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Abstract Identification accuracy for sets of perceptually

discriminable stimuli ordered on a single dimension (e.g.,

line length) is remarkably low, indicating a fundamental

limit on information processing capacity. This surprising

limit has naturally led to a focus on measuring and mod-

eling choice probability in absolute identification research.

We show that choice response time (RT) results can enrich

our understanding of absolute identification by investigat-

ing dissociation between RT and accuracy as a function of

stimulus spacing. The dissociation is predicted by the

SAMBA model of absolute identification (Brown, Marley,

Dockin, & Heathcote, 2008), but cannot easily be accom-

modated by other theories. We show that SAMBA provides

an accurate, parameter free, account of the dissociation that

emerges from the architecture of the model and the phys-

ical attributes of the stimuli, rather than through numerical

adjustment. This violation of the pervasive monotonic

relationship between RT and accuracy has implications for

model development, which are discussed.

Introduction

In many choice paradigms, more accurate responses are

associated with faster response times, and vice versa: e.g.,

in Stroop-interference tasks (e.g., Kane & Engle, 2003;

Wuehr & Frings, 2008), various naming tasks (Duyck,

Lagrou, Gevers, & Fias, 2008; Roeflofs, 2006) and absolute

identification (Kent & Lamberts, 2005; Lacouture &

Marley, 1995, 2004; Petrov & Anderson, 2005). As a

result, it might be thought that models predicting choice

probability can also account for RT through a simple

monotonic transformation (e.g., inversion). In this paper,

we focus on the relationship between RT and accuracy in

the absolute identification of unidimensional stimuli, where

on each trial, participants identify a randomly chosen

stimulus from a set of stimuli varying on only one

dimension. For example, the stimulus set might consist of a

set of ten lines of varying lengths which are given the

labels #1 through #10 from shortest to longest.

We expand upon a previous finding that RT is not

always a simple monotonic function of accuracy in abso-

lute identification, when stimulus spacing is manipulated

(Lacouture, 1997). We demonstrate the reliability of this

result, and show that it provides a powerful test of different

theoretical accounts of absolute identification. This disso-

ciation is predicted by the SAMBA theory (Brown et al.,

2008), which models both choice probability and choice

response time. SAMBA predicts the violation of the per-

vasive negative correlation between RT and accuracy

because of one of its components—the mapping model

developed by Lacouture and Marley (1995). We show that

SAMBA accounts for the dissociation without parameter

adjustment because its account emerges from the archi-

tecture of the model and the physical attributes of the

stimuli.

There are numerous benchmark phenomena for the

absolute identification of unidimensional stimuli, when the

stimuli are equally spaced. For instance, when mean RT

and accuracy are plotted as functions of each stimulus’

ordinal position within the set, one observes the ubiquitous
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‘‘bow effect’’—a U-shape for accuracy and an inverted U

for RT. In such plots, stimuli associated with shorter RTs

are always associated with higher accuracy, and vice versa.

The inverse relationship between accuracy and RT is also

observed in many other kinds of plots of absolute identi-

fication data, for example, if accuracy and mean RT are

plotted as functions of the difference between successive

stimuli; the number of trials that have intervened since the

current stimulus was last presented; or the number of

stimuli within the set (Brown et al., 2008; Kent & Lam-

berts, 2005; Lacouture & Marley, 1995, 2004).

Brown et al. (2008) developed SAMBA to account for

the benchmark empirical choice and RT phenomena.

SAMBA was intended to be a complete account of absolute

identification, including all stages from a psychophysical

stimulus representation through to response selection, and

modeling all of the important benchmark phenomena from

the field. These benchmark phenomena in absolute identi-

fication can be divided into two types: global and local

effects. Local effects refer to the influence of previous

stimuli and responses on the current decision, whereas

global effects are the phenomena observed irrespective of

sequential dependencies. Stewart, Brown, and Chater

(2005) give a good summary of existing models of absolute

identification and their respective ability to capture the

important empirical phenomena. They demonstrated that

their Relative Judgment Model (RJM) was capable of

capturing both global and local benchmark choice phe-

nomena (they did not model RT), whereas other models

only capture either local (e.g., Lockhead, 2004) or global

effects (e.g. Lacouture & Marley, 2004). Brown et al.

showed that SAMBA was capable of predicting both global

and local benchmark phenomena, not only in choice, but

also in RT.

