from Forstmann et al. (2008). Observed and predicted quantiles are represented by solid and open symbols, respectively.
Responses to left-moving and right-moving stimuli are represented in the top and bottom rows, respectively. Accuracy, neutral and speed emphasis conditions are shown
in the left, center and right columns, respectively. Error bars show standard errors across participants for both data and model predictions.

responses, respectively. The vertical positions of the points are
determined by five quantile estimates (0.1, 0.3, 0.5, 0.7 and 0.9).
For example, the 0.1 quantile estimate corresponds to the value
below which 10% of the RT values in the distribution fall. Taken
together, the five quantile values summarize the RT distribution.
For example, the first filled square above 0.89 in the top left panel
shows the 0.1 quantile for correct responses in that condition,
the next square above this shows the 0.3 quantile, and so on.
The unfilled squares provide the same information, but for the
distributions predicted by the LBA model rather than for the
observed data.

Note that QP plots can be constructed with any desired set of
quantiles, such as with deciles or semi-deciles. Using more than
five quantile estimates will provide a more detailed description
of the RT distributions, but can also make the plots difficult to
read. Similarly, results for more than one condition can be given in
the same graph. This often works well when the conditions differ
sufficiently in accuracy. For example, we could have given results
for accuracy and speed conditions in the same panel. In contrast,
the neutral and accuracy conditions are quite similar in accuracy,
so providing results for these two conditions in the one plot made
the QP plot hard to interpret.

Fig. 3 reveals the following general patterns: Responses in the
speed emphasis conditions (right column of Fig. 3) are faster,
as indicated by their lower position on the vertical axis, than
in accuracy and neutral conditions (left and center columns,
respectively). Responses for left-moving stimuli (top row) are
more accurate than for right-moving stimuli (bottom row). This
shows up in the figure because quantiles in the top row sit at
more extreme horizontal positions than those in the bottom row.
For example, quantiles for left stimuli in the speed condition are
positioned at 0.18 and 0.82 on the horizontal axis, while the
same quantiles for right stimuli sit above 0.27 and 0.73, indicating
more incorrect and fewer correct responses for right-moving than

left-moving stimuli. The addition of lines joining corresponding
quantiles for correct and incorrect responses in Fig. 3 highlights
a theoretically important issue, the relative speed of correct
and incorrect responses for different emphasis conditions. In
these data, incorrect responses are generally faster than correct
responses in the speed emphasis condition, but this difference is
reversed in the accuracy emphasis condition. The model does a
good job of accounting for these patterns. However, the QP plot
also reveals shortcomings of the model, with the most evident
being a tendency to predict too many incorrect responses for right-
moving stimuli. If this failing were considered to be practically or
theoretically important selection of a more complex model that
addresses this issue might be warranted.

Producing a QP plot requires calculation of the 0.1, 0.3, 0.5,
0.7, and 0.9 quantiles for observed and predicted RT distributions.
Quantile estimates from the observed data can be calculated
using functions available in most statistical software (for more
details see Heathcote et al., 2002; Van Zandt, 2000). Quantiles
were calculated for each individual participant and then averaged
together to create the observed quantiles in Fig. 3. Note that it is
important to check that the summary information to be presented
in a QP plot is representative of individuals. In these data, more
than 80% of individual quantile estimates were within 50 ms of
their respective average values, suggesting that our averages were
representative of individual RT distributions.

Calculating the quantile values predicted by the model is a
little more difficult. There are two standard approaches: either
using a search algorithm to invert the cumulative distribution
function (CDF) of the model, or via simulation. To generate the
predictions shown in Fig. 3 we used the conceptually simpler,
but computationally more expensive, simulation method (see
Appendix for details on the search method). To calculate predicted
quantiles via simulation we took each individual’s best-fitting
parameters and used them to sample one million data points in
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each condition. Note that LBA simulation is computationally very
cheap (see Donkin et al., 2009); this is not necessarily the case
for other choice RT models (e.g., see Brown, Ratcliff, & Smith,
2006, for details of simulating the Ratcliff diffusion model). The
simulated data followed the exact same design as the empirical
data—i.e., three emphasis conditions and two stimulus conditions,
where only drift rate changes over stimulus conditions and only
response threshold changes over emphasis conditions. Finally,
we calculated quantiles from these simulated data, and averaged
across participants in the same way as for the observed data.

