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• Whether slots or resource models best account for the capacity of visual working memory is debated.
• High-threshold (slots) and signal detection (resource) models contrasted using ROC curves.
• Informative priors are used, so that the slots and resource models make sensible predictions.
• Bayes factors used to quantify the match between the models’ predictions and the observed data.
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a b s t r a c t

A critical property of Bayesian model selection, via Bayes factors, is that they test the predictions made
bymodels. Such predictions are a joint function of the likelihood of the model, and the prior distributions
placed on the parameters of the model. Prior distributions that are informed by previous data lead to
more constrained predictions, and result in Bayes factors that test more specific versions of the models
under question. We present a case study applying two models of visual working memory to a series of
experiments. We outline a process by which the posterior distributions from previous experiments are
used to define and update prior distributions for each subsequent experiment. For each experiment we
obtain Bayes factors that test the predictions that these models make, and update our beliefs about the
relative likelihood of each model.

© 2015 Elsevier Inc. All rights reserved.

For any twomodels under consideration, the Bayes factor is the
ratio of the marginal likelihoods for each model (Jeffreys, 1961).
In short, it tells us which model is more likely to have generated
a given set of data, and by how much. The marginal likelihood of
observed data, D, under a given model, M , that has parameters, θ ,
is given by

p(D|M) =


p(D|θ,M)p(θ |M)dθ

where p(D|θ,M) is the probability of the observed data set given
a particular set of parameters in a model (usually known as the
likelihood function), and p(θ |M) is the prior probability of that
set of parameters. The marginal likelihood, therefore, tells us how
likely amodel is to have generated a given set of data, based on the
average of all possible sets of parameters, weighted by the prior
probability of each set of parameters. Stated another way, it tells
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us how likely it is that a model, specified prior to data collection,
would have generated the observed data.

Bayes factors have a number of advantages over traditional
methods of model selection. For one, Bayes factors take into
account the functional form complexity of models. More complex
models make wider ranges of predictions. While being able to
predict a large range of data may appear useful, the result is that
any given observed data set is not likely a priori. Therefore, we
prefer models that are restricted in the range of predictions that
they make, provided that the observed data are consistent with
those predictions. Since the Bayes factor is based on the marginal
likelihood of each model, it naturally incorporates this notion of
parsimony by rewarding models that have compressed prediction
spaces and are also consistent with observed data.

Crucially, the Bayes factor is also governed by the prior distribu-
tions placed on parameters. In the calculation of the marginal like-
lihood, the likelihood of observedparameters areweighted by their
prior probability. Since these prior probabilities are defined before
data is observed, the marginal likelihood, and hence the Bayes fac-
tor, gives a measure of the models ability to predict observed data.
The incorporation of priors into the Bayes factor also means that
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the prior distributions are a critical part of the definition of any
model (Vanpaemel, 2011; Vanpaemel & Lee, 2012).

In what follows, we use Bayes factors to evaluate the relative
likelihood of two models of visual working memory. We will test
standard versions of slots and resource models. The data we use
are from three change-detection experiments reported in Donkin,
Tran, and Nosofsky (2015). Wewill calculate Bayes factors for each
experiment. The Bayes factors from each experiment will allow us
to update our beliefs about the relative plausibility of the slots and
resource models.

Our aim is to provide a case study in using informed prior
distributions to test the predictions of models. As such, we begin
by sacrificing some data to construct informed priors.Wewill then
show that themodel with informed priorsmakemore constrained,
and arguably more sensible predictions than when we use vague
priors. The posterior distributions for each experimentwill then be
used as prior distributions for subsequent experiments, as per the
expression ‘‘yesterday’s posterior is today’s prior for tomorrow’s
data’’. We begin with a brief overview of visual working memory.

1. Visual working memory

There is an ongoing controversy in the study of visual working
memory (VWM) regarding its capacity and how items are stored
in memory (Luck & Vogel, 2013; Ma, Husain, & Bays, 2014). The
discrete slots view argues that a limited number of items are stored
with high fidelity (Luck & Vogel, 1997), while continuous resource
theorists argue that memory can be distributed flexibly across
items, with no set limit on the number of items that can be held
in memory (Wilken & Ma, 2004).

The change detection task is a classic experimental design still
used to investigate the capacity of VWM (Cowan, 2001; Pashler,
1988; Phillips, 1974). In these tasks, participants observe an array
of items which they have been instructed to remember, and are
then presented with a test array shortly after. The test array is
either the same as the study array, or has changed. The change
detection task was used by Luck and Vogel (1997) to advocate for a
slots-based theory of VWM after demonstrating that performance
decreased once more than 3 to 4 items were present in the study
array, regardless of item complexity (Awh, Barton, & Vogel, 2007,
Barton, Ester, & Awh, 2009, Vogel, Woodman, & Luck, 2001, but see
Oberauer & Eichenberger, 2013 and Wilken & Ma, 2004).