It could be argued that the ability to account for RT in

absolute identification is not a large advantage over other

models that predict choice phenomena because RT effects

are simply the inverse of accuracy. If this were the case, it

may be reasoned that any satisfactory model of choice in

absolute identification could obtain an equally good

account of RT effects in this domain by inverting accuracy.

However, Brown et al. (2008) also pointed out that

SAMBA makes the surprising and testable prediction that a

larger relative spacing between two adjacent stimuli in the

stimulus set will result in increased accuracy for those two

stimuli, but will have little impact on RT. In the following

sections we first provide a brief overview of SAMBA,

followed by a detailed account of this particular prediction.

We then examine data from Lacouture (1997) that confirm

the prediction, and show SAMBA’s fit to the data. We

conclude by discussing the implications of these results for

theoretical development in the field of absolute

identification.

SAMBA

SAMBA (Brown et al., 2008) is composed of three stages:

a selective attention stage, a mapping stage and a decision

stage. The selective attention stage begins with an

impoverished psychophysical representation—one without

an associated numerical magnitude—of a stimulus and

produces an estimate of its magnitude. This estimate is

constructed using Marley and Cook’s (1984, 1986) selec-

tive attention theory, which posits that stimulus magnitudes

are judged relative to a context defined by upper and lower

‘‘anchors’’ (call these L and U), which are placed beyond

the smallest and largest stimuli. On each trial, the magni-

tude of the stimulus is judged relative to the overall context

determined by the interval [L,U], and the estimate is noisy

due to the selective attention process. This magnitude

estimate falls in the interval [0,1], and the average mag-

nitude estimate for any particular stimulus (over repeated

presentations) is given by the linear function which maps

the interval [L,U] onto the interval [0,1]. For example, in an

experiment with ten equally spaced stimuli, if stimulus #5

were presented, a magnitude estimate of close 0.45 might

be expected, but on any given trial the estimate will vary

somewhat from this average.

SAMBA’s mapping stage transforms the magnitude

estimate produced by the selective attention stage into

response strengths, one for each possible response. The

mapping operates like a highly constrained set of tuning

curves, where each curve produces a response strength that

depends on how closely the observed magnitude estimate

matches a referent for the given response. SAMBA

assumes the referents are obtained by averaging magnitude

estimates associated with repeated presentations of each

stimulus. The mapping phase operates similarly to all

tuning curve systems, in that the largest response strength

is always assigned to the response whose referent most

closely matches the observed magnitude estimate. For

example, a magnitude estimate of 0.45 might be closest to

the long term referent for stimulus #5 and so the largest

response strength will be assigned to response #5. The

outputs from the mapping phase are the inputs to

SAMBA’s decision stage, which consists of a set of

ballistic accumulators, one for each possible response

(Brown & Heathcote, 2005). The ballistic accumulators

instantiate a noisy max-picking algorithm. The chosen

response will usually be the one with largest response

strength (from the mapping stage), but not always. Larger

response strengths are associated with faster responses, and

bigger differences between response strengths are associ-

ated with more accurate ‘‘pick-the-max’’ behaviour.

The dynamics of SAMBA’s basic architectural elements

also account for sequential effects. For example, activity in

the decision phase ballistic accumulators decays slowly
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between trials. Amongst other things, this means that the

response selected on the previous trial will have an

advantage on the current trial, as observed in data. How-

ever, for our purposes the critical element of SAMBA is the

bow mapping phase. Lacouture and Marley (1995) devel-

oped the mapping from a theoretical viewpoint. That is,

they started out with a list of mathematical properties that

any reasonable set of tuning curves should have. For

example, for any reasonable set of tuning curves the

greatest response strength should always assigned to the

response whose long-term referent most closely matches

the incoming magnitude estimate. Obviously, a great

variety of tuning curves would satisfy this property, so

other properties were included to constrain and simplify the

solution, including: all response strengths should always be

positive; the tuning curves should use the simplest func-

tional form possible—a straight line; and the set of curves

should be symmetric, as long as the referents are sym-

metric in the interval [L,U]. Lacouture and Marley

developed their bow mapping as a set of linear tuning

‘‘curves’’ which satisfied all these constraints. Their solu-

tion is very parsimonious because it is also parameter free,

being entirely specified by the values of the long term

referents for each stimulus’ average magnitude estimate.

