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Recent theoretical developments in the field of absolute identification have stressed differences between
relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term
context provided by recently presented stimuli or a longer term context provided by the entire set of
stimuli. The authors developed a model (SAMBA: selective attention, mapping, and ballistic accumu-
lation) that integrates shorter and longer term memory processes and accounts for both the choices made
and the associated response time distributions, including sequential effects in each. The model’s
predictions arise as a consequence of its architecture and require estimation of only a few parameters with
values that are consistent across numerous data sets. The authors show that SAMBA provides a
quantitative account of benchmark choice phenomena in classical absolute identification experiments and
in contemporary data involving both choice and response time.
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Performance in absolute identification tasks has fascinated
researchers for over 50 years (e.g., Garner, 1953; Miller, 1956;
Pollack, 1952, 1953). Research in the past 35 years has empha-
sized both data and formal theories (e.g., Braida & Durlach,
1972; Durlach & Braida, 1969; Laming, 1984; Lockhead, 2004;
Luce, Nosofsky, Green, & Smith, 1982; Marley & Cook, 1984;
Petrov & Anderson, 2005; Stewart, Brown, & Chater, 2005;
Treisman & Williams, 1984) and, most recently, has been
concerned with both the choices made and the time it takes to
make them (Kent & Lamberts, 2005; Lacouture & Marley,
1991, 1995, 2004). As Shiffrin and Nosofsky (1994, p. 358)
stated in an article reassessing the significance of Miller’s
(1956) classic paper, “absolute identification has captured the
imagination . . . not only because the empirical results are so
startling . . . but also because [they] provide perplexing prob-
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lems for classic psychophysical models.” Luce (1986, chapter
10) gave an excellent summary of data and theory to that date,
and Lockhead (2004) summarized data and theory most relevant
to relative interpretations of absolute identification, where the
relativity is with respect to stimuli and responses from previous
trials. Stewart et al. (2005) and Petrov and Anderson (2005)
provided comprehensive reviews of choice data and the related
theory, with emphasis on theoretical approaches over the past
20 years.

A typical absolute identification task requires a participant to
identify, on each trial, which stimulus has been presented from
a relatively small prespecified set. In general, people are unable
to accurately identify more than about 810 stimuli that vary on
a single physical dimension. For example, the stimuli might be
a set of 10 lines varying only in length, with the shortest line
labeled 1 and the longest 10. A participant previews the entire
labeled set and is then shown the lines one at time, over
numerous trials, and asked to identify the presented line with
the appropriate response label. Typically, a participant in this
task is unable to achieve an overall accuracy above about 80%,
which is surprising given that the stimuli are chosen such that
comparative judgments of any pair of them are completely
accurate (i.e., judging whether one stimulus is smaller or greater
than another stimulus presented in rapid succession).

With such an extensive history, the study of absolute identifi-
cation is a mature field with many well-established benchmark
behavioral phenomena that describe how choices and response
times (RTs) are affected by stimulus manipulations and by the
history of stimuli and responses. We broadly separate these phe-
nomena into global and local effects.
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1. Global effects: Stimulus range and set size. For a fixed
set size (N) of stimulus—response pairs, performance—
measured by the amount of information transmitted—
increases quickly to an asymptotic level of 2-3 bits as the
range of stimuli on the physical dimension increases
(Braida & Durlach, 1972). Similarly, as set size in-
creases, the amount of information transmitted increases
rapidly at first but then asymptotes at 2-3 bits (e.g.,
Garner, 1953; Pollack, 1952, 1953). Responses to the
largest and smallest stimuli in a set are faster and more
accurate than responses to the middle stimuli—the bow
effect. Both accuracy and RTs worsen for any given
stimulus as other stimuli are introduced to the set (Kent
& Lamberts, 2005; Lacouture & Marley, 1995). As
shown by Luce et al.’s (1982) d’ analysis,' bow effects in
accuracy are due partly to bow effects in sensitivity and
partly to response bias produced by the constraints on
available responses for stimuli near the ends of the range.
Ward (1987) showed that scaling methods that require
either relative or absolute judgments reveal profound
effects of stimulus—response mappings over days.

2. Local effects: Sequential effect on accuracy and errors.
Previous stimuli and responses can affect the response to
the current stimulus (e.g., Lacouture, 1997; Ward &
Lockhead, 1970, 1971). When an incorrect response is
given, it tends to be toward, rather than away from, the
stimulus from the previous trial (assimilation). The op-
posite pattern occurs for longer lags (contrast): Errors
tend to be away from, rather than toward, stimuli from
two or more trials previously.> Accuracy is improved
when stimuli are constrained to be similar on successive
trials (e.g., Luce et al., 1982). In particular, the difference
in magnitudes between the stimuli presented on the cur-
rent and previous trials influences response accuracy
(e.g., Petrov & Anderson, 2005; Rouder, Morey, Cowan,
& Pfaltz, 2004; Stewart et al., 2005).

Previous theoretical accounts of absolute identification have at-
tempted to show that some or all of these phenomena could be
accounted for using only relative processes or only absolute pro-
cesses. A model that uses only absolute processes is one where
decisions are made about stimulus magnitudes on the basis of com-
parisons with some longer term referents (e.g., the context-coding
component of Braida et al., 1984; Lacouture & Marley, 1995, 2004)
or a longer-term frame of reference (e.g., Marley & Cook, 1984). On
the other hand, a model that uses only relative processes (e.g., Lam-
ing, 1984; Lockhead, 2004; Stewart et al., 2005) posits that decisions
are made using only comparisons with recent stimuli and responses.
Range and set size effects have most often been attributed to absolute
processes (e.g., Braida et al., 1984; Marley & Cook, 1984). Sequential
effects, particularly assimilation and contrast, have been frequently
explained by shorter term relative judgment processes. Other than the
model developed in this article, there is no model, either relative or
absolute, that accounts for all of the global and local benchmark
phenomena described above.

Stewart et al. (2005) presented a league table (their Table 2)
comparing absolute identification models on their ability to ac-
count for nine benchmark phenomena, along with associated clas-

sical data sets, under three broad headings: limited information
transmission, bow (set size) effects, and sequential effects. The
most comprehensive relative theory, Stewart et al.’s relative judg-
ment model (RIM?), performs well on choice-related phenomena
but does not address RTs. The most comprehensive absolute
theory, Lacouture and Marley’s (1995, 2004) mapping model,
performs well on global phenomena for both choice and RT but
does not address sequential effects. Stewart et al. counted RT as
one benchmark phenomenon, even though a wide range of bench-
mark RT phenomena have been identified (Lacouture, 1997; La-
couture & Marley, 1995, 2004), some paralleling those found in
choices, including set size effects, stimulus magnitude effects, and
sequential effects, and some specific to RT, such as distribution
shapes for correct and error responses for each stimulus.

We propose a model of both choice and RT in absolute identi-
fication in which sequential effects, including assimilation and
contrast, result from short-term memory effects in an absolute
judgment process. Our model further develops key concepts from
several previous models. Reflecting this cumulative history, the
acronym for the model, SAMBA, highlights the three core ele-
ments: selective attention (Marley & Cook, 1984), mapping (La-
couture & Marley, 1995, 2004), and ballistic accumulation (Brown
& Heathcote, 2005). Stewart et al. (2005), in their league table,
showed that the separate components of SAMBA are, by them-
selves, inadequate. This gives motivation for SAMBA, which
integrates and extends these components, to account for assimila-
tion, contrast, asymmetries in bow effects, and local judgment
effects. SAMBA provides a unified account of choice phenomena
as well as the associated RT phenomena, as we demonstrate by
fitting SAMBA to Lacouture’s (1997) full range of choice and RT
data, which is averaged over participants, and to Kent and Lam-
berts’s (2005) and Lacouture and Marley’s (2004) individual sub-
ject data. While SAMBA is the first model of absolute identifica-
tion to provide a comprehensive account of RTs and response
choices that includes sequential effects, of course we do not claim
that other such models cannot be developed. For example, both
Lacouture and Marley’s (2004) and Kent and Lamberts’s models
provide a good account of RTs and most choice phenomena but do
not explain sequential effects, but these models may be further
developed to cover such effects. Similarly, models that cover
response choices but not RTs (such as Stewart et al.’s, 2005, RIM
or Petrov & Anderson’s, 2005, ANCHOR) may be developed
further to include an RT mechanism. We note, however, that an
account of RT added to a choice model is not guaranteed suc-
cess—see, for example, Karpiuk, Lacouture, and Marley (1997).

Recently, Brown, Marley, and Lacouture (2007) highlighted the
theoretical importance of sequential effects in accuracy (see also
Petrov & Anderson, 2005; Rouder et al., 2004; Stewart et al.,
2005), thus going beyond just assimilation and contrast, which
describe sequential effects in errors. Brown et al. focused on
Rouder et al.’s (2004) analysis of accuracy as a function of the

! Throughout this article, we use Luce et al.’s (1982) method of calcu-
lating d' to quantify sensitivity.

2 Since stimuli and correct responses are correlated, care must taken in
interpreting these as solely stimulus (or response) effects.

3 The term relative judgment model was earlier used by DeCarlo and
Cross (1990) for their model of magnitude scaling—their Equation 16.
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difference between the current and previous stimuli. Analyzing
data from Lacouture’s (1997) line length task, they observed
improved accuracy for a stimulus similar to the one before and also
for a stimulus very different from the one before. Subsequently,
Stewart (2007) noted the same pattern in three other data sets
(Kent & Lamberts, 2005; Neath & Brown, 2006; Stewart et al.,
2005). Brown et al. attributed higher accuracy when successive
stimuli are similar to a comparison of the present stimulus with the
prior stimulus and higher accuracy when successive stimuli are
very different to comparison with an end stimulus. Stewart ex-
plained the pattern by modifying the RIM to include a memory for
the stimulus two trials back that on some trials is used instead of
the memory for the stimulus one trial back as the basis for relative
judgment. Other experiments by DeCarlo and Cross (1990) and
DeCarlo (1994) demonstrated that instructions significantly impact
whether magnitude judgments are made relative to short- or long-
term referent stimuli and responses. These findings present prob-
lems for models that rely solely on absolute or solely on relative
mechanisms, requiring suitable extensions of the relative ap-
proach, as shown by Stewart, and a suitable extension of the
absolute approach, as we show for SAMBA.

SAMBA is an integrative model not only because it accounts for
choice and RT data but also because it includes relative as well as
absolute processes. We show that SAMBA is able to model the
complex effects shown in Brown et al.’s (2007) analysis by re-
placing one of the end anchors used by Marley and Cook’s (1984)
selective attention process with the estimated magnitude of the
previous stimulus. However, this relative judgment process is not
required for SAMBA’s account of classic absolute identification
phenomena, including assimilation and contrast, so we omit it in
our fits to benchmark data sets exemplifying these phenomena.
Only Lacouture’s (1997) and Stewart et al.’s (2005) data show
effects that are strong enough to require explicit modeling by the
relative judgment process in SAMBA.

In the following sections, we first provide details of SAMBA,
then describe a set of benchmark empirical phenomena and asso-
ciated classic data sets. Along with these descriptions, we show
that SAMBA accurately fits each of these classic benchmark data
sets. The benchmark sets presented here were chosen to provide
insight into the workings of SAMBA and to illustrate its account
for phenomena beyond the scope of any of the models from which
it was derived, with a particular emphasis on sequential effects.
Note that SAMBA also accounts for many other benchmark phe-
nomena that we do not have space to illustrate here, such as the
effects of set size on RT. Finally, we present comprehensive fits of
SAMBA to two data sets: Lacouture (1997) and Stewart et al.’s
(2005) Experiment 1. We used Lacouture’s data to test SAMBA’s
ability to simultaneously account for all of the choice and RT
phenomena in a complex data set using a single set of parameter
values. Although Stewart et al. did not collect RTs, their data are
important because of experimental manipulations that allow for a
strong test of SAMBA and for comparison of its fits with those of
the RIM.