In a recent development, Rouder et al. (2008) demonstrated
that a quantitative implementation of the slots theory provided
a good account of choice probability data in change detection
tasks. Following Wilken and Ma (2004), Rouder and colleagues
plotted the proportion of correct change responses (hits) as a
function of the incorrect change responses (false alarms)—the
receiver operating characteristic (ROC) curve. They then showed
that models based on slots theory, being high-threshold models,
make precise predictions about the shape of ROC curves (Green
& Swets, 1966). Specifically, unlike the curvilinear ROC curves
expected under SDT, a slots model predicts linear ROC curves.
Rouder et al. found that the empirical data were more consistent
with the linear ROC prediction and outperformed the signal-
detection resource model (but see Wilken & Ma, 2004).

Donkin et al. (2015) replicated and expanded on Rouder et al.’s
(2008) results in a series of four experiments. They manipulated
two independent variables across their experiments—set size and
change proportion. The set size manipulation involved changing
the number of items in the study array across trials, whilst the
change proportion manipulation adjusted the number of trials
in a block on which items changed between study and test. Set
size manipulations affect the overall difficulty of the task, where
increases in the number of items lead to a decrease in the hit rate
and an increase in the false alarm rate. Increasing the proportion

of change trials, on the other hand, increases both the participants’
hit rate and false alarm rate. The concurrent manipulation of these
two variables result in ROC curves that allow for contrast of the
predictions made by the slots and resource models.

All of the experiments used a standard change detection task,
in which a study array of N color squares are presented, removed
for a short period, and a single test color presented in one of the
study locations. The test item was either the same as the item
previously presented in that location (a same trial), or was an
item not previously presented in the study array (a change trial).
The participant indicates whether the test item was the same or
had changed, and receives feedback on their performance. The
experiments differ in the manipulation of two factors: the number
of items in a study array, N , and the proportion of trials in a block
on which an item changed from study to test. The number of
study items in an arraywas randomized across trials, while change
proportion was, by definition, blocked. Table 1 contains the details
of the design for each experiment.

For each set size condition, i, and change proportion condition,
j, we observe Hij change responses from n(c)

ij change trials, and
Fij change responses from n(s)

ij same trials. We assume that these
hit and false alarm trials are distributed according to a binomial
distribution

hij ∼ Binomial(hij, n
(c)
ij )

fij ∼ Binomial(fij, n
(s)
ij ). (1)

We now outline the slots and resource model predictions for the
hit and false alarm rates hij and fij.

1.1. Slots

According to the slots model, there are two types of responses
in a change-detection task: if an item is inmemory, the response is
based on the contents of memory; if an item has failed to make
it into memory, then a guess is made. The probability that any
given item, from a set of N items, makes it into memory depends
on the number of items that can be stored in memory, or the
capacity k. The probability an item is in memory, d, is given by d =

min(1, k
N ), where the min function ensures that the probability an

item is in memory does not exceed 1. For simplicity, it is assumed
that when items are encoded into memory, responses are made
without error. If an item is not in memory, then the participant
must guess whether the item has changed or remained the same.
The probability that the observer will guess change is denoted as g .
Together, the probability of a hit response is given by d+ (1− d)g
and the probability of a false alarm is (1 − d)g .

The slots model, as defined thus far, predicts perfect perfor-
mance for set sizes below capacity. Since distraction, or incorrect
button presses, cause participants to make errors even when the
task is trivially easy, Rouder et al. (2008) explicitly modeled errors
due to inattention. They assumed that the observer pays attention
with probability a, and thus proceeds as previously defined. How-
ever, with probability 1 − a the observer is inattentive, and there-
fore guesses changewith probability g .

Turning now to the two manipulations in the experiments, we
see that the slots model provides a natural account of changing
set sizes, since larger N yields a smaller probability that the
test item is in memory. The change proportion manipulation is
assumed to influence the way in which an observer will guess.
As the proportion of change trials increases, the probability that
a participant will guess change should also increase. As such, we
estimate g separately for each change proportion condition. As
applied to the current experiments, the predicted hit and false
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Table 1
Designs for Experiment 1, Experiment 2, and Experiment 4 from Donkin et al. (2015).

Experiment Set sizes Change probabilities Participants Trials

1 3, 5, 8 0.3, 0.5, 0.7 96 18–42
2 2, 5, 8 0.15, 0.3, 0.5, 0.7, 0.85 20 24–136
4 1, 2, 3, 4, 6, 8 0.5 30 84

alarm rates in the slots model for the ith set size and jth change
proportion condition are given by

hij = a(di + (1 − di)gj) + (1 − a)gj
fij = a(1 − di)gj + (1 − a)gj. (2)

1.2. Resource

Signal detection theory is used to implement the resource
model of visual working memory capacity. When a location is
probed with a test item, the item will evoke a particular level of
distinctiveness, x.1 The level of distinctiveness is then compared
to a criterion β , which the participant uses to decide whether
to respond that the test item is the same or has changed from
study. The distinctiveness evoked by a test item that is the same
as the study item is assumed to follow a standard Normal distribu-
tion (that distinctiveness varies from trial-to-trial encapsulates the
idea of a continuous resource). Test items that have changed from
studywill evoke distinctiveness according to a Normal distribution
with mean d′ and variance 1. As such, when a test item evokes an
amount of distinctiveness the participant compares the likelihood
of that distinctiveness under those two distributions:

LR(x) =
φ(x − d′)

φ(x)

where φ is the probability density function of the standard Normal
distribution. If the likelihood ratio is greater than criterion β , then
the observer responds change and otherwise responds same.