The mapping solution also predicted the ubiquitous bow

effects observed in both response time and accuracy for

absolute identification, even though these properties were

not included as constraints for its development.

Of course, other solutions to the basic tuning curve

problem could be developed. In particular, one may relax

the simplifying constraints imposed by Lacouture and

Marley (1995), by allowing more complex nonlinear forms

for the tuning curves. Some such solutions would probably

also be able to accommodate the accuracy-RT dissociation

discussed below, but it is difficult to justify their extra

complexity. From this point of view, one may consider the

bow mapping as the simplest and most constrained set of

tuning curves available, with the added benefit that they

allow SAMBA to accommodate not only the empirical data

addressed by Brown et al. (2008), but also to make testable

predictions.

SAMBA’s predictions for unequally spaced stimuli

SAMBA makes the prediction that if the spacing between

two adjacent stimuli is increased, with other stimulus

spacings unchanged, then these particular stimuli are

identified with higher accuracy, but RT is relatively unaf-

fected. This prediction is a consequence of Lacouture and

Marley’s (1995) mapping solution. When stimuli are

unequally spaced, the long-term referents (average mag-

nitude estimates) that define the mapping stage will reflect

the unequal spacing. For example, first consider a standard

absolute identification experiment with 10 equally spaced

stimuli, and suppose that participants place their lower and

upper anchors at a distance equivalent to one stimulus

separation above and below the stimuli at the upper and

lower end of the range, respectively. In this case, the

selective attention phase of SAMBA produces average

magnitude estimates given by the linear mapping of the

stimulus magnitudes onto the unit interval, name-

ly: 1
11
; 2

11
; � � � 10

11

� �
: Now imagine that a set of ten unequally

spaced stimuli is constructed by first taking 14 equally

spaced stimuli, then removing the central four. This stim-

ulus set has a large central gap between stimuli #5 and #6.

The selective attention phase of SAMBA then produces

average magnitude estimates that respect the unequal

stimulus spacing, namely 1
15
; 2

15
; � � � ; 5

15
; 10

15
; � � � ; 14

15

� �
: Since

the average estimates define the mapping solution, the

spacing of the stimulus set is naturally encoded into the

operation of the model.

On each trial of an absolute identification experi-

ment, the selective attention phase produces a noisy

magnitude estimate, say z. The mapping solution

transforms this estimate into a response strength Rj for each

of the j possible responses according to the formula

Rj = (2Yj - 1)z - Yj
2 + 1, which is linear in the magni-

tude estimate, z. The function is completely defined by Yj,

which is the average magnitude estimate for the jth stim-

ulus—the long term referent for response j. Figure 1

illustrates the mapping solutions that arise from both the

equally spaced and unequally spaced sets of ten stimuli. In

both cases, the mapping supports the basic property, that if

the observed magnitude estimate is close to the average

magnitude estimate for stimulus j, the highest response

strength will be assigned to response j. For example, sup-

pose on a particular trial stimulus #5 is presented, and the

selective attention phase produces a magnitude estimate of

0.45 units. In both the equal and unequal spacing cases, the

large black dot shows that the greatest response strength in

this case is assigned to response #5 (i.e., the highest line
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Fig. 1 Mapping solution for equally spaced stimuli (left panel) and a

set of ten stimuli with a central gap in stimulus spacing equivalent to

four stimuli (right panel). Each line shows how the response strength

varies with input magnitude estimate, for one of the ten possible

responses. The mapping is from [0,1] to [0,1], with the ordinate

truncated here for display purposes
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above x = 0.45 is the one corresponding to the fifth

response). It may strike the reader as surprising, on first

glance, that the greatest response strength for each response

always occurs at one extreme or the other (x = 0 or 1). For

example, response #5 is the maximum-strength response at

x = 0.45, but the greatest response strength is assigned to

response #5 when x = 0. This property arises from the

severe simplifying constraints imposed by Lacouture and

Marley (1995), in particular that the tuning curves should

be linear. It is testament to the power of their solution that

it still fits the data so well, even with such constraint.