The Theoretical Challenge

The paradox of absolute identification is that the task is super-
ficially very simple yet the performance of participants is both
inaccurate and surprisingly complex. Our approach to this chal-

lenge is similar to that taken by Ratcliff’s (1981) theory of per-
ceptual matching: We explicitly model an integrated architecture
for perceptual, memory, and decision processes in sufficient detail
to obtain predictions for the broadest possible range of observed
behavior. However, our approach differs from Ratcliff’s and many
other theories of absolute identification, which assume that re-
peated presentations of any given stimulus result in a distribution
of internal magnitude estimates and that certain parameters of the
distribution, often the variance, must be estimated for each exper-
imental context in which the stimulus appears. Such approaches
are analogous to signal detection theory, providing a successful
description of the data without addressing the deeper question of
how these magnitude estimates arise. As well as being less intel-
lectually satisfying, models that begin with parameterized distri-
butions also fail to provide constrained accounts of some of the
most fundamental benchmark phenomena. For example, there are
powerful effects caused by very simple stimulus factors such as set
size (N), stimulus spacing, and stimulus rank order. In a framework
similar to Ratcliff’s, these effects are modeled by changes in
parameter estimates, but this approach fails to provide an expla-
nation of how the changes arise.

With SAMBA, we adopt a less flexible approach that provides
strict constraints and reduces the number of parameters required.
We directly model the process by which an observer produces a
magnitude estimate when confronted with a stimulus (see also
Kent & Lamberts, 2005). We model this process using an extended
version of Marley and Cook’s (1984) selective attention theory.
This theory explains how an observer can attach a numerical
magnitude estimate to a stimulus and how these magnitude esti-
mates are distributed across repeated trials. This establishes a
mechanism for producing the distributions and for describing how
those distributions change under experimental manipulations with-
out requiring arbitrary parameter changes. The remaining parts of
the SAMBA architecture provide a similarly constrained explana-
tion of the process by which a response is chosen in light of the
magnitude estimate.

An even deeper philosophical question arises when considering
the theoretical completeness of the simple parametric approach to
stimulus representations. The participant’s task in absolute identi-
fication is to attach a response label, such as 1, 2 and so on, to a
stimulus, with the physical stimulus measured in, for example,
decibels, hertz, or meters. A theoretical account is incomplete if it
begins by assuming that numbers are attached to stimuli and that
these are simply transformed into response labels. Lacouture and
Marley’s (1995, 2004) and Stewart et al.’s (2005) models suffer
from this weakness. Put another way, the central task of absolute
identification is to associate a numeral with a stimulus magnitude,
so it is dissatisfying to consider a theory that begins by assuming
that stimulus magnitude estimates are available with no explana-
tion of how they arise.

SAMBA differs from the simple distributional approach in a
second way that greatly reduces the number of parameters that
must be estimated in fits to data. Like signal detection theory,
simple distributional models typically make decisions using a set
of cutpoint or referent parameters. The disadvantage of this ap-
proach is that the number of referent parameters grows linearly
with the number of response alternatives, and usually, no expla-
nation is provided of how participants choose appropriate values.
SAMBA adopts a framework similar to that of Petrov and Ander-
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son’s (2005) ANCHOR model: We assume that participants learn
average magnitude estimates corresponding to each response and
that these magnitudes act as referents. As this learning is assumed
to be accurate, at least when feedback is correct, the referent values
are entirely determined by the experimental design, and hence, in
model fitting, they do not have to be estimated. Consequently,
SAMBA’s flexibility in fitting data is greatly curtailed. Lacouture
and Marley’s (1995) parameter-free mapping model is used to
transform referent estimates to what are, effectively, a set of tuning
curves that provide input to SAMBA’s decision stage. Hence, we
meet the theoretical and practical challenge posed by the poten-
tially large number of responses in absolute identification, as the
number of parameters required to fit SAMBA does not change
with the number of responses.

Model Overview

SAMBA integrates three successful elements from previous
models. It uses the time-dependent (i.e., not the asymptotic) ver-
sion of Marley and Cook’s (1984) selective attention model of
stimulus representation and Brown and Heathcote’s (2005) ballis-
tic accumulator model of response selection.* These model ele-
ments do not constitute a complete account because the selective
attention component produces a single magnitude estimate while
the ballistic accumulator component requires N numerical inputs,
one for each possible response. We link the two components with
Lacouture and Marley’s (1995) mapping process. The vertical
integration of model components is an important feature of
SAMBA. Often, in cognitive psychology, different levels of pro-
cessing are considered separately, and models are developed in-
dependently for each. Greater model constraint and explanatory
power can be achieved by integrating models to span several levels
of explanation, from stimulus representation to response selection
(see Ratcliff, 1981, for a similar approach to perceptual matching).
The three elements we borrow from prior models successfully
explain some aspects of absolute identification behavior, but not
others, making each incomplete. Some of these problems are
naturally fixed by integration within SAMBA, but others are not.
We address these remaining issues by modeling the selective
attention and ballistic accumulator processes at the level of the
duration of the trial; the model can be specified in real time as
more temporally fine-grained data become available (see the Gen-
eral Discussion).

Figure 1A illustrates the three stages of the model. SAMBA’s
first stage is a modified version of Marley and Cook’s (1984)
selective attention theory. The selective attention (SAMBA) stage
maintains a representation for the context of the experiment and
uses this context to produce estimates of sensory magnitude. The
context representation is maintained by activation of a range of
units that are in one-to-one correspondence with stimulus magni-
tudes, such as line lengths or intensity of tones of the same
frequency. Input to the selective attention stage comes from a
relatively accurate psychophysical representation of each stimulus.
We assume that the stimuli are represented topographically at the
psychophysical level and that psychophysical input causes selec-
tion of a corresponding unit. Importantly, neither the psychophys-
ical representation nor the selected unit directly provides a numer-
ical estimate of the stimulus magnitude. In this, we agree with
Krantz’s (1972, p. 175) view that “I do not see how sensations

could be paired directly with numbers at all.” Instead, stimulus
magnitudes are estimated by the summation of activity between
the unit selected by the psychophysical input and the ends of the
active context.

This magnitude estimate is transformed into N response
strengths®>—one for each of the N possible responses—by Lacou-
ture and Marley’s (1995) mapping. The transformation works
using a long-term memory for each stimulus, given by the average
of its magnitude estimates on previous trials. The final stage of
SAMBA is an elaborated version of Brown and Heathcote’s
(2005) ballistic accumulator. This stage takes the N response
strengths produced by the mapping and assigns each one to a
separate decision accumulator. The activations of these accumu-
lators increase at rates determined in part by the response
strengths’ output from the mapping and in part by the dynamics of
the accumulators, including mutual inhibition. A response is made
as soon as any accumulator’s activation exceeds a response thresh-
old. RT is modeled as the time taken for that accumulator to reach
threshold plus a constant amount of time taken for nondecision
processes. We now describe each stage in more detail.

As input to SAMBA, we assume a simple spatial psychophys-
ical stimulus representation corresponding to topological projec-
tions in the sensory areas of the brain, such as retinatopic or
tonotopic maps (e.g., Romani, Williamson, & Kaufman, 1982;
Wiemer & von Seelen, 2002). The physical magnitudes of stimuli
are mapped quite accurately onto this psychophysical dimension,
with only a small amount of variability. Most absolute identifica-
tion experiments involve stimuli that are sufficiently separated so
that psychophysical variability does not cause errors. Hence, vari-
ability in the psychophysical stage is neglected in the fits of
SAMBA that we report, except in two cases where stimuli are
closely spaced.

The selective attention stage produces a magnitude estimate
from the ordinal psychophysical representation. This process, with
the addition of decision cutpoints, has had considerable success in
fitting classic choice data in absolute identification (Marley &
Cook, 1984) and also magnitude estimation data (Marley & Cook,
1986). The selective attention model has been successful because
it provides a stimulus representation that dynamically adapts to
changes in the experimental design, such as stimulus spacing and
choice set size. Although motivated differently, this stage performs
similarly to the successful theory of sensory trace and context
coding (see, e.g., Berliner, 1973; Berliner, Durlach, & Braida,
1977; Braida et al., 1984) and to the attention band proposals of
Weber, Green, and Luce (1977), Luce et al. (1982), and Nosofsky
(1983).

Selective attention gives SAMBA a mechanism by which to
attach context- and time-dependent numerical representations to
stimuli and stimulus differences, without making arbitrary assign-
ments. For example, suppose an experiment uses pure tone stimuli,
all of the same frequency but of different intensities. Over preex-

4 Software to implement the model is available from http://science-
it.newcastle.edu.au/~sdb231/software/samba/

5 We use response strengths instead of mapping outputs or drift rates
simply as a mnemonic convenience. We hope the reader will be reminded
by this terminology that these (unobserved) quantities drive the ballistic
accumulators toward making an overt response.
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Figure 1. The SAMBA model. Panel A illustrates the model at a general level, to be read from bottom to top. Panel
B shows how the magnitude estimate produced by the selective attention stage varies over trials. Summed activities
from the stimulus location to the lower (L) and upper (U) anchors are combined to make a magnitude estimate in the
interval [0, 1], and this varies with changes in the activity of the Poisson accumulators. Panel C shows how the
magnitude estimate is transformed into N response strengths by the mapping process. In the example, a magnitude
estimate of 0.25 (corresponding to Stimulus 2) is transformed into N = 6 response strengths, shown by the heights
of the six lines above x = .25. Panel D shows how the ballistic accumulator stage makes a response decision. The
response strengths from the mapping stage drive ballistic accumulators, with the first one to reach a threshold
determining the choice. Between trials, the activity in the ballistic accumulators decreases by passive leakage.

perimental training and initial trials, the participant might estimate
that the stimuli range is between 50 dB and 70 dB, and so the
context becomes the range between these values. Importantly, the
selective attention stage does not assume that the psychophysical

representations are addressable—that is, there are no numbers
associated with the psychophysical locations. Instead, we explic-
itly model the process by which participants estimate stimulus
magnitudes without having access to numerical tags. A finite set of
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leaky accumulators is put in a one-to-one ordered correspondence
with the psychophysical dimension. Presentation of a test stimulus
results in two effects. First, a corresponding location on the topo-
graphic psychophysical representation becomes active (i.e., is se-
lected). Second, the accumulator that corresponds to the psycho-
physical representation of the stimulus is selected. The selection of
this accumulator allows the participant to identify its ordered
location within the array of units. That is, the observer can identity
which accumulators are below, or above, the one selected by the
presented stimulus.

To aid in understanding how the selective attention process
helps to determine magnitude information from an ordered set of
accumulators, consider an analogy. Imagine a very long row of
lamps on the wall of a room. A contiguous range of the lamps are
lit green but with flickering intensities. The lit lamps represent the
range of stimuli in an experiment, and the intensity of each lamp
corresponds to the current level of activation of each accumulator.
Now, suppose that the only method an observer has of measuring
the activity of the lamps is to gauge the total intensity of portions
of the array but not the absolute position of any single lamp.
Further suppose that, if any particular lamp changes to red, an
observer can select it and use this location to partition the array
into those lamps above and those below. With only these abilities,
the observer is able to estimate (relative) magnitudes using the
total intensity of the green lamps below the selected red lamp and
the total intensity of the green lamps above the selected red lamp.
Each of these sums will be large or small depending upon the
position of the currently lit red lamp, so they carry relative mag-
nitude information. Finally, as with a flashlight shining on a
surface, the average total intensity of the lit lamps is fixed, inde-
pendent of the range of lit lamps.

Suppose, for example, that presentation of a Number 2 stimulus
(a 52-dB tone in a set of range 50-70 dB) corresponds to a lamp
near the lower end of the green range turning red. The separation
between the lower end of the row of green lamps and the red lamp
is small, so the sum of the intensity of the lamps between the two
will also be small. However, the estimate of magnitude is noisy
because the lamps are flickering, and so, the sums of their intensity
will also vary. Other measurements are also possible—for exam-
ple, if two lamps were to change color, the sum of the intensity of
the lamps between them could be estimated in a similar way.

We call the first and last active accumulators on the attention
dimension anchors; they correspond to stimulus magnitudes that
span the range used in the experiment. The anchor positions are
assumed to be under the direct control of the participant. The entire
range of accumulators between the anchors is kept active by
continual attention during an experiment, analogous to the process
that keeps the lamps flickering. Activation is modeled as a Poisson
process of mean rate A events per trial, and so we sometimes refer
to the accumulators as Poisson accumulators. Without loss of
generality, we assume each Poisson event increases the activity of
arandomly selected accumulator by a unit amount. This activation
is combined with a passive decay process: In the absence of
attention, each accumulator’s activity decreases by a factor of o
over the course of a trial.® The combination of Poisson activation
and passive decay results in each accumulator having an activation
value that varies from trial to trial (Marley & Cook, 1984). The
average total activity in all accumulators is set by the balance
between the attention and decay rates, namely, n = NM(1 — o).