We assume that as the number of items to remember increases,
any one item is given less memory, and as such is less distinctive
from same items. Accordingly, d′ is expected to decrease as set size
increases in the experiments. Additionally, when the number of
trials on which a test item changes from study to test is varied,
participants are assumed to require more or less distinctiveness
from memory in order to respond change. The change proportion
manipulation is therefore expected to influence the criterion
parameter of the signal detection model, β . Combining these
assumptions, the signal detectionmodel is definedby the following
two equations

hij = Φ


d′

i

2
−

logβj

d′

i


fij = Φ


−d′

i

2
−

logβj

d′

i


(3)

where Φ is the cumulative distribution function of the standard
Normal distribution.

1.3. A cautionary note

For this case study, we use models and experiments that do not
necessarily represent the state-of-the-art in the area. Our choice of

1 The signal in signal detection theory is often referred to as ‘familiarity’. Here,
we refer to the signal as the distinctiveness between the test item and the contents
of memory. This label is arbitrary, but reflects the choice to use correct ‘change’
responses as ‘hits’.

modelswas based on those used in Donkin et al. (2015) and Rouder
et al. (2008). However, themodels we fit heremay be too simple to
account for visual working memory under all possible conditions.
For example, the data from continuous recall tasks have required
more complex alternative versions of slots and resource models
(van den Berg, Awh, &Ma, 2014; van den Berg, Shin, Chou, George,
& Ma, 2012). There also exist simpler versions of the resource
model, such as the sample-size model (Sewell, Lilburn, & Smith,
2014). In addition, change detection experiments that vary the size
of the change between study and test (Keshvari, van den Berg, &
Ma, 2013), and use response time in addition to choice proportion
(Donkin, Nosofsky, Gold, & Shiffrin, 2013), have also proven useful
in distinguishing between models.

1.4. Prior distributions

The choice of prior distributions onmodel parameters is critical
to model selection via Bayes factors. As such, we endeavor to
specify reasonable prior distributions. Before we look at the data
from our experiments, we have little information about what
values the parameters of the slots and resourcemodels should take.
We can place only very vague prior distributions on the parameters
of both models. For example, going into Experiment 1, we have
little idea what value d′ could take for any given set size, or what
criterion β that participants will use for a given change proportion
manipulation.We couldmake some relatively sensible guesses. For
example, we could assume that d′ will decrease with set size, since
we expect that performance will worsen as set size, or memory
load, increases. We could also set our prior distributions such that
people do not require more evidence for a change response when
they are completing blocks of trials with fewer change trials.

Rather than calculating Bayes factors with vaguely informative
prior distributions, we instead sacrifice half of the participants
in our first experiment in order to build up informative prior
distributions for the parameters of both models. We use the first
48 participants from Experiment 1 of Donkin et al. (2015) to obtain
posterior distributions for the parameters of the slots and resource
models. These posterior distributions are then used to specify
informative prior distributions with which we will calculate Bayes
factors for the remaining 48 participants.

2. Building informative priors

The design of Experiment 1 from Donkin et al. (2015) can be
found in Table 1. For reference, the top panel of Fig. 1 plots the
hit and false alarm rates aggregated across all participants from
their respective experiments. As expected, we observe that as set
size increases, hit rates decrease and false alarm rates increase, and
as change proportion increases, so too do both hit and false alarm
rates.

2.1. Hierarchical models

Since a number of participants completed each of our experi-
ments, we must decide how to model individual differences. The
standard approach is to either estimate an independent set of pa-
rameters for each individual, or assume that all individuals share a
single set of parameters. The approach we take here is hierarchical
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Fig. 1. Observed average hit and false alarm rates for each set size and change proportion condition in Experiments 1, 2, and 3. For Experiments 1 and 2, the observed data
are plotted as colored circles, with error bars representing standard errors of the mean. Posterior predictives for the average hit and false alarm rates were also generated
from the slots and resource models, and are plotted as semi-transparent dots. The colors of the points indicate the change proportion condition. For Experiment 3, data are
plotted as open characters, with posterior predictives overlaid in color. Note: Exp= Experiment. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

modeling, which assumes that individual participants are drawn
from some population-level distribution (Lee, 2011). Morey (2011)
outlined hierarchical versions of the slots and resourcemodels (see
also Morey & Morey, 2011). Here, we assume that all population-
level parameters are distributed normally, N(µ, σ ). For example,
in the slots model, we assume that a capacity parameter for indi-
vidualm is distributed2

km ∼ Normal(µk, σ k).