The difference in the mapping solutions for equally and

unequally spaced stimuli leads to the prediction that is our

focus. Consider again stimulus #5, which is adjacent to the

large central gap in the unequal stimulus set (a similar

argument applies to stimulus #6). In the equally spaced

condition, response #5 is the maximum-strength response1

for any magnitude estimates in the interval z 2 4:5
11
; 5:5

11

� �
:

However, in the unequally spaced condition, response #5 is

the maximum-strength response for a larger range of

magnitude estimates: z 2 4:5
15
; 7:5

15

� �
: Given that the response

with the largest strength is usually the response made by

SAMBA’s decision phase, accuracy is predicted to be

higher for stimulus #5 in the unequally spaced condition

than in the equally spaced condition. This is mostly due to

the prediction that stimulus #5 will not often be confused

with stimulus #6 (and vice versa). For example, for the

unequally spaced stimuli in Fig. 1, the average magnitude

estimate for stimulus #5 is 5
15
: Due to the properties of the

rehearsal stage, it is rare that if stimulus #5 were presented

that the magnitude estimate would be greater than 7:5
15
; and

hence fall in the region where response #6 would receive

the largest response strength.

Turning now to predictions for response time, Fig. 1

shows that the size of the response strength produced for

stimulus #5 is about the same in both the equal and unequal

stimulus spacing conditions. In the decision stage of

SAMBA, the response strength for response #5 determines

the rate of increase of activation in the corresponding

ballistic accumulator. All other parameters being equal,

response time is inversely related to the response strength,

so SAMBA predicts about the same response times for

stimulus #5 in both the equal and unequal spacing condi-

tions. To be numerically precise, the average magnitude

estimate associated with stimulus #5 in the equally spaced

condition is 5
11
; and this results in a maximum response

strength being assigned to response #5, a strength of

2 5
11
� 1

� �
5

11
� 5

11

� �2þ1 ¼ 0:752: In the unequally spaced

case, stimulus #5 generates an average magnitude estimate

of 5
15
; or 1

3
; but again the maximum response strength is

assigned to response #5, 2 1
3
� 1

� �
1
3
� 1

3

� �2þ1 ¼ 0:778:

Critically, in both cases, the response strengths assigned to

the correct response for neighbouring stimuli is larger, so

they will have a faster RT. For example, when stimulus #4

is presented, the average response strength assigned to

response #4 is 0.769 in the equally spaced condition and

0.804 in the unequally spaced condition. Hence, SAMBA

predicts a dissociation that responses to stimuli near a large

gap will be more accurate than for neighbouring stimuli,

but the corresponding response times will be slower.

Empirical evidence

Several researchers have manipulated stimulus spacing,

including Lockhead and Hinson (1986) and Lacouture

(1997). Brown et al. (2008) demonstrated that SAMBA

provides a parsimonious account of the choice probabilities

reported by Lockhead and Hinson (RTs were not recorded).

Lacouture’s data set included RT measurements, allowing

us to test SAMBA’s predictions about the effect of stim-

ulus spacing on both choice probabilities and RT.

Participants in Lacouture’s experiment spent the first hour

in a standard absolute identification experiment, with ten

equally spaced stimuli. Each participant then spent a sec-

ond hour in one of several conditions in which physical

properties of the stimuli were manipulated. Brown et al.

presented fits of SAMBA to data from the first session

(equal spacing), but until now the unequal spacing condi-

tions have never been modeled. Since Lacouture published

his findings, several important, integrative theories of

absolute identification have been published, some of which

have even addressed the effects of unequal stimulus spac-

ing on response choices, but none have addressed the

effects of stimulus spacing on response times. This leaves a

gap in theoretical development, especially because, as we

now show, Lacouture’s data presents a challenging test for

models.

Participants in the second session of Lacouture’s (1997)

experiment experienced one of six conditions, four of

which employed unequally spaced stimuli. These four

conditions had larger gaps introduced either in the centre

(between stimuli #5 and #6) or at the edges (between

stimuli #2 and #3 and stimuli #8 and #9). The gap location

was crossed with a manipulation of gap size (large or

small) to create the four conditions: a large central gap (C–

L); a small central gap (C–S); large extreme gaps (E–L);

and small extreme-gaps (E–S). The top row of Fig. 2

provides a schematic illustration of the stimuli from these

four conditions (for actual stimulus lengths, see Lacou-

ture’s Table 1). The second and third rows of Fig. 2 show

1 It is elementary to show that responses j and j + 1 have equal

response strengths at the point that is midway between the long term

referents for stimuli j and j + 1, and this holds for both equally

spaced and unequally spaced stimulus sets.
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data from the four spacing conditions, replicating Lacou-

ture’s Figure 4. The data are represented by solid circles

with ±1 standard error bars, calculated assuming normal

distributions across subjects for mean RT and binomial

distributions for accuracy. In each graph, vertical arrows

show the locations of the larger gaps, and the dashed lines

show predictions generated by SAMBA. The second row of

Fig. 2 shows response accuracy separately for each

response and the third row shows mean correct response

times. Notice that accuracy is greater for stimuli adjacent to

gaps, and the effect is more pronounced in the large

spacing conditions than the small spacing conditions.