This average total activity is the major determinant of the overall
accuracy of responses in SAMBA.

Stimulus magnitudes are estimated by summing activity in
subranges of accumulators, in particular, the total activity from the
upper anchor (U) and from the lower anchor (L) to the current
stimulus. Taking the sums between the current stimulus and each
of the anchors produces two estimates of stimulus magnitude, one
relative to the lower anchor (3;) and one relative to the upper
anchor (). These are combined into a single magnitude estimate
by the ratio X, /(X; + 3)), which is naturally constrained to be
between zero and one. As shown in Figure 1B, this magnitude
estimate varies from trial to trial, even if exactly the same stimulus
is repeated, because the activities in the Poisson accumulators vary
as a result of the attention process. Importantly for absolute iden-
tification, the variability of the magnitude estimate is largest in the
center of the range, causing SAMBA to predict a bow effect in
response accuracy and sensitivity. This projection of psychophys-
ical stimulus representations for all stimulus modalities onto a
common bounded interval is supported by research on magnitude
estimation and cross-modality matching by Krantz (1972), Teght-
soonian (1973), and Teghtsoonian and Teghtsoonian (1978, 1997).

The observer accumulates magnitude estimates >, /(2; + 2,
from each trial and stores an average magnitude estimate for each
stimulus in a long-term memory. We assume that this long-term
memory becomes stable relatively quickly, particularly when ac-
curate feedback is provided. Since we aggregate data over many
trials, we approximate the learning and memory process by the
assumption that a participant has available an accurate memory for
the average magnitude estimate corresponding to each stimulus.
These memories, combined with the end anchors, constitute the set
of referents stored in long-term memory that underpin SAMBA’s
absolute process, similar to the anchor values in Petrov and Ander-
son’s (2005) ANCHOR model or the cutpoints in Stewart et al.’s
(2005) RIM. The learning of referents is an important issue (see,
e.g., Petrov & Anderson, 2005) and is an area where SAMBA
could be extended in future. When discussing a false-feedback
experiment below, we explore a simple beginning to a referent-
learning mechanism in SAMBA.

The magnitude estimate produced by the selective attention
stage must be transformed into N response strengths to provide
inputs for the ballistic accumulator stage. The transformation is
made by Lacouture and Marley’s (1995, 2004) mapping process,
illustrated in Figure 1C and presented in more detail below. The
mapping is error free relative to its referents: For example, if the
estimate of stimulus magnitude is closest to the referent for Stim-
ulus 2, then the mapping will provide a response strength that is
largest for Response 2 (strengths for Responses 1 and 3 will be
next, and so on).

On each trial, the outputs of the mapping stage are analogous to
a tuning curve over the possible responses, with the response
strengths contingent on how well the current input matches the
long-term referent for each stimulus. In contrast to the multiple

¢ The parameters \, o, and m are similar to Marley and Cook’s (1984)
parameters of the same names but differ because we use discrete time
(trials) and they used continuous time. If 7' is the duration of a trial, then
our \ corresponds to their A7, our « corresponds to their e~ *”, and our m
is the reciprocal of theirs.
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parameters of other tuning curve models, the positions, widths, and
shapes of the tuning curves produced by the mapping stage are
determined entirely by the values of the referents held in long-term
memory. The fixed form of Lacouture and Marley’s (1995, 2004)
mapping provides significant constraint, greatly limiting SAM-
BA’s flexibility for fitting choice and RT data. For instance, an
alternative approach, explored by Karpiuk et al. (1997), links the
output of the selective attention stage with the input to the decision
stage via parameterized tuning curves, given by Link’s (1992)
wave theory. This framework has great flexibility to adjust deci-
sion cutpoints, whereas the mapping solution has a limited ability
to adjust such cutpoints. Our position is that, until clearly required
to fit data, the more constrained model is preferable.

To illustrate how the mapping operates and also how it naturally
handles unevenly spaced stimuli, consider an experiment from
Lockhead and Hinson (1986). In one part of this experiment, the
stimuli were tones of intensity 58 dB, 60 dB, and 66 dB. Suppose
that a participant placed the lower anchor 2 dB below the lowest
stimulus (i.e., at L = 56 dB) and 4 dB above the highest (i.e., at
U = 70 dB). With this setup, regardless of any parameter settings,
the selective attention stage would produce stimulus magnitude
estimates for the three stimuli with average values of {1/7, 2/7,
5/7}. Note that these magnitude estimates naturally reflect the
unequal spacing of the stimuli—3 times the spacing between the
upper two stimuli than between the lower two stimuli—and this
property holds regardless of the locations that the observer selects
for the anchor values (L and U), provided the stimulus locations lie
between them.

Continuing this example, the mapping transforms a magnitude
estimate into three response strengths, one for each of the three
possible responses (1, 2, or 3). The computations of the mapping
stage are specified entirely by the long-term average stimulus
magnitude estimates. A magnitude estimate, say, z, is linearly
transformed into a response strength for each and every response
j =1...Naccording to 2¥; = 1)z — ¥ = 1, where Y; is the
average magnitude estimate for the jth stimulus.” For the Lockhead
and Hinson (1986) example, suppose the 60-dB stimulus was
presented. On this particular trial, the selective attention stage
might produce a magnitude estimate of .3, which is quite close to
the long-term average value of 2/7 for this stimulus. The mapping
stage transforms this value into three response strengths: the
strength for Response 1is (2 X 7 — 1) X 0.3 — 7>+ 1=
0.765; for Response 2, itis 2 X % — 1) X 0.3 — (2/7)* + 1 =
0.790; and for Response 3, itis (2 X %7 — 1) X 0.3 — (5/7)* + 1 =
0.618. Notice that the strength is greatest for the correct response
(Response 2).

Figure 1C illustrates the mapping solution for a more standard
experiment, with six evenly spaced stimuli and six lines corre-
sponding to the response strengths for the six possible responses.
In the example, Stimulus 2 is presented so the selective attention
stage will—on average—produce a magnitude estimate of .25,
shown by the vertical arrow in Figure 1C. From this magnitude
estimate, the mapping produces six response strengths, shown by
the heights of the six lines immediately above the arrow. As
required for a correct response, the strength corresponding to
Response 2 is greatest, with Responses 1 and 3 next, Response 4
after that, and so on.

The mapping stage brings many useful properties to SAMBA.
First, it provides a powerful way to simplify the model and greatly

reduce the number of free parameters required to produce RT
predictions. Models of RT distributions for N alternative tasks
generally have some multiple of N* parameters (e.g., see Busem-
eyer & Townsend, 1992, 1993). These parameters specify response
strengths or drift rates for each response, contingent on each
stimulus. Lacouture and Marley’s (1995, 2004) mapping replaces
this entire set of O(N?) parameters with a process for producing
drift rates given a stimulus magnitude estimate as input.

The outputs of the mapping component provide the input to the
final response selection or decision stage of SAMBA, which is
based on Brown and Heathcote’s (2005) ballistic accumulation
model. The ballistic accumulator model brings three important
properties to the modeling absolute of identification data. First, the
use of an accumulator process allows SAMBA to make very
detailed predictions about RT. Second, the process of passive
leakage in ballistic accumulator activities provides a natural ex-
planation of very short-term sequential effects without the need to
posit extra processes. Third, the ballistic accumulator includes
competition—also called lateral inhibition—between accumula-
tors, and this naturally means that responses become slower as the
number of alternatives (set size, V) increases.

The decision stage associates each of the N responses with a
competitive ballistic accumulator (Brown & Heathcote, 2005; see
also Usher & McClelland, 2001). The inputs to the decision
accumulators are the outputs of the mapping stage, with a common
(single) sample of zero-mean Gaussian noise added to every re-
sponse strength, with the standard deviation (o,,) estimated from
the data. The noise is analogous to the drift variance included in
almost all models of choice RT, as first introduced by Ratcliff
(1978; his parameter m). In our applications, the estimated standard
deviation of the noise (o,,) was sufficiently small so that at least
one decision unit always received a positive input. As the same
sample is added to all inputs, o, models stimulus-independent
variability due to global factors such as fluctuations in arousal. The
value of oy, has little influence on accuracy because it does not
alter differences between inputs. Hence, o, has a selective influ-
ence on variability in RT, which is also determined by sequential
effects in the decision stage discussed in detail later.®

Figure 1D illustrates an example decision process. Each of the
N response accumulators begins the decision stage with a starting
activation level determined by previous inputs. The starting levels
are different for each accumulator, and the activation levels in-
crease deterministically at rates dictated by the response strengths
from the mapping stage and competition among accumulators.
Activation x; in accumulator j = 1 ... N changes according to a

linear, first-order system of differential equations: x/(r) = I,

7 Lacouture and Marley (1995) motivated this parameter-free solution by
requiring a solution that (a) makes use of all of the bounded input and
bounded output range in every experiment and (b) has cutpoints that are
midway between the mean activities for adjacent stimuli.

8 A reviewer questioned whether the o, parameter might be replaced by
within-trial variability in the decision stage or perhaps another source of
variability in the magnitude estimates. Other sources of variability affect
error rates, which oy, does not, and would thus increase model flexibility
by providing another mechanism for modeling error responses. Our deci-
sion not to include this extra flexibility is based on parsimony, as the data
we examined did not seem to require it. However, we have no grounds to
rule out other types of variability.
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— B Zx,(1). Here, I, represents the response strength from the jth

unit &f 'the mapping stage plus the Gaussian noise sample with
standard deviation o,,. The parameter 3 > 0 represents lateral
inhibition and causes the increase in the activation to be nonlinear.
The system of coupled differential equations describing accumu-
lation during the decision stage can be solved analytically by
matrix algebra for any response set size N (see Brown & Heath-
cote, 2007).

A response is chosen corresponding to the first accumulator to
reach a threshold (C, the same value for all accumulators), and the
RT is given by the time taken to reach that criterion plus a constant
time for nondecision processes, #,. This system of accumulators
ensures that a finite response threshold will always be reached in
a finite time. This occurs because at least one input is positive and
because we use a simplified version of the ballistic accumulator
model with no passive leakage within a trial (see Brown & Heath-
cote, 2005, for further details). The example activation trajectories
in Figure 1D correspond to the mapping example illustrated in
Figure 1C. The trajectory corresponding to the correct response
(Response 2) increases fastest and reaches the threshold first, so a
correct response would be made in this example with an RT of just
over 1.5 s. If the response threshold were set lower, say at C = 20
instead of C = 25, the RT would be faster, around 0.9 s, but an
error would be made: The model would give Response 3 instead of
the correct response (Response 2). The error occurs because the
ballistic accumulator for Response 3 begins the decision stage with
an advantage over the accumulator for Response 2, and it takes
some time for this advantage to be overcome.

The decision stage of SAMBA is more constrained than Brown
and Heathcote’s (2005) ballistic accumulator model and most
other models of two-choice RT (see Ratcliff & Smith, 2004, for a
recent summary) in its assumptions about the starting points of the
evidence accumulation processes. These models assume that ac-
cumulation for each response unit starts from a random value. In
SAMBA, the accumulator start points are completely determined
by passive decay from their values at the end of the previous trial
(also see Laming, 1968). This mechanism not only specifies pre-
viously unspecified details of the genesis of start point variability
in theories of choice RT but also enables the model to explain
short-term sequential phenomena in absolute identification, includ-
ing assimilation and response repetition effects. For typical param-
eter values, about one quarter of incipient choices generated by the
selective attention and mapping stages of SAMBA are changed by
the ballistic accumulators, due to differences in the starting points
of the evidence accumulation processes left over from the previous
trial.

Brown and Heathcote’s (2005) ballistic accumulator model,
used in SAMBA’s decision stage, has been simplified further by
Brown and Heathcote (in press) by omitting the lateral inhibition
term (i.e., by setting 3 = 0), making a linear ballistic accumulator
(LBA) model. The LBA model has computational and analytic
advantages over the ballistic accumulator model, but nevertheless,
we choose not to use it in SAMBA. The lateral inhibition element
in the ballistic accumulator makes SAMBA predict increased RT
with increased set size (), without the need for any parameter
changes with set size. As discussed by Brown and Heathcote (in
press), if LBA were used in SAMBA, then an extra assumption
would be required to fit the increase in RT with set size. For
example, the LBA would predict increased RT with set size if the

outputs of the bow mapping stage decreased with increased set size
(e.g., by fixing the sum of the response strengths across set size).