2 Note that capacity is a discrete quantity. However, k is usually estimated as a
continuous quantity, approximating variability in capacity across trials. Though it
is less than ideal, we follow this standard practice.

Note that when we draw participant-level parameters from the
population-level Normal distributions, we truncate the distribu-
tions such that am, gj,m ∈ [0, 1], km ∈ [0, 8], and βm ∈ (0, ∞).

Our hierarchical slots and resource models are defined by a se-
ries of µ and σ parameters, each of which have prior distributions
that must be specified. We define vague prior distributions for µ
parameters for the first half of the participants in Experiment 1,
who are being sacrificed to build informative priors. We set prior
distributions forµa,µg , andµk as uniformover their viable ranges:
µa

∼ U(0, 1), µg
∼ U(0, 1), and µk

∼ U(0, 8). We set theµd′

and
µβ parameters from the resource model as U(0, 5). The prior dis-
tributions for all σ parameters were set as U(0.01, 10).

Posterior distributions for all parameters were obtained by tak-
ing 27,000 samples using 6 chains of 4500 samples, after 500 sam-
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ples of burn-in.We applied the standard checks for convergence of
chains, and autocorrelation within chains, and found no problems
for any of themodel parameters. We used JAGS to fit the models to
our data (Plummer, 2003).3

2.2. Creating individual-level priors from population-level posteriors

We now have posterior distributions for each of the model
parameters. However, these posterior distributions are at the
population level, while we wish to obtain individual-level Bayes
factors. As such, we need to convert the information contained in
the population-level posteriors to representwhatwe expect for the
parameter values for individual participants.

Our population-level parameters are the means, µ, and
standard deviations, σ , of Normal distributions. Individual-
level parameters are governed by those Normal distributions;
For example, km ∼ N(µk, σ k). One could simply take the
most likely combination of population-level mean and standard
deviations, and use the resultant Normal distributions as the prior
distributions for individuals. However, such an approach would
ignore our uncertainty in the population-level parameters.

Our approach is to use the posterior distribution of µ and σ
parameters to generate individual-level priors. Our fitting process
yields 27,000 posterior samples for theµ and σ parameter for each
of the parameters of the slots and resource models. Now, for each
model parameter (e.g., k), we take each posterior sample for µ and
σ and generate 1000 samples from the resultant Normal distri-
bution. These 1000 values represent the range of individual-level
parameter values we would expect given that particular posterior
sample. The result of this process is that for each model parame-
ter, we have 27,000,000 possible individual-level parameter val-
ues, as weighted by their posterior probability. We truncate these
individual-level parameter values to be constrained within their
appropriate ranges (e.g., a ∈ [0, 1]).

Finally, we must decide on a distribution to characterize the
shapes of the individual-level parameters. We used Beta distribu-
tions for a and g , which are constrained to be between 0 and 1,
and Normal distributions for k, d′, and β . We obtained maximum-
likelihood estimates of the parameters of these Beta and Normal
distributions, and use those estimates to define our prior distribu-
tions. The exact specifications of these prior distributions are given
in Table 2.

The priors for each parameter in each model are independent
of one another. As such, any correlations between the parameters
of the slots and resource models are discarded. Our assumption of
independence is largely out of computational convenience, and it
is worth noting that our approximation limits our current efforts
to discriminate between the two models.

2.3. Prior predictives

We now have informative prior distributions for our slots and
resource models, which will make more constrained predictions
for the remaining participants in Experiment 1. To see this, con-
sider the left and right panels of Fig. 2, which plot prior pre-
dictives for vaguely specified and informative prior distributions,
respectively. We construct these plots of prior predictives by
drawing 1 million sets of parameters from the prior distributions
outlined in Table 2. We use these randomly-sampled parameters
to generate a set of predicted hit and false alarm rates for all set
size and change proportion conditions in the experiment (i.e., hij

3 The code and data used in all analyses in this paper are available on the
corresponding author’s website, as should be standard.

Table 2
Prior distributions for the slots and resource models used for calculating Bayes
factors.

Expt. Slots Resource
Parameter Parameter

1

k N(3.09,0.91) d′

3 N(2.73,0.75)
a B(16.08,2.04) d′

5 N(1.57,0.62)
g0.3 B(3.46,4.00) d′

8 N(0.96,0.33)
g0.5 B(11.26,7.20) β0.3 N(1.11,0.37)
g0.7 B(15.40,5.64) β0.5 N(0.83,0.18)

β0.7 N(0.65,0.15)

2

k N(2.98,1.01) d′

2 N(4.03,0.80)a
a B(37.5,5.17) d′

5 N(1.52,0.64)
g0.15 B(3.18,5.39)a d′

8 N(0.91,0.33)
g0.3 B(4.41,5.13) β0.15 N(1.27,0.31)a
g0.5 B(13.46,9.43) β0.3 N(1.10,0.30)
g0.7 B(12.69,5.36) β0.5 N(0.87,0.16)
g0.85 B(5.04,4.09)a β0.7 N(0.70,0.16)

β0.85 N(0.57,0.31)a

4

k N(2.68,1.05) d′

1 N(5.89,0.88)a
a B(39.08,4.44) d′

2 N(3.24,0.81)
g0.5 B(12.99,9.00) d′

3 N(2.61,0.79)
d′

4 N(1.92,0.872)a
d′

6 N(1.38,0.872)a
d′

8 N(1.00,0.35)
β0.5 N(0.84,0.17)

Note: Expt. = Experiment. N and B correspond to Normal and Beta distributions,
respectively.

a Indicates extrapolated prior distributions.

and fij, respectively). The predicted hit and false alarm rates from
each model are then plotted in Fig. 2.