Rather than plotting the predicted quantiles averaged over
individuals, Ratcliff and colleagues suggest fitting the model to
the average observed quantiles to create model predictions for
QP plots (e.g., Ratcliff, 2002; Ratcliff et al., 2004). This approach
can appear to indicate a better fit than the method we describe
here, since model predictions will be based on parameters which
optimize that fit. However, one risk with this approach is that
the newly estimated parameters may not be representative of
the parameters of any individual. For this reason, Ratcliff and
colleagues always assess how closely these new parameters match
the average individual participant parameters. Further, a quantile-
based objective function must be used for estimating parameters
from the average observed quantiles; MLE cannot be used (see
Appendix).

5. Discussion

In recent years, the once-difficult process of obtaining the
parameters for choice RT models has been made much easier by
the provision of software that automates the parameter estimation
process. Our aim was to build on these developments by providing
advice about, and a detailed example of, the many extra steps
involved in moving from simple parameter estimation to a more
meaningful analysis. We focused on an application of the LBA
model (Brown & Heathcote, 2008) to data reported by Forstmann
et al. (2008). We illustrated the canonical problems in such
modeling, by first describing how there are - potentially - 60 free
parameters even for Forstmann et al.’s quite simple experiment.
We then illustrated how this number can be reduced to 26 free
parameters in our example by a priori considerations. Exploratory
analysis of the 26-parameter model identified several parameters
that, on average, did not change substantially across experimental
conditions. This led to an even simpler model with 15 parameters.
Finally, we exhaustively fit 32 versions of the 15-parameter model
and selected a final model with 8 free parameters that provided the
best trade-off between goodness-of-fit and model complexity.

We also showed how to check the descriptive adequacy of
the final model using QP plots. The selected model provided a
good fit that captured theoretically important features of the data,
and is consistent with Forstmann et al.’s (2008) conclusion that
a manipulation of response emphasis selectively influenced the
amount of evidence required for a decision. The same conclusion
has also been made based on applications of the Ratcliff diffusion
model to data from similar paradigms (e.g., Ratcliff & Rouder, 1998;
see Donkin, Brown, Heathcote, & Wagenmakers, in press for a
detailed analysis of the relationship between the parameters of
these two models).

The model selection process we described relies on fixing some
parameters across different conditions. In a between-subjects
manipulation, different conditions are populated by different
people, meaning that certain parameters would have to be fixed
across participants—this requires modeling random effects. Most
often for choice RT analyses, this problem is handled by estimating
model parameters separately for individual subjects, then using
standard null hypothesis significance testing (NHST) to determine
which parameters vary across the between-subjects conditions.

As an example, imagine that Forstmann et al. (2008) had tested
both an older and a younger group of participants and thus had an
additional between-subject factor. Standard practice would be to
fit each individual from both the younger and older groups with
the model we previously selected, giving observed distributions
of each parameter for younger and older participants. NHST
inferential tests could then be used to determine whether the
average of certain parameters differ between younger and older
groups. For example, an independent sample ¢t-test could be used
to determine whether the average non-decision time parameter
is different for older and younger participants. This approach has
been used to identify the effects of aging on decision processes
(e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, &
McKoon, 2007).

The method of using NHST to determine differences between
subjects carries with it all of the usual drawbacks. These may be
particularly problematic for the application of choice RT models
because the typical question is whether some parameter does
not change across conditions. For example, Ratcliff and colleagues
often find that old and young participants do not differ significantly
in their drift rate parameters. It is difficult to know if this lack of
significance is due to power or whether drift rate is truly equal
for old and young participants. Bayesian hypothesis tests such
as the Savage-Dickey test (Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010) allow for direct assessment of the truth of
the null hypothesis but require the posterior distribution of
model parameters. Donkin et al. (2009) and Vandekerckhove et al.
(in press) offer software for producing these distributions, but at
present the approach is limited by its computational cost.