An Absolute Account of Sequential Effects on Errors

SAMBA makes strong predictions about sequential effects in
errors and RT because it unambiguously attributes contrast effects
to processes producing a context-dependent stimulus representa-
tion, as well as repetition and assimilation effects to the processes
producing a response. As in other models of choice RT, Brown and
Heathcote (2005) assumed that the start points for the ballistic
accumulators (x,) were independent random samples from a com-
mon uniform distribution. SAMBA replaces this assumption with
a deterministic mechanism based on passive leakage. This passive
leakage is illustrated in Figure 1D, where dotted lines show how
accumulated evidence decays during nondecision and between-
trial times. Computationally, after each decision is completed, the
lateral inhibition and stimulus input processes (; — ;_xp) are
replaced by a passive decay process. Decay returns each’aécumu-
lator’s activation exponentially back toward zero at a constant rate:
xi(1) = —vyx/1). Therefore, after a constant intertrial interval (ITI),
each accumulator begins the next decision process with activation
Dz, where z was the activation level for that accumulator when the
previous response was made and D is given by exp(—.ITI). In our
model fits, we make the approximation that ITI is constant
throughout the experiment, and estimate only the value D. At the
beginning of each decision process, the accumulators correspond-
ing to the previous response and those for nearby responses have
an advantage, as illustrated in Figure 1D. This results in response
assimilation and in RT and accuracy advantages for repeated
stimuli.

Contrast effects arise through reallocation of activity in the
selective attention stage. In particular, we assume that the partic-
ipant has some control over the Poisson process and that this
control is used to preferentially attend to locations selected by
recently presented stimuli. Reallocation is modeled by a probabil-
ity (M) that, each time an accumulator is to be incremented by the
Poisson process, the increment is directed to the accumulator
selected by the most recently presented stimulus. Consequently,
the activity of accumulators selected by recently presented stimuli
is increased, which in turn makes magnitude estimates near those
values larger. These locally larger values cause a contrast effect
that decreases with time as activity in the accumulators decays.

To keep the model as simple as possible, we made the default
assumption that participants redirect activity only toward the ac-
cumulator selected by the most recently presented stimulus. This
assumption causes contrast to have its greatest magnitude at lag =
2, after the (stronger) assimilation effect has passed. This pattern
matches most absolute identification data, but for data from La-
couture (1997), we observed the peak contrast effect later, at lag =
3 or 4. We modeled those data by assuming that the observer
persists in redirecting activity for K trials. As before, each Poisson
event has a probability M of being redirected, but the redirection is
to one of the locations selected by the K most recently viewed
stimuli.

Integrating Absolute and Relative Judgment

Research into absolute identification has become focused on the
distinction between absolute versus relative interpretations, for
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both empirical phenomena and theoretical accounts. We think this
distinction is not as useful nor as clear cut as others believe. Even
the most relative models (such as Stewart et al.’s, 2005, RIM)
employ absolute knowledge about the global nature of the exper-
iment: For example, when the RIM is used to model unequally
spaced stimuli, such as in Lockhead and Hinson (1986), the
(global, absolute) scaled magnitudes of the stimulus differences
must be taken into account in setting the spacing of cutpoints,
ensuring that the global stimulus setup is captured in the model.

Our description of SAMBA has, so far, been entirely in terms of
absolute processes in the sense that the present stimulus magnitude
is evaluated against long-term referents such as the anchors. How-
ever, Rouder et al. (2004) observed an accuracy bonus for repeated
stimuli and for stimuli that are very similar to the preceding
stimulus that cannot be accommodated within SAMBA without
including a partially relative process. Below, we extend Rouder et
al.’s analysis and demonstrate that the accuracy bonus also trans-
lates to an RT bonus. The absolute version of SAMBA we have
outlined so far accommodates this phenomenon in a qualitative
sense; it predicts that responses to repeated stimuli are faster and
more accurate. However, it fails to quantitatively fit these data, as
the predicted accuracy and RT bonuses are smaller than observed.

The RJM also matches the accuracy effects qualitatively but
fails quantitatively by predicting too large an accuracy bonus for
several data sets (see Brown et al., 2007). Stewart (2007) showed
how the RIM could provide a better quantitative fit when modified
to be slightly more absolute, by extending the model’s memory so
that the stimulus two trials back is, on certain theoretically spec-
ified trials, used as the basis for judgments in place of the memory
for the stimulus one trial back. Similarly, we have found that
SAMBA can provide a better quantitative fit when modified to be
slightly more relative—confirming that Rouder et al.’s (2004)
analysis and our extension suggest the need for both absolute and
relative processes in models such as RIM and SAMBA.

Working from the assumption that absolute identification must
include both relative and absolute processes, we have developed
SAMBA to provide the first theoretical account to integrate these
processes in a consistent manner. The key to the integration is the
use of anchors in SAMBA. In the absolute version of SAMBA, the
anchors bracket the smallest and largest stimuli that are important
in the experimental context, and incoming stimuli are judged
against these anchors via the ratio %;/(3; + 3y). This ratio
estimates the magnitude of the current stimulus within the range
defined by the two anchors, [L, U]. On the other hand, in the
relative version of SAMBA, a stimulus is judged within a smaller
interval, with one of the anchors replaced by the Poisson accumu-
lator selected by the previous stimulus. If the previous stimulus is
larger than the current one, the current stimulus is judged relative
to the interval between the lower anchor and the previous stimulus;
if the previous stimulus is smaller, the current stimulus is judged
relative to the interval from the previous stimulus to the upper
anchor. These assumptions are similar to assumptions made by
RJIM’s relative judgment process, although there are also important
differences (e.g., the RIM uses a separate mechanism when suc-
cessive stimuli are judged to be equal).

To illustrate SAMBA'’s relative process, consider an example.
Suppose Stimulus 4 was presented on the previous trial. If Stim-
ulus 7 is presented next, it would be judged in the interval [4', U],
where 4’ indicates the Poisson accumulator associated with the

previous presentation of Stimulus 4. After being restricted to these
subintervals, SAMBA works as before.® That is, the current stim-
ulus magnitude is estimated by summing up the activation between
the current stimulus and each end of the subinterval, that is, 4" and
U, and these two sums are combined into the ratio of the form
3, /(2 + 3). Then, the mapping stage operates in the usual
manner to transform the magnitude estimate into a set of response
strengths, except that the mapping is restricted to the responses
commensurate with the subinterval. In particular, zero strengths
are given to responses that are smaller than the previous response
if the current stimulus is larger than the previous stimulus, and vice
versa. Finally, the ballistic accumulator stage proceeds as normal
to select a response, with an associated RT.

This mechanism is partially relative because it uses a memory of
the previous stimulus, and it is partially absolute because it still
requires one of the anchors from long-term memory and employs
the mapping solution, which is based on long-term memories for
stimulus magnitude estimates. In SAMBA, the relative judgment
process is under strategic control, so that a participant must choose
to use relative judgment. In fitting data from the comprehensive
data set of Lacouture (1997), we obtain the best fit by assuming
partial use of the relative mapping process. We model this with a
parameter P indicating the proportion of trials and/or participants
that use the relative process—there were insufficient data at the
individual subject level to separate these interpretations. Only the
analysis developed by Rouder et al. (2004) provides clear evidence
for the use of the relative process through accuracy and RT
bonuses for repeat and near-repeat stimuli (where a near-repeat
stimulus is one that is close, in the rank order of the stimuli, to the
stimulus presented on the previous trial). We model the data from
Stewart et al.’s (2005) Experiment 1 with the simpler assumption
that all participants used a relative process on all trials. All other
analyses, including our fits to assimilation and contrast phenom-
ena, do not depend on the relative process.

Parameters of the Model

Table 1 shows SAMBA’s 13 parameters, along with the data
characteristics that they affect. A key feature of SAMBA is that the
parameters’ effects are defined by the architecture of the model
and can be interpreted in terms of psychological processes. This
provides strong predictions and allows for tests of selective influ-
ence—ocertain parameters must only be altered by particular ex-
perimental manipulations, and those manipulations must affect
only the parameters in question. In this section, we outline some of
these parameter constraints. The first stage of SAMBA, our simple
psychophysical stimulus representation, has just one parameter
(op). Each of the remaining stages is affected by two or more
parameters, with one extra parameter () to account for the sum of
the times taken to complete processing in nondecision stages and
to make a response after the decision is made.

°We have not directly modeled the process by which the observer
decides whether the current magnitude estimate is smaller or larger than the
previous one, but it would be trivial to do so. Since the numerical sizes of
these magnitude estimates are available to the observer, a simple accumu-
lator mechanism could instantiate our assumption of very fast and accurate
larger versus smaller decisions.
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Table 1
Model Elements

Stage affected Symbol Description Principal effect
Psychophysical Op Psychophysical noise Opverall accuracy for small stimulus
range
Selective attention Accumulator update equation: x, ., = ax, + Poisson(\)
n=MI—-a Ratio of the mean number of pulses in the Poisson process to Overall accuracy and bow in accuracy
the accumulator decay rate
a Rate of decay for accumulators Overall accuracy and contrast time
course
M, K Mean proportion (M) and duration (K) of activity directed to Contrast
prior stimulus location
L, U Position of the lower and upper anchors Size and symmetry of bow effects
Selective attention and P Probability of using relative process Sequential effects on accuracy and RT
mapping
Mapping Output for response j given magnitude estimate z: (2Y — 1)z — )’;2 + 1 + N©O,oy)
(¥ Standard deviation of noise added to outputs of the mapping Variability of RT distributions
Decision Activation ch I—B g x,(1)  predecision
1t = P#j
ctivation change x/(r) 0 postdecision
B Rate of lateral inhibition Size of bow and set size effects in RT
C Decision criterion Overall RT and accuracy
D Rate of decay of decision unit activation during intertrial Assimilation and shape of bow effect
time D = exp(—v.ITI)
Nondecision t, Nondecision component of reaction times Overall RT

Note. ITI = intertrial interval; RT = response time.

The first parameter (op) determines the standard deviation of
noise in the psychophysical stimulus representation. It only has an
appreciable effect on SAMBA’s predictions when stimuli are close
enough in magnitude to cause errors in comparative judgment (i.e.,
judgments about stimuli presented simultaneously or in a rapid
sequence). With few exceptions, the experiments we model use
adjacent stimuli that are sufficiently widely spaced so that we can
fix op at zero. Four of the next six selective attention stage
parameters determine the distribution of Poisson activity in that
stage, namely, the mean number of pulses in the Poisson process
over one trial (N), the rate of decay of each accumulator (o), the
proportion (M) of activity directed toward the unit selected by the
previous stimulus (or stimuli), and the duration in trial units (K) of
that direction. Activity is otherwise assumed to be distributed with
equal probability across locations. The remaining two selective
attention stage parameters, the positions of each end anchor (L and
U), determine the range of the accumulators and allow SAMBA to
accommodate asymmetries in data (i.e., more accurate and slower
responses to larger than smaller stimuli, or vice versa).

One parameter—the probability (P) of using the relative judg-
ment process—affects both the selective attention and mapping
stages because the relative process replaces one of the anchor
values and scales the output of the mapping stage. Another pa-
rameter—the standard deviation of noise (o) added to mapping
outputs—affects only the mapping stage. Finally, there are three
decision stage parameters that have the same value for all decision
units: the evidence accumulation threshold (C), the strength of
competition between the decision units (3), and the decay rate (D)
of decision unit activation.