It is clear from the left panel of Fig. 2 that neither the slots nor
the resources model make particularly sensible predictions about
hit and false alarm rates when the prior distributions are vaguely
specified (i.e., using the prior distributions used for the first 48 par-
ticipants in Experiment 1). For example, as we move across the
three columns in the left panel of Fig. 2, we see that the predictions
for hit and false alarms remain identical, even though the propor-
tion of change trials is varying. That is, themodel predicts that par-
ticipants will be invariant to this manipulation of bias. Similarly,
in the left panel, we see that the resource model with vague pri-
ors predicts no influence of set size on hit and false alarm rates;
The model predicts that increasing the load on memory will have
no effect on performance. Since Bayes factors assess the ability of
models to predict the observed data, the models with vague priors
represent uninteresting versions of slots and resource models.

The right panel of Fig. 2 shows that the models do make more
specific predictions when we use informative prior distributions.
For example, in the right panel of Fig. 2 we see that the models
now predict that both hit and false alarm rates will increase with
the proportion of change trials in the experiment. In addition,
the resource model with informed priors makes the sensible
prediction that performance will worsen as set size increases.
We can now use Bayes factors to compare the slots and resource
models on their ability to predict the data from the remaining 48
participants from Donkin et al.’s (2015) Experiment 1.4

3. Bayes factors for Experiment 1

To calculate Bayes factors, we need the marginal likelihood
of each model for each individual. The simplest way to estimate
the marginal likelihood of a model is to sample parameters
from prior distributions, evaluate the likelihood for each set of

4 It is worth noting that prior distributions that place a simple order constraint
on certain parameters could have also yielded relatively sensible predictions. Often
times, this is an appropriate alternative to data-informed priors.
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Fig. 2. Prior predictives for Experiment 1 with vague priors (left panel) and
informative priors (right panel). Note that the models with informed priors make
more constrained predictions than the models with vague priors. The colors of the
points reflect the change proportion condition. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

parameters, and average the resultant likelihoods. However, this
method is inefficient, and sowe instead used importance sampling
(see Vandekerckhove, Matzke, & Wagenmakers, 2015 for a clear
explanation of importance sampling).

The basic idea of importance sampling is to use posterior distri-
butions to increase the efficiency of sampling parameters that are
used to calculate amarginal likelihood.WedrewN = 10, 000 sam-
ples from an importance distribution, g(θ). The importance distri-
bution for each parameter was a mixture, 80% of which was the
posterior distribution for that parameter, and 20% was a uniform
distribution that spanned the range that the parameter can take.

The likelihood for each parameter set, p(D|θi,M) is evaluated
using Eqs. (1) and (2) for the slots model, and Eqs. (1) and (3)
for the resource model. The likelihood of each parameter set is
evaluated under the prior distribution p(θi|M) and the importance
distribution g(θi), and the marginal likelihood is given by

p(M|D) =
1
N

N
i=1

p(D|θi,M)p(θi|M)

g(θi)
.

The ratio of the marginal likelihoods for the slots and resource
models gives us a Bayes factor, BF .

The top plot in Fig. 3 shows the log of the Bayes factors for
the second 48 participants in Experiment 1. The data from the
majority of participants aremore likely under the slots model than
the resource model. Interestingly, many of the participants do not
provide a large deal of support for eithermodel. Only the data from
10 of the 48 participants is more than 10 times more likely under
the slotsmodel than the resourcemodel, and only one participant’s
data is more than 10 times more likely under the resource model.

We chose to sacrifice half of the data from our first experiment
in order to derive a more informative Bayes factor. Therefore, we
have calculated a partial Bayes factor, which only gives the relative
likelihood that the twomodels generated the latter half of the data
fromDonkin et al.’s (2015) Experiment 1, and is conditional on this
particular division of the data. Methods do exist for attempting to
remove the contribution of the division and generalize to the entire
data set, such as the Intrinsic Bayes factor and the Fractional Bayes
Factor (Berger & Pericchi, 1996, O’Hagan, 1995; and see Mulder,
2014a,b for alternative approaches to using data to construct
priors). We chose not to implement these methods due to their
computational cost.

Fig. 3. The logarithmof each individual’s Bayes factor are plotted. Positive log Bayes
factors indicate support for the slots model. Note: Exp = Experiment.