However, the improved accuracy is never accompanied by

faster response times relative to neighbouring stimuli,

contrary to the typical inverse RT-accuracy relationship.

When analyzing response choices from absolute iden-

tification tasks, it is customary to calculate sensitivity (d’)

instead of raw percent correct (Luce, Nosofsky, Green, &

Smith, 1982). Sensitivity provides a bias-free measure of

how often successive pairs of stimuli are confused, that is,

how often stimuli #1 and #2 are confused, and stimuli #2

and #3, and so on up to stimuli #9 and #10. For any given

pair, say stimuli #4 and #5, d’ is calculated in the usual

manner, using hit and false alarm rates, where ‘‘hits’’ are

defined as responses #5 or greater, when stimulus #5 is

presented, and ‘‘false alarms’’ are defined as responses #5

or greater, when stimulus #4 is presented. To ensure that

the effects observed in Lacouture’s (1997) data were not

due to a response bias effect, we calculated d’ values for

each stimulus pair, shown in Fig. 3. Graphing the data

using d’ shows an even more pronounced effect of stimulus

spacing—stimuli that are separated by large gaps were

almost never confused with one another.

Figures 2 and 3 demonstrate a clear dissociation—

stimuli separated by large gaps enjoy an accuracy (and

sensitivity) bonus, but no corresponding RT bonus. To

confirm the statistical reliability of this dissociation, we

calculated binomial tests. We used binomial tests because

they provide robust analyses that directly test the ordinal

hypotheses we entertain, without potentially problematic

distributional assumptions. We carried out two tests, one

for the dissociation of response times and raw response

accuracy and the other for the dissociation of response

times and d’. We examined the accuracy (or d’) and RT

values separately for each participant, and counted how

frequently the dissociation in question was observed on a

single-participant basis—that is, how often we observed

improved accuracy for stimuli on either side of the larger

gaps (relative to neighbouring stimuli) without observing

faster RT for those same stimuli. Take, for example, one of

the central gap conditions (C–L or C–S) in which stimuli

#5 and #6 are near the gap. For any single participants’

data, we would say we observed the dissociation whenever

we found four different ordinal constraints to be satisfied,

namely that:

a. Response time was not smaller for stimulus #5 than its

neighbour (#4).

b. Response time was not smaller for stimulus #6 than its

neighbour (#7).

c. Accuracy was greater for stimulus #5 than its neigh-

bour (#4).

d. Accuracy was greater for stimulus #6 than its neigh-

bour (#7).

For the extreme gap conditions (E–L and E–S) the same

ordering constraints were tested twice for each participant,

once for the gap between stimuli #2 and #3, and once for

the gap between stimuli #8 and #9. The dissociation

between d’ and RT was assessed slightly differently, since

d’ measures the discriminability of each pair of stimuli.

Thus, constrains (a) and (b) from the above list remained

the same, but constraints (c) and (d) were replaced with:

E−L E−SC−LSpacing
Condition

C−S

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Accuracy

12345678910

Response

1234567891012345678910

1.0
1.2
1.4
1.6
1.8

RT
(sec.)

12345678910

Fig. 2 The top row shows a schematic representation of the stimuli

used in Lacouture’s (1997) second session. C–L refers to the ‘large

central-gap’ and C–S to the ‘small central-gap’ condition, E–L refers

to the ‘large extreme-gaps’ condition, and E–S ‘small extreme-gaps.

The second row shows response accuracy and the third row shows

mean RT for correct responses, both as functions of response. Data

are shown as points with standard error bars that are joined by solid
lines, and SAMBA’s fits are shown with dotted lines

E−L E−SC−LSpacing
Condition

C−S

1 2 3 4 5 6 7 8 9

Smaller of Stimulus Pair
1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1

2

3

4

Accuracy
(d’)

1 2 3 4 5 6 7 8 9

Fig. 3 Sensitivity (d’) for each stimulus pair in the four unequally

spaced stimulus conditions from Lacouture’s (1997) second session.