Benchmark Phenomena

There are a plethora of benchmark phenomena in absolute
identification concerned both with the choices made by partici-
pants and with the distribution of the times (RTs) to make such
choices. The parameters we use for the benchmark phenomena are
based on the parameter values estimated from Lacouture’s com-
prehensive data set (see Table 2). Only one or two parameters
needed to be adjusted from this baseline to fit each benchmark
experiment. The o}, (psychophysical noise) parameter was fixed at
zero for all fits, except those for Braida and Durlach’s (1972) study
and Stewart et al.’s (2005) Experiment 1, since each of those
designs contained some conditions with closely spaced stimuli.
Where sequential effects were not at issue, the local judgment
process was not used (i.e., P = 0), and only one parameter was
estimated for the Poisson process in the selective attention stage:
the ratio m, which largely determines overall accuracy. In those
cases, effectively only eight parameters were required to fit the
data, and where only choices (not RT) were considered, this
number dropped to six (without 7, and o,). Hence, the model fits
are parsimonious and use parameter values that are consistent
across several data sets from different paradigms.

Stewart et al. (2005) provided a comprehensive review of
benchmark phenomena concerning choices, but not RT, and dem-
onstrated that their RIM accommodates the former. SAMBA ac-
commodates all of the benchmark phenomena listed by Stewart et
al., and others related to RT, as illustrated by our fits to compre-
hensive data sets below. Absolute models, from which SAMBA
derives, have often been unable to account for sequential phenom-
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Table 2
Parameter Estimates for Lacouture (1997), Experiment 1 From Stewart, Brown, and Chater (2005), and Lacouture and Marley
(2004)
Selective attention Mapping Decision
Data set op a \° M K L U P O B D C to
Lacouture (1997) — 75 6 .14 4 91°¢ 520° 525 22 .0307¢ .07 878 .265
(m =124
Stewart, Brown, and 1.9 92 0.87 .36 3 10¢ (1) — — 11 — —
Chater (2005) mn=17
Lacouture and — .80 19 .06 3 86° 384¢ — .10 .08¢ .02 535 223
Marley (2004) (m =95)

Note. Dashes indicate parameters that were not estimated.
2 Percentage of stimulus frequency. ° Events per trial. © Pixels.

ena, such as assimilation and contrast, so SAMBA’s accounts of
those phenomena are covered in detail below. The following
section on critical tests addresses data patterns that have previously
been thought to rule out absolute models.

Stimulus Spacing Effects

We fit SAMBA to two data sets showing stimulus spacing
effects, Braida and Durlach (1972) and Lockhead and Hinson
(1986). SAMBA accommodates the effects of unequal spacing as
a natural consequence of its architecture, with the physical values
of the unequal stimulus spacings providing direct, parameter-free
constraints on the psychophysical front end. Braida and Durlach
examined the effect of changing the physical range of the stimuli.
They performed eight absolute identification experiments, each
with 10 pure tones equally spaced in intensity (dB), with a differ-
ent stimulus range and, hence, spacing, in each experiment. The
first experiment used a very small range, with the smallest and
largest tones differing by only 2.3 dB, so adjacent stimuli were
sufficiently closely spaced to bring psychophysical noise into play.
The remaining experiments steadily increased the range up to 54
dB (see Figure 2). Two important effects were observed in these
data. First, the overall accuracy, as measured by the amount of
information transmitted from stimulus to response, increased as the
range increased but quickly reached an asymptote. Second, stim-
ulus sensitivity, as measured by d’ per bel (B™'), showed the
standard bow effect for large stimulus ranges but almost no bow
effect for small ranges.

The upper panel of Figure 2 shows how information transmitted
increases from almost zero at the smallest range to an asymptote of
about 1.9 bits at the largest ranges. The lower panels show how
sensitivity per bel decreases with increasing range while simulta-
neously the depth of the bow effect increases. As illustrated by the
dashed lines, SAMBA provides an accurate account of both phe-
nomena. As for all the benchmark phenomena, the model’s fits
were parsimonious, adjusting only some of a fixed set of reference
parameter values used in fitting Lacouture’s (1997) data (see Table
2). For Braida and Durlach’s (1972) data, we omitted the local
process (i.e., set P = 0), increased the selective attention ratio to
m = 30, and included a psychophysical noise parameter, op = 0.96
dB. The ratio m was increased to match the overall accuracy level
of Braida and Durlach’s participants, and the psychophysical noise
parameter was changed as it was fixed at zero for Lacouture’s

d Percentage of stimulus range.

¢ Per second.  Seconds.

(large-range) data. We are reassured about the interpretability of
model parameters by comparison with the estimates given by
Marley and Cook (1984). Using the same data set but using an
asymptotic approximation of the selective attention model and
decision cutpoints, Marley and Cook estimated o = 0.9 dB and
n = 26.

Importantly, no parameters were adjusted between the various
stimulus ranges to achieve these fits. Instead, SAMBA captures the
effects of increased stimulus range solely through the action of
psychophysical noise (op). When stimulus separations are small,
psychophysical noise causes confusion between adjacent stimuli,
decreasing performance in the small-range conditions. As the
stimulus range increases, the separation between adjacent stimuli
rapidly grows larger than the imprecision introduced by psycho-
physical noise. Once the stimulus separation is greater than ~3 dB,
psychophysical variability (with a standard deviation of 0.96 dB)
becomes unimportant, and performance asymptotes. The reason
that SAMBA predicts almost flat bow effects for small stimulus
ranges is that the very high error rates for small stimulus separa-
tions is almost exclusively due to psychophysical variability,
which is constant across the stimulus range.

A similar limit on absolute identification performance relates to
increases in the number of stimuli (N) rather than stimulus range.
Pollack (1952) and Garner (1953) measured performance in terms
of the amount of transmitted information (in bits) when the number
of stimuli increased. Their most important observation was a
limit—no more than about 2.8 bits of information were transmitted
through responses no matter how large the stimulus set size be-
came. This limit is fundamental to absolute identification and is
incorporated at an appropriately fundamental level in SAMBA.
The selective attention process has a limited capacity (the total
average activity in all accumulators, m). This capacity is indepen-
dent of manipulations such as stimulus set size (N) or stimulus
range (as in Braida & Durlach, 1972), and it determines the
variability of the stimulus magnitude estimates.

Lockhead and Hinson (1986) performed another benchmark
experiment that manipulated stimulus spacing using three tones
that differed in intensity. In the equally spaced condition, adjacent
tones were separated by 2 dB (at 58 dB, 60 dB, and 62 dB). In this
condition, confusion matrices (i.e., the probability of each re-
sponse conditional on each stimulus) were typical of other absolute
identification data sets (see Figure 3, middle panel). Lockhead and
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Figure 2. Data from Braida and Durlach’s (1972) study (symbols) along
with model fit (lines). Panel A shows how information transmitted in-
creases to an asymptote as the stimulus range increases. Panel B shows

how sensitivity per bel (B™') decreases as range increases, with a corre-
sponding increase in the depth of the bow effect.

Hinson created two other conditions by manipulating the spacing
of the end stimuli. Compared with the equally spaced condition, in
the low-spread condition, the lowest stimulus was made much
lower (54 dB), and in the high-spread condition, the highest
stimulus was made much higher (66 dB). The confusion matrices
for these two conditions are shown in the left and right panels of
Figure 3 (cf. Stewart et al., 2005, Figure 7). The important effect
is that the unchanged stimuli (the upper two stimuli in the low-
spread condition and the lower two stimuli in the high-spread
condition) were more often confused in the low-spread and high-
spread conditions than in the equally spaced condition. This poses
a theoretical challenge since the relevant pair of stimuli do not
differ physically between pairs of conditions, yet they are more

often confused when the third stimulus is far away than when it is
near. The dashed lines in Figure 3 show that SAMBA can explain
these data more parsimoniously than previous accounts—with no
parameter changes between conditions. The different predictions
in the three conditions arise solely from differences in the stimulus
spacing, set directly by the experimental design.

Only one parameter was changed from our fits to Lacouture’s
(1997) data (m = 10.5) to fit the overall accuracy of Lockhead and
Hinson’s (1986) participants—note that the local process was also
omitted (P = 0), although this makes little difference. SAMBA’s
differential predictions for the three conditions are a natural con-
sequence of the geometry of the model’s mapping solution. When
the stimuli are equally spaced, the standard map applies, as de-
scribed in Lacouture and Marley’s (1995) original formulation.
However, when the stimuli are unequally spaced, the section of the
mapping around the relatively closely spaced stimuli becomes
compressed as consequence of the mean activities in the selection
attention stage being close, leading to poorer performance.

Sequential Effects on Errors

The two most studied sequential effects in absolute identifica-
tion are assimilation and contrast (see Holland & Lockhead, 1968;
Lacouture, 1997; Mori & Ward, 1995; Ward & Lockhead, 1970).
Assimilation and contrast are sequential effects concerned with the
distribution of incorrect responses among the possible responses
(as opposed to effects concerned with the overall number of
incorrect responses, which we examine later). Figure 4A shows
assimilation effects in detail for one benchmark data set, and
Figures 4B and 4C show both assimilation and contrast for that
data set and another benchmark data set.

Assimilation means that errors tend to be made toward rather
than away from the previous stimulus. In Figure 4, this is shown
using the average error, which is the average difference between
the correct response and the actual response. For example, if the
correct response is 3 and the subject responds 5, the error is 2.
Assimilation is evident at Lag 1 (i.e., X = 1 in B and C)—that is,
average errors are positive (respectively, negative) when the pre-
ceding stimulus is large (respectively, small). Contrast is evident in
the opposite pattern for longer lags (i.e., X = 2-8 in B and
C)—that is, the average errors are positive (respectively, negative)
when the previous stimulus is small (respectively, large). In
SAMBA assimilation is due to prior responses, through the starting
point of the decision accumulators on the next trial, and contrast is
due to prior stimuli, through attention allocated to the units se-
lected by previous stimuli.

Creating a theory that simultaneously produces assimilation at
short lags and contrast at longer lags is challenging: It must predict
that responses are biased toward the previous response but away
from responses prior to that one. SAMBA quantitatively describes
assimilation and contrast quite well, as shown by the solid lines in
Figure 4. Also, in agreement with data, SAMBA could never make
the prediction that assimilation and contrast occur at the opposite
time scales (i.e., lag = 1 for contrast, and lag > 1 for assimilation).
In general, models that set parameters separately for assimilation
and contrast could make such a prediction, which is problematic
(Roberts & Pashler, 2000).

SAMBA cannot make this counterfactual prediction because it
is constrained by the nature of its processing architecture. Assim-
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Figure 3. Data and fits for each of the three conditions in Lockhead and Hinson (1986). Each panel refers to
a different experimental condition; from left to right, the lower stimulus is much lower (low spread), the stimuli
are evenly spaced, and the upper stimulus is much higher (high spread). Each graph shows the probability of each
response (abscissa) conditional on each stimulus (separate lines, see legend). Stim = stimulus.

ilation is naturally predicted by passive decay in the ballistic
accumulators. Between each trial, the activation values of the
accumulators decay smoothly back toward a baseline level. This
means that the accumulator corresponding to the response made on
the previous trial will begin the next trial with an advantage, and
that advantage will also extend to nearby responses, as they typ-
ically have activations close to that of the winning response. The
rate of decay in accumulator values during the ITI (Parameter D)
governs the size of assimilation effects, but the effects must always
be assimilative, never contrastive. The model’s competitive re-
sponse selection stage also restricts these effects to the previous
trial only, never to earlier trials.

Similarly, SAMBA predicts both the direction and the time
course of contrast due to preferential treatment for recent stimuli in
the selective attention process. The Poisson process that activates
accumulators is biased toward incrementing the accumulator se-
lected by previous stimuli, normally the most recent. The magni-
tude of the bias is set by Parameter M, representing the proportion
of activity redirected this way, and the duration of the bias is set by
Parameter K. The contrast mechanism directs extra activity to
accumulators selected by recently presented stimuli, and this ac-

Ward & Lockhead, 1970

tivity causes the expansion of magnitude estimates that include
those locations. For example, suppose the previous stimulus was
number 2, and the current stimulus is larger, 3. The magnitude of
the current stimulus is estimated by summing activity between
Stimulus 3 and the upper and lower anchors (giving the values 3
and X)). The value 3,; includes extra activity in the accumulator
selected by the previous stimulus (Stimulus 2), and so, the esti-
mated magnitude of the current stimulus will be larger than it
otherwise might be. A parallel argument shows that if the current
stimulus is smaller than the previous stimulus, it is judged to be
smaller than it otherwise might be. The resulting effect is contrast:
Stimuli are judged to be further away from recently seen stimuli,
and this is the case whatever the relative locations of the current
and previous stimuli. Such context effects make adaptive sense for
a participant tracking stimulus distributions that vary over time
(Petrov & Anderson, 2005; Ward & Lockhead, 1970).