4. Updating our priors

We now want to update our prior distributions so that we can
calculate Bayes factors for a second experiment. We use the re-
maining 48 participants to update our beliefs regarding the likely
parameter values for each model. To do this, we obtain posterior
distributions for the hierarchical versions of the slots and resource
models for all 96 participants in Donkin et al.’s (2015) Experiment
1. Note that this is equivalent to estimating the posterior distri-
butions for the remaining 48 participants, while using the (joint)
posterior distributions from the first 48 participants as prior dis-
tributions.

We use the same procedure as for the first 48 participants to
estimate posterior distributions for all 96 participants, using JAGS
with the same number of chains, samples, burn-in, and thinning as
outlined earlier. Both the slots and resourcemodels provide a good
account of the observed data, as shown by the posterior predictives
plotted in the top panel of Fig. 1. The posterior predictives were
generated by drawing 9,000 values from the posterior distribution
of each parameter, and calculating the predicted hit and false alarm
rates for each set of parameters. It is reassuring to know that the
models are able to fit the data well, since the Bayes factor only
provides a relative measure of model performance.

We use the posterior distributions from Experiment 1 as prior
distributions for Experiment 2 from Donkin et al. (2015). Note that
the design for Experiment 2was not identical to that of Experiment
1—the smallest set size in Experiment 2was two, rather than three,
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and therewere 2 additional proportion change conditions, 0.15 and
0.85 (see Table 1). As such, Experiment 1 does not directly yield
informative priors for these new conditions.

4.1. Creating prior distributions for new conditions

We extrapolated prior distributions for parameters associated
with the new conditions in Experiment 2 using the posterior
distributions we observed in Experiment 1. We first extrapolated
priors for the population-level µ and σ parameters, and then use
them to generate priors for the individual-level parameters. Our
approach was to extrapolate sensible mean values for the prior
distributions for µ and σ parameters, and to set the standard
deviation of the µ and σ parameters to be double that of the
observed posterior distributions from Experiment 1.

We start with the prior for the µd′
2 parameter in the set size 2

condition. We chose to use a normal distribution as a prior for the
µd′

2 parameter—µd′
2 ∼ Normal(A, B). To set A, we take the mean of

the posterior distributions for theµd′

parameters for the set size 3,
5, and 8 conditions. We then extrapolate A from the fit of a power-
law function through these mean values of µd′

3 , µd′
5 and µd′

8 . We
set B to be twice the value of the largest standard deviation of the
posterior distributions for µd′

3 , µd′
5 , and µd′

8 .
We use a Gamma distribution as a prior for the σ d′

2 parameter—
σ d′

2 ∼ Gamma(A, B). We set A to be the largest of the A
parameters of the posteriors of σ d′

3 , σ d′
5 and σ d′

8 . We set B as twice
the maximum of the B parameters of the posterior distributions
of σ d′

3 , σ d′
5 and σ d′

8 parameters. We used the same process to
extrapolate the σ g0.15 , σ g0.85 , σ β0.15 , and σ β0.85 .

We outline howwe extrapolated theµg0.15 parameter, and note
that the remaining parameters were extrapolated in the same
manner. We chose to use a beta distribution to characterize the
priors for the µg0.15 and µg0.85 parameters. We used a normal
distribution for the µβ0.15 and µβ0.85 parameters.

For theµg0.15 parameter, we first took themean of the posterior
distribution of all of the µg parameters. The difference between
the means of the µg parameters was approximately 0.12. We
set the mean of the µg0.15 parameter to be 0.09 ( 34 of 0.12) less
than the mean of the µg0.3 change proportion condition. We use
3
4 because the difference between the new change proportion
condition (0.15) and the next largest change proportion condition
(0.30) is 75% of the difference between the old change proportion
conditions (0.3, 0.5, and 0.7). The standard deviation of the µg0.15

parameter was set at twice the average of the standard deviation
of the posterior distributions of the µg parameters.

We now have prior distributions for the population-level
parameters, and use these to generate individual-level parameters.
For example, to generate the prior distributions for the individual-
level d′

2 parameter, we sample 100,000 values from the prior
distributions we had generated for µd′

2 and σ d′
2 . We then used a

beta distribution to characterize the individual-level parameters
for the g parameters, and normal distributions for the β and d′

parameters. The result of this process is shown in Table 2.

5. Bayes factors for Experiment 2

To obtain the marginal likelihood of the slots and resource
models for each participant in Experiment 2, we again use
importance sampling to estimate marginal likelihoods. The center
panel of Fig. 3 plots the log of the Bayes factors for each individual
in Experiment 2. Again,we see that themajority of individual’s data
aremore likely under the slotsmodel than the resourcemodel. This
time, there is more certainty in the conclusions we draw from this
data. In particular, the data from 10 out of the 20 participants are
more than 10 times likely under the slots model than the resource
model, and only 3 participants aremore than 10 times likely under
the resource model.