Random effects modeling, in which parametric distributions are
used to describe subject-level parameters, provides another way
to investigate differences across both between-subject conditions.
For example, hyper-parameters describing the distribution of
individual parameter estimates within younger and older groups
can be estimated and compared. However, most researchers
still use the approaches presented in this tutorial because they
are many orders of magnitude faster than Bayesian Markov
chain Monte Carlo methods typically required for random effects
estimation. Further, we believe that it is prudent to preface random
effects modeling with individual fitting. For example, Pinheiro
and Bates (2000) recommend ‘An “inside-out” model building
approach...starting with individual fits ... to decide on the random
effects structure’ (p. 133). Consequently, we expect the individual
analysis approach of this tutorial to remain relevant. Further, the
central issue that this tutorial has addressed - choosing a set
of model constraints from among many possible sets — applies
equally to all approaches.

Appendix. Additional details

A.1. The objective function

A widely used objective function is the likelihood of a
model with parameters 0 given data x : L(0|x). Finding parameter
estimates by optimizing this objective function is called maximum
likelihood estimation (MLE, see Myung, 2003, for a tutorial on
MLE methods). For given parameters, a choice RT model defines
a joint density over response (i.e., the choice) and the response
time. This density function is used to define the likelihood function,
so that MLE naturally takes into account both accuracy and RT
information (see Brown & Heathcote, 2008, for details of the LBA
model’s density functions).

MLE is a default choice in many areas of statistics because it is
unbiased for large samples, and because no other method is more
efficient, as long as certain regularity conditions on the model are
satisfied. However, choice RT models do not usually satisfy these
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conditions because they predict distributions whose support is
determined by an estimated parameter, t, (Heathcote, Brown, &
Cousineau, 2004). This can cause maximum likelihood methods
to spuriously estimate tp as equal to the minimum RT in a data
sample, with concomitant mis-estimation of the other parameters.
Although it is important to be aware of this problem, it can usually
be avoided by censoring implausibly fast RT data (e.g., responses
faster than 200 ms, which are likely the result of anticipation). Slow
outliers, due to processes such as distraction, are more problematic
as they are harder to detect than fast outliers. Heathcote et al.
(2002) showed that — even when estimating simple and regular RT
models - an estimation method based on data quantiles (quantile
maximum probability estimation, QMPE; see also Heathcote &
Brown, 2004) could be more efficient and less biased than MLE in
small samples.

Appropriately selected quantiles can summarize an RT distri-
bution, and more quantiles lead to a more accurate summary.
There are several objective functions that use quantiles to sum-
marize the observed RT distributions, and compare these against
model predictions. Besides QMPE, these functions include the Kol-
mogorov-Smirnov statistic (Voss, Rothermund, & Voss, 2004; Voss
& Voss, 2007), x 2 (Ratcliff, 2002), and weighted least squares error
(Ratcliff & Tuerlinckx, 2002). In computational terms, the quantile-
based objective functions require evaluation of the model’s cumu-
lative distribution function (CDF); this is different from MLE which
requires evaluation of the model’s PDF. The difference means that
quantile-based methods are especially useful for models that have
easy-to-use algorithms to calculate their CDF, but not PDF (such as
Ratcliff’s diffusion model).

With the exception of the Kolmogorov-Smirnov based ap-
proach, choice RT modelers have mostly used a coarse set of five
quantiles: 0.1, 0.3, 0.5, 0.7, and 0.9 (Ratcliff & Tuerlinckx, 2002),
which we will describe as the “standard” quantile set. Summariz-
ing the observed RT distributions with such a coarse set has the
advantage that fitting is only weakly influenced by fast and slow
outliers. For example, even if 2% of the data were from a fast-
guessing contaminant process, these would all fall below the 10%
quantile estimate, which would thus be only mildly affected. Note,
however, that there is no necessity for a coarse set of quantiles
between the smallest and largest values to gain this advantage in
robustness, and that Heathcote and Brown (2004) found that the
advantages of QMPE in small samples only emerged with fine-
grained quantile sets.