For the fits in Figures 4A, 4B, and 4C, we began with parameter
values estimated from Lacouture’s (1997) data and removed the
local process (i.e., set P = 0). To fit Ward and Lockhead’s (1970)
data in Figures 4A and 4B, we changed one parameter that affects
assimilation (decay in the decision stage, D = .2), one parameter

Holland & Lockhead, 1968
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Figure 4. Panel A shows assimilation effects in data from Ward and Lockhead (1970): The average error on
trial N was positive when the stimulus on the previous trial (N — 1) was large, and vice versa. Panels B and C

show both assimilation (at X = 1) and contrast (at X > 1

) in Ward and Lockhead’s and Holland and Lockhead’s

(1968) data. When X = 1, assimilation is shown by negative average errors when the previous stimulus was small

(filled symbols) and positive average errors when the

previous stimulus was large (unfilled symbols). The

opposite pattern at longer lags (X > 1) is the contrast effect. Solid lines are predictions from SAMBA.
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that affects the magnitude of contrast effects (M = .75), and two
that govern its time course (e = .9, and K = 2). To fit Holland and
Lockhead’s (1968) data in Figure 4C, we changed just the one
parameter that affects assimilation (D = .17).

Response Time Distributions

Even when RTs are collected in absolute identification experi-
ments, they are rarely subjected to the detailed analysis given to
response choices. Previous research has identified several effects
in mean RTs analogous to effects in choice. These include bow
effects, in which responses to extreme stimuli are faster than those
to middle stimuli (e.g., Lacouture, 1997; Lacouture & Marley,
1995, 2004), and set size effects, where RTs slow down as set sizes
increase (e.g., Kent & Lamberts, 2005; Lacouture & Marley, 1995,
2004). Sequential effects on mean RTs have also been observed
due to response repetition (Petrov & Anderson, 2005) and assim-
ilation (Lacouture, 1997). We illustrate SAMBA’s ability to ac-
commodate these phenomena in mean RT later, in our fits to
Lacouture’s (1997) data.

An even more stringent model test is provided by fitting full RT
distributions. This has rarely been attempted in absolute identifi-
cation, with a few exceptions, notably Kent and Lamberts (2005)
and Lacouture and Marley (2004). We have taken data from both
of those studies and fit them with SAMBA. We present the fits to
Kent and Lamberts’s data and Lacouture and Marley’s data here
and those to Lacouture’s (1997) data in our fits to comprehensive
data sets below. Our analyses of the data from Kent and Lam-
berts’s Experiment 1 and Lacouture and Marley are particularly
important, as we fit full RT distributions for individual subjects,
without averaging. For Lacouture and Marley’s data, we go one
step further and separately analyze data and model predictions for

the RT distributions of both correct and incorrect responses (data
for incorrect responses were not available for Kent & Lamberts,
2005).

In their Experiment 1, Kent and Lamberts (2005) analyzed full
RT distributions for 3 individual subjects, which we summarize
using quantiles. For each of the 30 distributions (3 subjects X 10
stimuli), we calculated the 10%, 30%, 50%, 70%, and 90% quan-
tiles, that is, the RT below which 10%, 30%, 50% (i.e., the
median), 70%, and 90% of the data fall. These quantiles are shown
along the bottom row of Figure 5, using three panels, one for each
participant. The x-axis measures stimulus magnitude (from 1-10),
and the five solid lines on each plot show quantiles calculated from
the data. The upper and middle rows of Figure 5 show response
accuracy and mean RT, respectively, also as functions of stimulus
magnitude. The data show several standard effects. First, there are
clear bow effects, where responses to middle stimuli are slower
and less accurate than those to edge stimuli. For the RT distribu-
tions, these bow effects are greatest in the slow tails (the 90%
quantile). The RT distributions are also positively skewed, with
greater distances between the 70% and 90% quantiles than be-
tween the 10% and 30% quantiles. SAMBA captures all of these
effects very well and provides a good quantitative fit to the data.
The parameters used to fit the model are shown in Table 3. The RT
quantile and accuracy data allowed us to estimate the decision
stage parameters, the overall accuracy parameter (v), and the
anchor parameters (L and U). The published data contained no
information on sequential effects, so we kept those parameters
fixed at values estimated from Lacouture’s (1997) data (see Table 2)
and removed the local process (P = 0).

Kent and Lamberts (2005) were unable to fit their model (the
extended generalized context model for RTs, called ECGM-RT)

91 “\. e 3) 1
Accuracy 7|

ERAN
— 5
o —~
O 1.5 1
% [0} = d
oL >3
S 1
3 RT Quantiles i
1 10% 4 70%
2 30% 5 90%
2.5 3 50% = SAMBA 1
- ~
2 Z ) ]

’, ~

N
- ~'
T 5|
= e N

Quantile RT
(sec.)

12 3 4567 829 12 3 45 6 7 829 12 3 4567 89
Stimulus Magnitude

Figure 5. Top panels show accuracy, middle panels show mean response time (RT), and bottom panels show
RT quantiles for correct responses for each of 3 participants (columns) from Kent and Lamberts (2005,
Experiment 1). Solid lines correspond to data and dashed lines to predictions from SAMBA. The five numbered
lines in the lower panels correspond to the 10%, 30%, 50% (median), 70%, and 90% quantiles of the RT
distributions for the 10 stimulus magnitudes. The reader may note that our mean RT scales are more compressed
than those in Kent and Lamberts’s figures. This compression was required to show the very longest RT quantiles
in the figure—Kent and Lamberts did not plot the tails of the distributions in their bow effect plots. sec. =

seconds.
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Table 3
Parameter Estimates for Kent and Lamberts (2005, Experiment 1)

Mapping Decision
Selective
Subject attention (m) L* U* oy B° D C 1"
1 75.0 80 330 227 .053 .0044 806 .076
2 333 80 372 298 .067 .021 730 .175
3 46.7 80 330 231 .094 .010 772 .051

2 Pixels. P Per second. © Seconds.

directly to RT distribution data because “although it might be
possible in principle to estimate the properties of the residual-time
distribution, the number of simulated trials needed to produce
consistent estimates proved prohibitively large.” (p. 297). Instead
they fit only mean RT and accuracy. Kent and Lamberts then used
representative parameter values from these fits to generate illus-
trative RT distribution predictions. The predictions had qualitative
trends that matched their RT data, although they were not intended
to provide close quantitative fits of the sort we provide in Figure 5.
Kent and Lamberts also did not report any data or model predic-
tions for RT distributions associated with incorrect responses.
Hence, a complete comparison of SAMBA and ECGM-RT will
have to await the development of suitable estimation techniques
for EGGM-RT. However, a comparison of the top two rows of
Figure 5 with the corresponding data in Figure 1 of Kent and
Lamberts shows that SAMBA's fits just to mean RT and accuracy
are comparable to those of the ECGM-RT, even though we did not
directly optimize on those quantities. For comparison against pos-
sible future models for Kent and Lamberts’s data, we note that the
chi-square values for SAMBA s fits, summed across the 10 stimuli

Correct
Responses

separately for each participant, are 291, 235, and 397 for the left,
middle, and right panels of Figure 5, respectively. These are
similar to those obtained by fits of other RT models to data from
binary choice tasks (e.g., Ratcliff, Gomez, & McKoon, 2004;
Ratcliff & Rouder, 1998). These chi-square values were calculated
in the usual manner for RT fits, on the basis of quantiles estimated
from the data, making them inappropriate for comparison with
theoretical chi-square distributions.

We were able to access the complete sequence of raw data for
the single participant in Lacouture and Marley’s (2004) Experi-
ment 2. We analyzed the data from the standard absolute identi-
fication section of that experiment, in which manual responses
were used. We fit both the choice and RT data comprehensively
with SAMBA, providing accurate fits of all benchmark phenom-
ena, including bow effects and sequential effects. However, for
brevity, we present only the analyses of RT distributions. There
were 3,103 correct responses and 574 incorrect responses that were
either 1 or —1 response away from correct. Figure 6 shows the
same five quantile estimates as used for Kent and Lamberts’s
(2005) data, graphed against stimulus magnitude: The left panel
shows model predictions and data for the RTs of correct responses,
the right panel for the RTs for the =1 errors. The parameters used
to generate these fits are shown in Table 2.

SAMBA fits the shape of the RT distributions for both correct
and incorrect responses, as shown by the relative spacing of the
quantiles, and it accommodates changes in the shape and variance
of the distribution with stimulus magnitude. The most serious
misfit is to the slowest quantiles (90%), especially for incorrect
responses to the largest (8, 9) and smallest (1, 2) stimuli; however,
the data were quite noisy for the incorrect responses, especially in
the slow tails of the distributions. The data reveal that the standard
bow effect—longer RTs for middle than for end stimuli—is evi-
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Figure 6. Response time (RT) quantiles for Lacouture and Marley (2004, Experiment 2). The five numbered
lines correspond to the 10%, 30%, 50% (median), 70%, and 90% quantiles of the RT distributions for all 10
stimulus magnitudes. The solid lines, with numbers, show these quantile estimates for data, and the dotted lines
show predictions from SAMBA. The left panel shows data and model predictions for correct responses, the right
panel for errors where responses were either 1 or —1 away from correct (the undershoot errors have been flipped
along the x-axis before averaging with the overshoot errors, to preserve direction). The error bars beside each
plot show average standard errors for each quantile, calculated by bootstrap, as in Ratcliff, Gomez, and McKoon

(2004). sec. = seconds.
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dent in all quantiles, at least for correct responses. That is, both the
fastest and the slowest parts of each RT distribution are slower for
middle than for end stimuli. In binary choice RT modeling (N =
2), researchers have sometimes observed quite small effects in the
10% quantile, on the order of tens of milliseconds (e.g., Ratcliff et
al., 2004), and even these have proven theoretically challenging
when attributed only to changes in the input to the decision
process. The data from Lacouture and Marley (2004) and Kent and
Lamberts (2005) show vastly larger bows in the 10% quantile, over
200 ms in magnitude.

SAMBA is able to account for large effects on the 10% quantile
only because of changes in inputs (response strengths) to the
ballistic accumulator stage. The ballistic accumulator stage is very
tightly constrained—it has only three parameters that are free to
vary when fitting RTs (¢,, C, and 8) without constraint from other
aspects of the data (e.g., D is fixed by assimilation). Even with this
constraint, SAMBA accounts for the large bow in the 10% quan-
tile, and importantly none of these parameters varies between
different stimulus conditions. Furthermore, the bow effect is pre-
dicted not by arbitrarily estimating response strengths for each
stimulus but by the way the response strengths are produced by the
earlier stages of SAMBA. The original ballistic accumulator model
(Brown & Heathcote, 2005) is unable to accommodate such bows
in leading edge RT without making post hoc assumptions about
input strength parameters, assumptions that are superceded by
SAMBA'’s architectural constraints.

Critical Tests of Absolute Versus Relative Models

In this section, we review some empirical results that have been
construed as critical tests—that is, as providing qualitative evi-
dence against absolute theories of absolute identification or in
favor of relative theories. Sequential effects on response accuracy
have been claimed to provide critical evidence supporting relative
accounts of absolute identification and refuting absolute accounts.
We examine several of these effects and illustrate SAMBA’s
predictions. Each of the effects has a common theme, comparing
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responses made to stimuli that were preceded by very dissimilar
stimuli with responses made to stimuli that were preceded by
similar stimuli. The first effect we discuss was identified by Luce
et al. (1982) and the second by Rouder et al. (2004). These findings
suggested related effects, which we later examine further using
data from Lacouture (1997) and Stewart et al.’s (2005) Experiment
1. First, however, we examine the effects of false feedback, which
was claimed by Stewart et al. to provide a critical test between the
class of relative judgment theories and the class of absolute judg-
ment theories.