6. Another update to our priors

We again obtained posterior distributions for the slots and
resource model parameters using hierarchical versions of each
model. We can use as the posterior distributions for µ and σ pa-
rameters from Experiment 1 as prior distributions for Experiment
2. For reference, we again plot the average hit and false alarm rates
fromDonkin et al.’s (2015) Experiment 2 in the center row of Fig. 1.
We also plot posterior predictives for the slots and resource mod-
els. Note that the resource model fits all of the data well, while the
slots model seems to struggle to account for differences across the
change proportion conditions (e.g., the black, red, and blue data
points lie away from posterior predictives).

One may wonder why the Bayes factors favor the slots model
over the resourcemodel,while Fig. 1 seems to indicate the resource
model is more appropriate. The simplest explanation is that ag-
gregate data do not necessarily represent the behavior of individ-
uals. In addition, the resource model is more flexible than the slots
model, and so should be able to better fit empirical data than the
slotsmodel. The Bayes factor, however, does not evaluate howwell
the model can account for the data once it is observed, but repre-
sents the ability of the models to predict the observed data. Fig. 1
suggests that the resource model is better able to postdict the data,
while the Bayes factors tell us that the slots model is better able to
predict our data.

We use the posterior distributions estimated for the second
experiment to update our priors going into the third and final
experiment. We now calculate Bayes factors for Experiment 4
in Donkin et al. (2015). In this experiment, only set size was
manipulated. The exact design is outlined in Table 1. In order to set
prior distributions for all conditions in Donkin et al.’s Experiment
4, we again had to extrapolate the prior distributions for a number
of parameters in the resource model—d′

1, d
′

4, and d′

6. We used the
same process to extrapolate, and this time interpolate, priors for
these parameters as we did for d′

2. Note that we used a power-law
function fitted to the means of the previously observed posterior
distributions for d′

2, d
′

3, d
′

5, and d′

8 parameters. The resultant prior
distributions are shown in Table 2.

7. Bayes factors for Experiment 3

Bayes factors were calculated in the same way as for Experi-
ments 1 and 2. The bottom plot in Fig. 3 plots the log of the Bayes
factors for each individual in this third experiment. Again, most
participants are more likely under the slots model than the re-
source model. Again, we see some certainty in our conclusions,
where 13 out of 30 participants were more than 10 times more
likely under the slots model, while only 1 participant is more than
10 times more likely under the resource model.

8. Updating our priors for future experiments

Though we do not fit any more data sets in this manuscript, we
can still update our prior distributions in light of the data observed
in the third experiment we analyzed. We must first estimate
posterior distributions for themodel parameters for this third data
set. To do so, we set the prior distributions of the hierarchical
slots and resource models based on the posterior distributions we
obtained from the first and second data sets.

We obtained posterior distributions for the data from Experi-
ment 4 of Donkin et al. (2015). The bottom panel of Fig. 1 plots the
average data from this experiment, and the posterior predictives
for the slots and resource models confirm that both models again
provided a good fit.

Over the course of these three experiments, we have acquired
considerable information about the parameters of the slots and
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Fig. 4. Prior distributions for all of the model parameters based on the three experiments we analyzed.

resource models of the change detection task. Fig. 4 contains a
plot of what we would use prior distributions for the individual-
level parameters of both the slots and resource models. The
specification of these distributions, and the population-levelµ and
σ parameters can be found in code available on the corresponding
authors’ website. These prior distributions contribute to the
current definition of these slots and resourcemodels for the change
detection task.

9. General discussion

9.1. Informative prior distributions

One of the most interesting results we observed was that the
final experiment provided more support for the resource model
than did the original study. The original interpretation, based on
a landscaping analysis, was that all participants were better fit
by a slots model. This difference likely arose because our analysis
used informed prior distributions, which leads us to an interesting
aspect of the Bayes factor method. As we observe more data, our
prior distributions grow more informed. As a result, models that
initially make vague predictions, become increasingly constrained
in their predictions. In other words, models become simpler as
prior distributions become more informed.

The constraint on predictions offered by informed priors will
benefit complex models more than simple models. We see that
quite clearly in our final experiment. The resourcemodel estimates
a separate d′ parameter for each of the 6 set sizes in the experiment,
where the slots model requires only 2 parameters. Regardless, for
some individuals, the resource model is preferred by the Bayes
factor. The informed prior distributions for the d′ parameters
yielded predictions that were more consistent with the observed
data than the strict predictions of the slots model.

9.2. A note on extrapolating our knowledge

In the current analysis, we faced situations where we had to
extrapolate or interpolate our knowledge about parameters that
we had some information about to parameters that we had no in-
formation about when moving between experiments. We relied
on reasonable assumptions for our extrapolation. For example, we
assumed that participants would respond change more often in a

change proportion condition of 0.85 than a change proportion con-
dition of 0.7. In addition, we increased the variability in the extrap-
olated prior distributions, reflecting the additional uncertainty we
have about the parameter. More variable prior distributions make
less specific predictions for those conditions, and somaintain a de-
gree of flexibility.

It is likely that inmany cases the definition of prior distributions
will rely on such extrapolation from previous data. For example,
in experiments that involve a manipulation that has not yet been
applied to that particular domain. However, it is rare for a manip-
ulation to be truly novel. Further, it is rare that the experimenter
does not have at least an ordinal prediction for the impact a ma-
nipulation will have on model parameters. Such intuitions can be
implemented into themodels via prior distributions, and can often
leverage information from previous data.