Forstmann et al. (2008) analyzed their data using QMPE. Above,
we reported analyses of the same data using MLE, and we found
that the two approaches agreed closely in this data set. In general,
we have found that, as long as sensible precautions are enforced
pertaining to outliers, and good starting points are used, MLE
performs very well for the LBA model. MLE can also enjoy a
substantial advantage over quantile-based methods in terms of
computational speed. A further advantage is that MLE produces
maximized likelihood values, which can be useful for performing
the model selection analyses discussed in the main body of the

paper.
A.2. Finding optimal parameters

A variety of optimization methods are available, but in
our experience these algorithms differ mostly in speed and
numerical stability rather than in their ability to find the best
set of parameters. Here we use the SIMPLEX algorithm (Nelder
& Mead, 1965), which is the most commonly used search
algorithm for choice RT fitting because of its ease of use.
More computationally efficient optimization algorithms, which
require analytic derivatives of the objective function, are not
generally used because the required derivatives are not easily

available. Other algorithms operate by numerically estimating
derivatives, which can improve efficiency, but also decrease
numerical stability. We recommend that users explore these
different optimization approaches and then use the method, or
combination of methods, that is both fast and stable in their
application.

All parameter search algorithms, such as SIMPLEX, need a set
of parameters to begin their search, and the consequences of a
poor set of starting parameters can be dire—the parameter search
can get stuck on an estimate that matches the data better than all
nearby parameter sets, but which is much worse than estimates
further away (a “local optimum”). Hence, the search should always
begin with parameters that produce model predictions that are
reasonably close to the data. Identifying such starting values is a
difficult problem initself, with no general solution. One easy way to
generate start points is to use parameters which have been reliably
shown to produce reasonable predictions for similar choice RT data
sets. For example, Matzke and Wagenmakers (2009) provide the
average parameter values for the diffusion model based on a large
number of fits of the model to data, and Donkin et al. (in press)
provide equivalent values for the LBA. A number of searches may
then be run from a range of start points obtained by randomly
perturbing the initial start point.

A second method is to use heuristics that obtain start points
based on the data to be fit. We have found the following set of
heuristics useful for the LBA model. We first set the drift rate
distribution parameters: standard deviation, s = 0.3, and mean,
v = % + @~ (p), where p is the probability of making the response
for this accumulator, and @ is a normal CDF with mean 0 and
standard deviation s+/2. For t, we use 9/10 of the value of the
minimum RT from the data. For the maximum of the uniform
start point distribution, A, we take twice the inter-quartile range
of the RT distribution, and finally we set the response threshold,
b, at 1.25 x A. The heuristic values are calculated separately for
each experimental condition, and then averaged over conditions
for parameters that are constrained to be equal across conditions.
Again a number of searches may then be run from a range of start
points obtained by randomly perturbing the heuristically obtained
start point.

Even when a good start point is obtained it is also possible that
the search algorithm may terminate search prematurely. When
using the SIMPLEX algorithm, this can sometimes be avoided by
performing repeated searches, with each new search using the best
estimate found by the last fit as its starting point. This method
can be effective because each new search typically starts with
a large simplex that explores parameter values relatively distant
from those explored in the final stages of the previous search.’

Problems with poor parameter estimation become more severe
as more free parameters are estimated. In terms of the methods
we describe above, this means that parameter estimation can
be very difficult for the most complex models, which might
unfairly disadvantage those models. Fortunately, the nested model
building approach that we advocate provides a natural solution
to this problem—start points for more complex models can be
generated from parameter estimates for simpler (nested models).
For example, consider data from a 2 x 3 factorial design. Suppose
the two factors, A and B, are both assumed to affect drift rate.
We might first fit a simple model with just one drift rate for all