Data are shown as points with standard error bars (calculated

assuming d’ is normally distributed across participants) that are joined

by solid lines, and SAMBA’s fits are shown with dotted lines

Psychological Research

123



c. Discriminability of stimuli #5 and #6 was greater than

for stimuli #4 and #5.

d. Discriminability of stimuli #5 and #6 was greater than

for stimuli #6 and #7.

For each of the 16 participants in the E–S and E–L

conditions, there were two opportunities to observe the

dissociation—corresponding to the two stimulus gaps in

each condition—and for each of the other 16 participants in

the C–S and C–L conditions there was one opportunity. For

the raw accuracy data, under a null hypothesis of no rela-

tionship, the probability of observing the dissociation by

chance is one in 16 at each opportunity, but we observed

the dissociation ten out of 48 times, significantly more than

the three that would be expected by chance (p = 0.0015).

For the d’ data, the probability of observing the dissocia-

tive ordering by chance is one in 12, but we observed the

dissociation 20 out of 48 times, again significantly more

than would be expected by chance (p \ 10-10). These tests

are quite convincing, especially given there were only eight

participants in each condition and the reduced power

afforded by robust non-parametric statistical tests. Note

that those participants who did not demonstrate the critical

dissociation on single-participant level did not necessarily

demonstrate the opposite (i.e., the usual inverse accuracy-

RT relationship). In fact, of the 96 opportunities to observe

the usual inverse relationship in these critical tests, we

observed only one instance where stimuli adjacent to a gap

exhibited both increased accuracy and a decrease in RT

relative to their neighbouring stimuli—for the other 95

opportunities, we either observed random ordering due to

noise (65 times) or the accuracy-RT dissociations counted

above (30 times).

Turning now to predictions from SAMBA, we can see

from the dashed lines in Figs. 2 and 3 that the model

provides a good qualitative account of the data, capturing

the observed dissociation between accuracy and RT. The

model also provides a very close quantitative fit to the data,

which is all the more surprising given the strong constraints

we imposed on the parameters. To fit SAMBA to Lacou-

ture’s (1997) unequal spacing conditions, we began with

the parameters reported by Brown et al. (2008) that were

used to fit the standard (equal spacing) condition from the

first session of Lacouture’s experiment. Only three

parameters were adjusted for the fits presented in Fig. 2,

and even these parameters were irrelevant in capturing the

critical dissociation between accuracy and RT—all three

parameters were instead related to the effects of practice,

capturing differences in the data between the first and

second experimental sessions. Firstly, we decreased the

response threshold parameter for SAMBA’s decision phase

to be 90% of the value it took for the first experimental

session, reflecting that participants may have become a

little less careful in the second session of the experiment.

Secondly, we had previously noted asymmetry in the data:

in the first experimental session, responses were slower and

less accurate for the large stimuli than the small stimuli.

SAMBA accounted for the asymmetry by setting the lower

anchor close to the smallest stimulus (L was set at 95% of

the magnitude of the smallest stimulus) but the upper

anchor quite far away from the largest stimulus (U was

62% larger than the largest stimulus). In the second

experimental session the asymmetry disappeared: note that

in Fig. 2 accuracy and RT are about the same for the

smaller stimuli as for the larger stimuli. To capture this

return to symmetry, we set the lower anchor to 99% of the

magnitude of the smallest stimulus, and the upper anchor to

101% of the magnitude of the largest stimulus.

One possible interpretation for the change in symmetry

between sessions could be improvement due to practice.

Although absolute identification is mostly immune to

practice effects, Rouder, Morey, Cowan, and Pfaltz (2004)

showed that learning in absolute identification is possible.

Donkin, Dodds, Brown and Heathcote (2008) have shown

that this is especially true for lines of varying length, as

used by Lacouture. This explanation is consistent with the

change in parameters of SAMBA used to achieve the

reported fits. The upper and lower anchors, U and L, were

moved closer to stimuli #1 and #10 in the unequal spacing

conditions, indicating that participants improved their

knowledge of the task in the second session relative to the

first.