False Feedback

We first describe the fit of the revised SAMBA, then the nature
of the revision—namely, the addition of a referent-learning mech-
anism. Stewart et al.’s (2005) Experiment 2 involved a standard
absolute identification task with equal-loudness tones of different
frequencies. On just a few trials in each block, Stimulus 3 was
presented but—after making a response—the participant was told
that it was Stimulus 4. This misleading feedback caused the
participants to overestimate the magnitude of the stimulus that
followed, as shown in the left panel of Figure 7 by the large
positive error for trials following misleading feedback. Note that
Stewart et al. reported their data broken down by whether the
response on the previous trial was incorrect or correct. However,
both RIM and SAMBA predict the same effect whether the pre-
vious response is correct or incorrect, and the effect of that variable
in that data was small—so Figure 7 presents the results only for
trials following a correct response.

Stewart et al. (2005) considered this experiment to be a critical
test of absolute versus relative theories. As explained in their Table
8, relative theories (including RJIM) predict an average error of 1
following the misleading feedback in Stewart et al.’s experiment
and zero average error following standard feedback. In contrast,
Stewart et al. concluded that existing absolute (mapping) theories
predict a very different pattern: an error of +1 for correct feedback
following an error response or for misleading feedback following
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Figure 7. The left panel shows the effect of misleading feedback, with data taken from Stewart, Brown, and
Chater’s (2005) Experiment 2. Average error was close to zero when correct feedback was given on the previous
trial—subjects performed the task properly. After misleading feedback, participants overestimated the magnitude
of the current stimulus. Vertical bars show standard errors. The right panel illustrates the feedback mechanism
in SAMBA. The three rows of dots show the positions of the long-term referents for each stimulus, for three

trials. RIM = relative judgment model.
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a correct response, and zero error otherwise. These predictions
clearly do not accord with the data. However, they also do not
accord with the predictions from the SAMBA model, which fit the
data quite well. Figure 7 shows the predictions from the RIM as
cross symbols and the predictions of the SAMBA model as solid
circles. SAMBA'’s predictions were obtained using the same pa-
rameter values we used in fitting the data of Stewart et al.’s
Experiment 1 (see Table 2). RIM’s predictions match the data in
a qualitative sense, with zero average error following correct
feedback and large positive errors following the misleading feed-
back, but they substantially overestimate the magnitude of the
misleading feedback effect. SAMBA’s predictions also match the
data in the qualitative sense. Moreover, their quantitative agree-
ment with the data is much better than that of RIM. Importantly,
the predictions from SAMBA are unaffected by the inclusion or
exclusion of the relative mapping process. These results indicate
that a purely absolute model can account for the effects of mis-
leading feedback at least as well as a relative model.

We incorporated the effects of feedback into SAMBA in a
simple and constrained manner, by partially developing a referent-
learning algorithm of the sort discussed in detail by Petrov and
Anderson (2005). On each trial, the SAMBA model produces an
estimate of the stimulus magnitude—the ratio 3, /(3; + ). The
mapping stage of the model operates using long-term memories for
the mean values of these magnitude estimates for each stimulus,
with a value of zero given to the lower anchor (L) and a value of
one to the upper anchor (U). We assumed that feedback helps the
observer maintain these long-term referents, as illustrated in the
right-hand panel of Figure 7. We provide a simple physical anal-
ogy to a spring system as an intuitive description of the system;
mathematically, the adjustment is made in a simple linear fash-
ion.'?

The top row of dots in Figure 7 shows the long-term stimulus
referents for a hypothetical experiment with N = 6 stimuli. Sup-
pose Stimulus 4 is presented, shown by the larger filled circle in
the top row, and this presentation produces a magnitude estimate
of .62, shown by the small cross. The observer is then provided
with correct feedback, shown by the ring around Stimulus 4.
Feedback allows the referents to be updated for the following trial
(second row) so that the referent for Stimulus 4 is moved to match
its observed magnitude estimate (.62). The long-term referents for
the all the stimuli move as if they are locations on a linear spring,
whose ends are fixed at zero and one. The point on the spring
corresponding to the last magnitude estimate (.62) is deflected so
that it aligns with the expected magnitude estimate corresponding
to the feedback (Stimulus 4). As in a spring system, this deflection
causes compression of locations on one side and expansion on the
other, with the ends remaining fixed. On the second trial (second
row), Stimulus 3 is presented, producing a magnitude estimate of
.5. False feedback now suggests that this was actually Stimulus 4,
so the long-term referents are adjusted to make the referent for
Stimulus 4 match the observed estimate (.5), shown by the arrow.
In this case, this causes significant compression on the left side and
significant expansion on the right side, again with the ends re-
maining fixed.

The example from the right panel of Figure 7 makes clear the
reason for SAMBA’s good fit to the data from the left panel of
Figure 7. First, adjustments to the long-term referents are, on
average, smaller when they follow correct feedback than when

they follow false feedback. This is because, when there are very
few misleading feedback trials, the stimulus magnitude estimate is
typically close to the correct value stored as the long-term referent,
so only small adjustments are required when correct feedback is
given. On average, when false feedback is given, much larger
adjustments are required, causing greater subsequent errors (and
corrections, once correct feedback is given again). A referee won-
dered whether the feedback mechanism makes SAMBA into a
more relative (than absolute) model. It is true that the mechanism
for updating long-term referents implies that information from
recently presented stimuli is used in each judgment, but this does
not make the model relative, once again illustrating the problems
with separating absolute from relative models; all contemporary
models include elements of both. Even with the referent-learning
mechanism, judgments in SAMBA are fundamentally absolute, as
each stimulus is judged against a set of long-term referents and
anchors.

One assumption of the referent-learning mechanism that may
require development concerns the magnitude of updates. We as-
sumed that the long-term referent identified by feedback is moved
all the way to the location of the stimulus magnitude estimate. A
more realistic implementation may be softer, with the long-term
referents moving only some fraction of the way. We did not adopt
this approach here because it would have required estimation of a
learning rate parameter that specifies the relative weights given to
the value of the long-term referent and the magnitude estimate in
the update rule. Such extra flexibility was not required by SAMBA
to obtain a reasonable fit to the data.

Further experimental investigation of false-feedback effects
would also be useful, as SAMBA and RJIM make quite different
detailed predictions. The RIM predicts the same effect of mislead-
ing feedback across the entire range—when false feedback of 4 is
given to Stimulus 3, the RIM predicts an average error of 1 on the
following trial, no matter whether, say, Stimulus 1 or 10, is
presented (see, e.g., Stewart et al.’s, 2005, Table 8). Also, RIM
predicts that misleading feedback has no effect on trials after the
immediately following one. On the other hand, SAMBA predicts
the effect of misleading feedback will decrease with the difference
between the feedback and the magnitude of the next stimulus—
because adjustments to the long-term referents are smaller away
from the feedback than near. SAMBA also predicts small effects of
misleading feedback on trials after the trial that immediately
follows misleading feedback because the long-term referents re-
main affected by feedback until completely corrected by further
trials. However, at the level of analysis permitted by Stewart et al.
(2005)’s Experiment 2, the effect of false feedback is clearly not a
critical test of the class of relative versus absolute judgment
theories, and quantitatively, it favors SAMBA over the RJM.

Sequential Effects

Luce et al. (1982) manipulated the difference between stimuli
presented on successive trials (step size) in four conditions (see

'O1f we let Y, be the long-term referent for stimulus i, then, given a
magnitude estimate of z and feedback indicating that this was stimulus s,
the referents for i = s are adjusted according to Y; — zY;/Y, and, for i > s,
according to ¥; —> 1 — [(1 — 2)(1 — Y)/(1 — Yl

i
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Figure 8. Response accuracy (top row) and sensitivity (bottom) from Luce, Nosofsky, Green, and Smith
(1982), with fits of SAMBA (shown by dashed lines). The top-left columns show conditions constrained to have
small differences between successive stimuli. The third column shows a standard condition (random differ-
ences). The right column has data from a condition where differences between successive stimuli were

constrained to be large.

Figure 8). One condition was a conventional 11-stimulus absolute
identification design where the stimulus sequence was random—
any stimulus could follow any other, with equal probability. This
random step condition resulted in typical absolute identification
data patterns, shown by the accuracy and d' graphs in the third
column of Figure 8. Luce et al. also used two small step conditions,
with constrained differences in the magnitude of successive stim-
uli. In the Small Step 3 condition, successive stimuli were always
very similar: For example, when Stimulus 3 was presented, the
next stimulus could only be Stimulus 2, 3, or 4. In the Small Step
5 condition, successive stimuli were moderately similar: For ex-
ample, if Stimulus 3 was presented, the next stimulus was con-
strained to be one of Stimulus 1, 2, 3, 4, or 5. Data from the two
small step conditions are shown in the left two columns of Fig-
ure 8. Finally, Luce et al. used a large step condition in which
stimuli were always followed by very dissimilar stimuli. For
example, when Stimulus 3 was presented, the next stimulus could
only be one of Stimulus 7, 8, or 9. These data are shown on the
right of Figure 8.

The manipulation of step size had large effects on response
accuracy, shown in the top row of Figure 8. The random step
(standard) experiment resulted in the poorest performance, while
the Small Step 3 condition resulted in the best performance. The
Small Step 5 condition gave better performance than did the large
step condition. Some of these effects could be a result of manip-
ulating the number of possible responses, which may have affected
accuracy only via response biases. To check this, Luce et al. (1982)
also examined their data using a sensitivity measure (d', bottom
row of Figure 8) designed to take into account response bias
effects. The d' analysis showed that the small step conditions
produce greater sensitivity than the large step and random step
conditions but also showed that sensitivity in the large step and
random step conditions was quite similar, indicating that the ac-
curacy difference between these conditions was mostly due to
response bias.

These data may initially be imagined to refute absolute theories
because they appear to implicate the previous stimulus in the
decision process. Nevertheless, SAMBA accurately captures the

patterns of Luce et al.’s (1982) data and does so without inclusion
of the relative component. SAMBA correctly predicts the ordering
of the conditions in both response accuracy and sensitivity (d") and
also provides a good quantitative description of the data. To fit the
data from Luce et al., we added two structural assumptions that
reflect the nature of the experiment, and we varied three parame-
ters. Importantly, however, we did not vary any parameters across
the four experimental conditions, so different predictions for the
different conditions represent purely structural effects. We began
with parameters estimated from Lacouture’s (1997) data, removed
the local process (P = 0), and changed the two anchor locations
(L = 35.5dB, and U = 90.5 dB) and the passive decay parameter
(D = .01) to capture the asymmetry and shape of the observed bow
effects. We also increased the rate of decay for accumulators (a0 =
.56) in the selective attention stage to match the sequential effects
and overall accuracy (n = 12.8) for Luce et al.’s data.

The two passive decay parameters (o and D) were estimated to
have much smaller values in Luce et al.’s (1982) data than in our
fits to other comprehensive data sets, presented later. This differ-
ence raises an interesting speculation and illustrates the testable
nature of SAMBA’s architectural assumptions. We have specified
the decay parameters in units of trials, rather than real time—each
parameter describes how much activation remains after passive
decay for the period of one trial. When adjusting parameters from
the fits to Lacouture’s (1997) data to fit Luce et al.’s data, each
decay parameter was reduced by approximately squaring it: from
a = .75 for Lacouture and o = .75% = .56 for Luce et al.’s data,
and D = .07 for Lacouture and D = .07% = .005 for Luce et al.’s
data. This large change can be parsimoniously interpreted as if the
rate of passive decay is constant in real time, if the trial-to-trial
interval were twice as long in Luce et al.’s study as in Lacouture’s.
This hypothesis receives some support from the methodological
details of each study: the duration of Lacouture’s trials was 1.1 s
plus RT; the duration of Luce et al.’s trials was 1.5-2 s plus the
slowest of the three subjects’ RTs.

Two structural assumptions were made to accommodate the
stimulus sequences in Luce et al.’s (1982) experiment. First, we
assumed that participants limited their response set; ballistic ac-
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cumulators corresponding to any responses other than the allowed
responses received no input. For example, suppose Stimulus 4 was
presented on the previous trial. In the Small Step 3 condition, the
only allowed responses are 3, 4, and 5, so all other response
accumulators were given zero input. The second structural modi-
fication instantiated a change in the frame of reference for absolute
judgments via a change in the distribution of activation in the
Poisson process. In the Small Step 3 and Small Step 5 conditions,
we assumed that attention was only directed at that range of the
accumulators corresponding to allowed responses on the next trial.
That is, we assumed that participants were able to focus their
attention on the appropriate subrange of stimuli on the next trial.