7 The performance of the SIMPLEX algorithm degrades markedly when the
number of parameters being optimized is large. We have generally found adequate
performance with up to 20-30 parameters, at least with repeated fitting, and
when a large number of iterations is employed—about 500 times the number of
free parameters. Beyond 30 parameters, specialized search algorithms designed for
dealing with high dimensional search spaces may be required.
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six conditions, starting from parameters obtained by averaging
heuristic estimates based on data from each condition. Suppose
this results in a best-fitting drift rate of 1. We could then fit a
model in which drift rate varied across the two levels of factor A,
say A1 and A2, using 1 as the start point for both levels. Suppose
the best-fitting parameters turned out to be 0.5 and 1.5 for A1 and
A2, respectively. The two best-fitting parameters can then serve to
create start points for the full factorial model in which drift rate
varies over both factors A and B (i.e., the start points for the three
levels of factor B in A1 would be 0.5, and the start points for the
three levels of A2 would be 1.5). Similarly, we could also fit an
intermediate model in which drift rate varies over only the levels
of B, then use that to provide a second set of start points for the full
factorial model. Although we have found this method to be very
effective with complex models, there is still no guarantee that the
best parameter estimates will be found. Hence, it is important to
check the quality of fits graphically, as we described in the main
body of this paper, and to try different starting values in order to
see if improvements can be obtained for any poor quality fits.

As well as checking goodness-of-fit graphically, the parameter
estimates themselves should also be checked for a priori plausibil-
ity. Plausibility can be judged relative to typical parameter ranges
(e.g., for the LBA see Donkin et al., in press). When fitting data from
a number of participants, consistency across participants can also
be assessed. It sometimes happens that these checks reveal wildly
large or small estimates of a particular parameter. This usually oc-
curs when the value of that parameter receives little constraint
from the data (i.e., large changes in its value lead to small changes
in the objective function). This lack of constraint can be seen by
making a graph of the objective function for a range of values of the
suspect parameter around its estimated value while keeping the
remaining parameter values fixed at their estimated values; some-
times called a “profile plot”. A flat profile plot indicates a poorly
constrained parameter.

For the LBA, poor constraint is most commonly associated
with the drift rate parameter for incorrect responses. This is
particularly the case where observed accuracy is high, as there
are then very few incorrect responses to constrain the estimate
of this parameter. This problem did not occur with our example
data, as Forstmann et al.’s (2008) participants made several dozen
incorrect responses even in the most accurate condition. However,
in paradigms where accuracy is very high, prohibitively many trials
may be required to obtain enough error responses. Ludwig, Farell,
Ellis, and Gilchrist (2009) describe a method of circumventing this
problem, using the LBA, that relies only on an estimate of the
proportion of error responses rather than using error RT.

An alternative approach, useful for addressing under-constraint
for any type of parameter, is to constrain parameters to be the
same across conditions based on theoretical considerations. For
example, the manipulation of response caution used in Forstmann
et al.’s (2008) experiment is commonly assumed to not effect drift
rate parameters. If this constraint is enforced by assuming the same
value of error drift rate across a range of condition estimates of
this parameter will be constrained as long as there are sufficiently
many incorrect responses in total across all conditions.

A.3. Maximum likelihood estimation

In this section, we describe in detail how maximum likelihood
estimation was carried out for the example data. First, consider
data just from one emphasis condition in Forstmann et al. (2008).
Let us assume that only drift rate differs between left and right
responses. We could fit an LBA model for these data with five
parameters to estimate: (b, A, Vieft, Vright, S, to). The vjefe and vrigne
parameters represent mean drift rates for correct responses to
left and right stimuli, respectively, and in the following we refer

to them generically as v.. We fix the mean drift rates for error
responses at v, = 1 — v, for both left and right stimuli.

The likelihood function for the LBA model (see Brown &
Heathcote, 2008) is relatively easy to compute as it is specified in
terms of basic functions and the integral of a normal distribution,
which has fast and accurate numerical approximations. Brown
and Heathcote also provide computer code that evaluates the
likelihood function. These routines take in a set of parameter
values, and a response time, say t, and return the probability
density that the accumulator corresponding to the first response
has reached threshold before any other, and at time t. To get the
likelihood for a correct response then the drift rate for the first
accumulator is set at v, and for the second accumulator at v, (to
get the likelihood for an incorrect response, one simply swaps the
values of the drift rates to be v, and v, respectively).

To construct the maximum likelihood objective function, we
evaluate the likelihood function at each and every observed RT
value, and multiply them together—this gives the likelihood of
parameter set 6 given the entire data set. We use every RT value
because we want the set of parameters 6 = (b, A, Vjeft, Uright, S, to)
that is most likely given the four RT distributions under
consideration: correct and error responses for left and right stimuli.
For every RT value in each of these distributions, we take the
following steps:

1. Identify the appropriate drift rate
(v_left or v_right) depending on the
stimulus presented on the given trial
(left or right).