9.3. Experimental design

We should clarify that we are not advocating that experiments
are designed to be as similar to previous experiments as possible.
Of course, progress will come through experiments designed to
discriminate between models. It is worth noting that the use of
prior predictives can aid in the development of such constraints,
as they help define and then contrast the predictions made by
the models. Also, though we aim for qualitative contrasts between
models, it is exceedingly rare for any debate over experimental
data to not come down to model selection. Rather, it is typical
that despite best-laid plans, we end up contrastingmodels on their
ability to account for data frommultiple, and similar, experiments.
The method we outline is ideal for such situations.

9.4. An iterative Bayesian treatment of model complexity

We can unpack the advantages of an iterative Bayesian analysis
in model selection across designs a little more if we consider
what an experimental design actually is. One working definition
would be that an experimental design in psychology is an attempt
to estimate the nature of a cognitive process under controlled
conditions. To achieve a level of control, experimental designs have
to be limited. In a typical experiment, we aremeasuring a cognitive
process under certain conditions defined by the manipulations of
the experiment. Since any experiment, by design, is only going
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to be testing the process under restricted conditions, we are only
going to be able to sample from a certain part of our process
models’ prediction spaces using any one experimental design. This
can be why different experiments purporting to estimate the same
process can yield strikingly different results. It is not necessarily
the case that one experiment gives a more true characterization
of a process, it can also be that the same process operating under
different conditions can yield different estimates of the parameters
modeling that process. We argue that an iterative Bayesian
approach is uniquely equipped to deal with this possibility.

At this point, we again return to simple vs. complex models.
A complex model is the sort of model that we need if the same
process can behave differently depending on the conditions of
estimation. A simple model might be built on the basis of one class
of experimental designs, and can explain the data of that class
very well. But when we change the design, a simple model may no
longermake good predictions. A complexmodel that explained the
data well in the first class of experiments, and can also explain the
data well for new designs is a useful model to have, and one that
would ultimately be favored by an iterative Bayesian approach. If
the data generating process is itself complex, and over time we
are able to estimate the range of that complexity through multiple
experimental designs, then iterative Bayes factors will ultimately
lead us to believe in a more complex data-generating model,
provided that it is a goodmodel and thatwe are actuallymeasuring
the same data generating process across designs. If the model is
poor, or our experiments are estimating different processes, then
the model will not make good predictions across the designs and
the Bayes factors will advise us not to believe it. The general
message here is that itmight not bewise to reject a complexmodel
if we are only relying on similar experimental designs, where we
never get to test if that complexity is useful or explanatory. Bayes
factors with informed prior predictives give us the tools to test
whether a model’s complexity is a good thing in the long run.

This idea is a key reason why we do not wish to generalize far
from the conclusions in this current manuscript. We acknowledge
that the slots model provides the best account of change detection
experiments in which set size is randomized across trials, change
proportion is blocked, and the size of the change between study
and test items is large. But we believe that this class of experi-
mental designs gives only a limited estimate of the full process
underlying visual working memory, and that further experiments
may well provide evidence for a resource account. Our prediction
is that further experiments with different designs, analyzed with
prior predictives derived from the current experiments (or simi-
lar experiments), will eventually favor resource models of visual
working memory, as we find it implausible that a model as simple
as the slots model (at least the version outlined here) can account
for the full psychological complexity of VWM. The use of infor-
mative prior distributions is important here, as without informed
predictions the more complex resource models will always be
handicapped compared to a simple model like the slots model
when analyzing any one experimental data set alone. This is one
advantage of Bayesian analysis—even when we are finding evi-
dence against a model, we can still be accumulating information
about it that can prove useful for understanding future experimen-
tal output.

9.5. Conclusion: the benefits of prediction

It is a common feature of model selection papers that upon
fitting and punishing a series of models, authors tend to describe
the best-fitting model as having best predicted the data. But, as we
have demonstrated here with our comparison of the slots model
and signal detection model of visual working memory, prediction
is much more than simply fitting models. Using the knowledge

that we gain over previous experiments to inform our evaluation
of new evidence allows us to avoid giving weight to parts of the
parameter space that we would not expect to find data. This gives
a more precise estimate of the performance of the models that
we are comparing, and can reduce the gap between functionally
complex and simple models. In this instance, the slots model
outperformed the signal detectionmodel in change detection tasks
with set size randomized and change proportion blocked. But
this is not the end of the story, and Bayesian inference can help
us to tell the rest. An iterative Bayesian approach gives us the
means to address more complex problems in science, such as how
to discuss and evaluate the results of different experiments as
a collective whole. Scientists necessarily make inferences about
different theories based on the experiments that they survey. But
without Bayesian analysis, theymay not be doing so in a principled
and consistentway. Thedifference is simply that Bayesianmethods
do this kind of evaluation explicitly, systematically, and using the
rules of probability.
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