It is notable that exactly the same parameters were used

to fit all four different spacing conditions. The differences

between spacing conditions are completely determined by

the properties of the stimulus spacing, which in turn

determine the referents. For example, referents for the large

central-gap condition are based on long-term averages of

magnitude estimates produced by SAMBA’s selective

attention phase, and these magnitude estimates naturally

reflect the large gap between stimuli #5 and #6. The same

mechanism applies to the other stimulus spacing condi-

tions. Given the constraints we imposed on the model

parameters, the quantitative fits are quite good, although

SAMBA overpredicts the improvement in d’ in the C–L

condition. This misfit is quite small in terms of probability,

but is exaggerated by the inverse cumulative normal

transformation used to calculate d’ when accuracy is high.

Alternative models

There are four recent models of absolute identification,

besides SAMBA, that make predictions for both choice and

RT. Two of these models are exemplar based accounts of

general categorization behavior, applied to absolute
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identification, which can be seen as a special case of

categorization. These two models are the exemplar-based

random walk (EBRW: Nosofsky, 1997; Nosofsky &

Palmeri, 1997) and the extended generalized context model

for response times (EGCM-RT: Kent & Lamberts, 2005,

Lamberts, 2000). Both models predict that increased

accuracy should always be associated with faster RT, at

least when parameters unrelated to stimulus properties are

kept constant. In Lacouture’s (1997) data, the dissociation

of RT and accuracy was observed within blocks in which

only stimulus magnitude was manipulated, so it would

seem that these theories are incapable of accounting for the

dissociation between accuracy and RT with unequal stim-

ulus spacing (in particular, see Equation 5 in Nosofsky,

1997, and Equation 12 in Lamberts, 2000). The EBRW and

EGCM-RT both predict the observed increase in accuracy

with increased spacing between stimuli, caused by reduced

similarity between stimulus representations. However, both

models also predict an associated decrease in RT, which

was not observed in Lacouture’s data. It is possible that,

with carefully chosen parameter values, these models could

decrease the size of the predicted misfit. That is, there may

exist parameter values that allow the models to predict

increased accuracy near large gaps, accompanied by only a

small decrease in RT for those same stimuli. Even if these

parameter values exist, the models still make incorrect

predictions about the (statistically reliable) ordering of the

data values observed above.

Another absolute identification model that predicts RT is

Karpiuk, Lacouture, and Marley’s (1997) limited capacity,

wave equality, random-walk model. This model is similar

to SAMBA, in that it uses Marley and Cook’s (1984)

rehearsal model, but in place of SAMBA’s mapping stage,

Karpiuk et al. used a set of tuning curves for each response.

Tuning curves, specified by free parameters, operate like

SAMBA’s mapping stage but with less constraint and

greater flexibility. For this reason, it is quite likely that

Karpuik et al.’s model is capable of capturing (but not

predicting) the observed dissociation between RT and

accuracy. Lacouture and Marley’s (1995, 2004) mapping

model employs the same mapping functions as SAMBA,

and so it also predicts the dissociation between RT and

accuracy.

Ashby (2000) developed a theory of categorization that

includes predictions for RT as well as choices. Other ver-

sions of this theory have been applied to absolute

identification data (Ashby & Lee, 1991), although the RT-

inclusive version has not. Similarly to the exemplar-based

categorization models, Ashby’s theory generally predicts a

monotonic relationship between mean RT and accuracy in

categorization (see e.g., Ashby, 2000, p. 321 for a summary

of the extensive successes, and limited failures, of this

prediction) and, therefore, does not accommodate the

observed dissociation. Ashby’s model ‘‘sometimes predicts

violations of the RT-distance hypothesis’’ (p. 322), but

under complex assumptions that are unlikely to be satisfied

in absolute identification data. We also note that extant

absolute identification models (other than SAMBA) that

predict both accuracy and RT fail to predict other key

phenomena. For example, none of the models described

above predict the well-known sequential effects in absolute

identification data, such as assimilation and contrast.

Discussion

We have presented and tested a prediction arising from the

mapping stage of the SAMBA model of absolute identifi-

cation (Brown et al., 2008). The predicted dissociation

between accuracy and RT is surprising due to the regularity

with which a monotonic relationship has been observed in

a range of speeded choice paradigms. Nevertheless,

SAMBA’s prediction was confirmed by data from Lacou-

ture’s (1997) unequal spacing experiments, data which has

not previously been accounted by any model. SAMBA

predicts the dissociation between RT and accuracy under

different spacing conditions, and provides an impressive

quantitative fit, given that no parameter changes were made

between conditions, and all but three parameters were fixed

at values estimated using data from a different condition.