2. If the response associated with this RT was
correct, set v_1 to the drift rate identified
from Step #1. If the response was incorrect,
set v_1 to one minus the drift rate
from Step #1.

3. Set v_2=1-v_1.

4. Subtract the parameter t_0O from the observed
RT, as the likelihood equations given by
Brown and Heathcote (2008) provide the
likelihood for the dectision time,
which is RT-t_0.

5. Using the equation for the PDF
(Equation 3 in Brown & Heathcote, 2008),
and the drift rates from Steps #2 and #3,
and the parameters from above, evaluate
the likelihood function for this observation.

Once this operation is performed for every observation, the
likelihood function can be obtained by simply multiplying together
all the likelihood values (from Step #5) for all the data. However,
it is usual to instead take the logarithm of all likelihoods, and
then add these log-likelihoods together, to improve numerical
stability. Optimizing the summed log-likelihoods is equivalent to
optimizing the product of the likelihoods, as these two quantities
are monotonically related.

A.4. A fast method for producing predicted quantiles

Predicted quantiles can be obtained more quickly than through
the simulation method described in the main text by evaluation
of the inverse of the CDF of a model. The CDF, F(t|f), of the
model gives the proportion of responses made before time t,
given parameters 6. To find predicted quantile values, we require
the inverse of the CDF—the proportion of responses made before
time t. For choice RT models, however, we are interested in the
conditional CDF for one of the possible responses, which does not
reach a probability of 1 as t increases. For example, if a model
predicted that only 65% of responses were accurate in a given
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task, the conditional CDF for correct responses would only reach
a probability of 0.65 at t grows large. To evaluate the predicted
0.1, 0.3, 0.5, 0.7 and 0.9 quantiles for the correct RT distribution,
we must identify those values of t for which the conditional
CDF for correct responses, F(t|#) equals 0.1p, 0.3p, 0.5p, 0.7p
and 0.9p, where p is the predicted response accuracy (p = 0.65 in
our example). When calculating quantiles for the incorrect
response distribution, the value p is replaced by 1 — p, which is
the probability of an incorrect response (1 — p = 0.35 for errors in
our example).

For example, consider the 0.1 quantile of a correct RT
distribution. The LBA predicts that 0.1 of this RT distribution is
reached at F~1(0.1p), where p is the predicted proportion of
correct responses. In other words the predicted 0.1 quantile value,
say t, is the inverse conditional CDF for correct responses evaluated
at 0.1p. To get the predicted quantile value we first need to
calculate the predicted value of p, which is done by evaluating
the CDF at oo: p = F(00). The inverse of the CDF does not have
a closed-form expression that can be easily evaluated. Instead,
we employ a numerical solution. We are attempting to solve
F~1(0.1p) = t, which is equivalent to F(t) = 0.1p. We are left,
therefore, with the expression, F(t) — 0.1p = 0, which we can
now solve using a standard root finding algorithm. The value of
t returned by this algorithm, plus to, is exactly the 0.1 quantile
prediction for correct responses. We can repeat this process for
error responses by replacing all instances of p with (1 — p).

The following steps summarize the calculation of a given
quantile corresponding to probability q for correct and incorrect
responses:

1. Do steps #1-#3 specified above for maximum
likelihood estimation to get the appropriate
sets of parameters for correct (6.)
and incorrect (6,) responses.

2. Obtain the predicted proportion of correct
responses (p) by evaluating the CDF at
infinity, given the parameters for correct
responses that were chosen in Step #1.

3. Use a root finding algorithm to get the correct
and incorrect quantiles. These correspond to
the value of t for which F(t| 6.) =qp and
F(t| 6.) =q(1 —p), respectively.

The QP plot graphs both data and model quantiles for correct
and incorrect responses in each experimental condition, as
explained in the main body of this paper. Note that code for
calculating predicted quantiles using the LBA is available in Donkin
et al. (2009).
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