In most empirical and theoretical work on absolute

identification, response times have received much less

attention than response choices. Despite an empirical

research history pre-dating Miller’s (1956) seminal review,

and theoretical accounts existing for at least 50 years,

models have only begun to address RT in the last 15 years.

The disinterest in RT is underlined in Stewart et al.’s

(2005) model summary table (p. 886), where only three out

of the 14 models reviewed made predictions about RT.

This neglect is most likely due the belief that RT has little

utility for discriminating models, which might have been

true if a systematic monotonic inverse relationship between

RT and accuracy always held. However, Lacouture’s

(1997) results show that this is not the case, and that RT

and accuracy data together provide greater model con-

straint than accuracy data alone. In particular, Lacouture’s

data provide a strong test for any theoretical account of

absolute identification that attempts to account for both

choice and RT. SAMBA passes this test, confirming a

prediction made by Lacouture and Marley’s (1995) highly

constrained method of obtaining tuning curves, which was

adopted by SAMBA. Hence, Lacouture and Marley’s

method, motivated on entirely independent theoretical

grounds, not only predicts the ubiquitous bow effects found

in absolute identification, but also a heretofore unexplored

dissociation between speed and accuracy.
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Appendix: The latencies of incorrect responses

The relative speeds of correct and incorrect responses have

proven very illuminating in the development of theories of

choice response time (see, e.g., Brown & Heathcote, 2005,

2008). Theoretical accounts of response times in absolute

identification are less well developed, so the fine model

discrimination afforded by the analysis of error RT may yet

be premature. Nevertheless, we note here two interesting

phenomena related to incorrect RTs in Lacouture’s (1997)

data. Firstly, response times were slightly, but reliably,

slower for incorrect responses than correct responses in the

unequal spacing conditions of Lacouture’s experiment

(mean difference 29 ms, t(38) = 2.5, p \ 0.01). Secondly,

the relative speed of correct and incorrect responses

changed systematically with stimulus magnitude. For

extreme stimuli (#1 and #10), incorrect responses were

much slower than correct responses (mean difference

269 ms, t(46) = 7.5, p \ 0.001) but for central stimuli (#5

and #6) there was almost no difference (mean difference

10 ms, t(46) = 0.3, p [ 0.05). The relative speeds of cor-

rect and incorrect responses are captured well by

SAMBA—a brief illustration, Fig. 4 shows mean error

response times along with SAMBA’s predictions using the

same format as Fig. 2. The model captures the global

qualitative trends in the data, but misses some of the finer

quantitative properties, such as the tendency for some

extreme responses to be associated with very fast errors

(e.g., #1 in C-L condition and #10 in E-S and C-S). It also

fails to capture a tendency for participants in the central

gap conditions (C–L and C–S) to make fast errors when

responding with #5. The reader might suppose that these

faster errors are due to stimulus #5 lying adjacent to a gap.

However, this does not explain why the same pattern is not

shown for response #6 or in the E–L or E–S conditions.

We do not take the observed goodness of fit to be as

impressive as SAMBA’s ability to fit our main focus, the

effects of stimulus spacing. Although the patterns of fast

and slow errors may appear complex at first glance, they

are less theoretically challenging than might be imagined.

For example, incorrect response times were slower than

correct response times, as predicted by SAMBA. Other

models of absolute identification do not predict this in their

current forms. For example, Kent and Lamberts’ (2005)

model uses a random walk, which is constrained to predict

equal response times for correct and incorrect responses

(see e.g., Ratcliff, 1978). However, this limitation is not

central to Kent and Lamberts’ model, and can easily be

remedied by the addition of certain variance components to

its decision phase (as described by Ratcliff). Similarly, any

model of absolute identification that predicts the ubiquitous

bow effects—longer RT for central responses and shorter

RT for extreme responses—will necessarily produce

slower mean error than correct RTs for extreme stimuli.

This is because those incorrect responses are less extreme

(usually #2 and #9, rather than #1 and #10, for example)

and hence slower due to the bow effect. For these reasons,

we think that a detailed comparison of empirical results

with theoretical predictions for incorrect response times

may be premature for models of absolute identification.
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