The second structural assumption parallels suggestions made by
Weber et al. (1977), Luce et al. (1982), and Nosofsky (1983) that
a roving attention band is moved to focus on appropriate ranges
but that this movement is sluggish. The sluggishness of the atten-
tion band is manifested in participants’ inability to refocus their
attention on units corresponding to possible stimuli, particularly in
the large step condition. This can be interpreted in SAMBA as due
to the relatively slow decay of activity in the selective attention
stage, which has a half-life of one trial (around 5 s) in these fits.
Our explanation of these data also fits with data from Nosofsky’s
Experiment 1. Nosofsky ran a similar experiment to Luce et al. but
included a discrimination condition in which all 11 stimuli were
presented in random order, as in the random condition of Luce et
al., but the participants’ task was simplified. They were only
required to judge whether the current stimulus was the same as,
smaller than, or larger than the prior stimulus. Nosofsky observed
similar performance in both the discrimination condition and the
standard (random) condition for the subset of trials that met the
Small Step 3 constraints, with that performance poorer than in the
actual Small Step 3 condition. These results support the idea that
improved performance in the small step conditions is due to more
than just the constrained response set in those condition.
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A second sequential effect that appears to support relative
accounts over absolute accounts was reported by Rouder et al.
(2004; see also Brown et al., 2007; Stewart, 2007). Rouder et al.
graphed the probability of a correct response conditional on the
signed rank difference between the current and previous stimulus.
The filled circles in the left panel of Figure 9 show the results of
Rouder et al.’s analysis applied to data from Lacouture (1997). The
data show high accuracy for repeated stimuli at the center of the
plot, corresponding to zero difference between successive stimuli.
The accuracy bonus falls away as the difference between succes-
sive stimuli increases, then rises again at the edges of the plot. The
rise at the edge of the plot corresponds to improved accuracy for
an extremely small stimulus that was preceded by an extremely
large stimulus, or vice versa.

The dashed line in the left panel of Figure 9 shows that SAMBA
provides a reasonable fit to the data. The model captures the
accuracy advantage for repeat and near-repeat stimuli (graph cen-
ter) as well as the increased accuracy for very large stimulus
changes (graph ends). The extreme ends of the figure are influ-
enced only by responses for the very smallest and very largest
stimuli, which are accurate in SAMBA because they are near the
ends of the selective attention range. Increased accuracy for re-
peated stimuli (center of the graph) is caused by two mechanisms
in SAMBA. First, the assimilation mechanism causes repeated
responses to have a slight advantage, as the ballistic accumulator
associated with the previous response begins the next trial with a
higher activation. Second, when fitting Lacouture’s (1997) data,
we made partial use of the relative mapping process, which oper-
ated on P = 62.5% of decisions. The relative mapping process
operates by judging the presented stimulus relative to the magni-
tude estimate of the previous stimulus and the relevant one of the
two long-term anchors. The result is increased accuracy for repeat
and near-repeat stimuli, as they become effectively judged against
a very nearby anchor associated with the prior stimulus. Our model
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Figure 9. The filled symbols show response accuracy (left panel) and mean response time (RT; right panel) for
data from Lacouture (1997) as a function of the difference between stimuli. The graph for probability correct has
a local peak at and near the center, signifying an advantage when successive stimuli are similar. The extremes
of each graph also show advantages. The graph for mean RT has a parallel dip. Error bars show normal standard
errors based on the standard deviation of each point over participants, and dashed lines show predictions from

SAMBA. sec. = seconds.
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fits to Lacouture’s data set do not distinguish whether individual
participants used the relative process for 62.5% of their decisions,
or 30 out of 48 of participants always used the relative process and
18 out of 48 never used it, or some combination of the two.
Individual data sets were too small for us to carry out individual
fits that would reliably differentiate these possibilities.

The right panel of Figure 9 shows that SAMBA captures a
similar, but inverted, effect in mean RT. SAMBA’s predictions
(dashed lines) capture the M-shaped quantitative trend and match
the direction of the asymmetry in the data (faster responses on the
right than on the left). However, this fit fails to predict sufficiently
fast RTs near the extreme ends of the graph. The failure is mostly
due to unusually fast responses at the ends of the range, especially
to the largest stimulus in the set (Stimulus 10). These data points
are discussed in detail later.

Figure 9 shows that repeated stimuli enjoy large advantages and
that near repeats (such as *1 rank-order differences) enjoy smaller
advantages. A related question concerns the duration of the ad-
vantage for repeated stimuli. Figure 10 shows mean accuracy and
RT as functions of how many trials have elapsed since the current
stimulus was last presented. A stimulus repeat corresponds to no
intervening stimuli (i.e., x = 0). As before, repeated stimuli gen-
erate more accurate and faster responses. Figure 10 shows that
these advantages do not extend further than immediate repeats.
With just one intervening stimulus (e.g., the stimulus sequence . . .
3,4,3,....), response accuracy and latency are at baseline levels.
The dashed lines in Figure 10 show that SAMBA provides a
quantitatively accurate account of both the advantage for repeated
stimuli (Lag 0) and the lack of advantage for other lags. The locus
of this account in the model is as described for Figure 9—a
combination of passive decay in the ballistic accumulator stage
and partial use of the relative mapping process. Note that SAMBA
overestimates total RT in the left panel of Figure 10—once again,
this was caused by unusually fast responses in the data to just one
stimulus (Stimulus 10), discussed later.

An effect similar to those described by Luce et al. (1982) and
Rouder et al. (2004) was also observed by Stewart et al. (2005).
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Figure 11. Accuracy graphed separately for stimuli (S) that were pre-
ceded by near stimuli (either repeats or =1 rank-order difference) versus
stimuli that were preceded by far stimuli (more than one rank different).
The solid lines with filled circles are data from Stewart, Brown, and
Chater’s (2005) Experiment 1. The dashed lines are predictions from
SAMBA.

Stewart et al.”s Experiment 1 was a standard absolute identification
task using approximately equal-loudness tones of different fre-
quencies, while also manipulating set size and stimulus spacing
(we analyze these data in detail below). Performance was much
better for stimuli that were close to the stimulus presented on the
previous trial. Figure 11 reproduces Stewart et al.’s Figure 26, and
graphs accuracy against stimulus magnitude. The graph has sepa-
rate lines for those stimuli that were preceded by a close stimulus
(either an identical stimulus or *1 rank-order difference) and by a
far stimulus (all others). This analysis is similar to Luce et al.’s
Small Step 3 condition and also is equivalent to taking the central
three points in Rouder et al.’s analyses or in our Figure 9.
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Figure 10. The symbols show response accuracy (left panel) and mean response time (RT; right panel) for data
from Lacouture (1997). The x-axis shows the number of trials that have intervened since the current stimulus was
last presented. Error bars show normal standard errors based on the standard deviation of each point over
participants. The dashed lines show predictions from SAMBA. sec. = seconds.



416 BROWN, MARLEY, DONKIN, AND HEATHCOTE

In contrast to the results of Rouder et al. (2004), Luce et al.
(1982), and Lacouture (1997), Stewart et al. (2005) observed a
very large performance bonus for stimuli that were close to the
preceding stimulus—accuracy nearly doubled, from 39% to 72%,
and response sensitivity (d’, not shown) more than tripled, from
0.78 to 2.7. By contrast, Luce et al. found a d’' advantage of about
1.1 units, Lacouture found a d’ advantage of only 0.25 units, and
Rouder et al. observed an increase in accuracy of only about 12%
after their participants were well practiced. Furthermore, in an
analysis almost identical to Stewart et al.’s, Purks, Callahan,
Braida, and Durlach (1980) found no significant difference in d'.
The predictions from SAMBA are shown in Figure 11 by dotted
lines. SAMBA provides a reasonable account of the advantage for
repeat and near-repeat stimuli but cannot quite predict the very
large bonus observed in the data: SAMBA predicts that response to
repeated and near-repeated stimuli are about 1.5 times as accurate
as other stimuli, whereas the data show an effect of nearly double
accuracy. It seems that SAMBA is sufficiently constrained that it
cannot quite predict the extraordinarily large bonus for repeated
stimuli observed in Stewart et al.’s Experiment 1. In particular,
SAMBA does not include a process specific to the identification of
repeated stimuli, which RIM does.

Our preceding analyses suggest that the effects of stimulus
repetitions require further investigation, both theoretically and
empirically. On the empirical side, previous research has observed
a very wide range of effect sizes, from no significant difference
(e.g., Purks et al., 1980) to extremely large effects on response
accuracy and d’ (Stewart et al., 2005). Numerous data sets seem to
show small but reliable effects, for example, Kent and Lamberts
(2005), Luce et al. (1982), Rouder et al. (2004), Petrov and
Anderson (2005), and our analyses of Lacouture’s (1997) data in
Figures 9 and 10. Two data sets show large effects: Neath and
Brown (2006) and Stewart et al. (2005). The causes of such wide
variability in effect size observations are unclear but may be due to
the stimuli chosen in each experiment. The experiments that dem-
onstrated very large effects of stimulus repetition were the only
ones to use equal-loudness tones of differing frequency. The
identification and discrimination of tone frequency may be rather
different than for other stimuli because of the existence of critical
bands (Green & Swets, 1966, Table 10.1, p. 280). These critical
bands may allow participants to perform very accurately on stim-
ulus repetitions, effectively using a more powerful than usual
sensory memory. Green and Swets (1966) further indicated that the
width of the critical bands for frequencies around those used by
Stewart et al. are in the same range as some of the frequency
separations in Stewart et al.’s experiment.

Our review of the critical tests of absolute versus relative
theories of absolute identification has shown that almost all of the
data can be accommodated by a purely absolute version of
SAMBA. The only phenomenon that implicates a relative judg-
ment mechanism relates to improved accuracy for repeat and
near-repeat stimuli observed in analyses of Lacouture’s (1997)
data and Stewart et al.’s (2005) Experiment 1. These analyses
suggest that the detection of repeated stimuli requires further
study, both empirical and theoretical. On the empirical side, it
appears that the detection of repeated stimuli is particularly priv-
ileged when stimuli are defined by frequency, as opposed to
loudness or line length, for example. As for theory, SAMBA’s
account of stimulus repetition is clearly incomplete and deserves

further development. Preliminary work suggests that expanding
SAMBA to include a more detailed account of learning, by con-
tinual adjustment of the long-term referents held in memory, helps
to accommodate the effects of stimulus repetition without assum-
ing that judgments are relative. We return to this point in the
General Discussion.

Comprehensive Data Sets

In this section, we fit two data sets—from Lacouture (1997) and
Stewart et al. (2005)—in great detail. Together, these two data sets
exhibit almost all of the benchmark findings in absolute identifi-
cation. Hence, our analyses of these data sets test whether SAMBA
is able to simultaneously accommodate the various patterns in
absolute identification data with fixed parameter values. We use
two data sets because they provide complimentary coverage of the
domain. Lacouture’s data (Session 1 from his Experiments 2-5)
were collected using N = 10 lines as stimuli and include accurate
measurements of RT for each decision. Stewart et al.’s data, taken
from their Experiment 1, were collected using equally loud tones
of differing frequencies as stimuli. This experiment did not include
measurement of RTs, but did have two important stimulus manip-
ulations: The number of tones in the stimulus set was varied (N =
6, 8, or 10), and the spacing of the tones was either wide (each tone
was 12% higher in frequency than the one below) or narrow (6%
spacing).

In both Lacouture’s (1997) and Stewart et al.’s (2005) experi-
ments, there were many participants, each of whom contributed
around 800 data points. Our modeling of each data set stressed
parsimony, with each fit using a fixed set of parameters (different
for the two data sets) to generate all model predictions for data
averaged across participants. This approach provides stringent
model tests. For example, in Stewart et al.’s data, set size and
stimulus spacing effects must be generated by the model’s archi-
tecture, rather than by different parameter settings. Our fits to these
data sets include the effects of stimulus magnitude, set size, and
stimulus spacing on response measures including choice probabil-
ities, sensitivity (d'), and full RT distributions. We also examine
sequential effects on both choices and RT. This is the first time that
an absolute identification model has had the explanatory range to
be tested so comprehensively.

Parameter estimates for the two data sets are shown in Table 2.
For Stewart et al.’s (2005) experiment, no parameters were
changed to model the different set size conditions or the different
stimulus spacings. Instead, the predictions of SAMBA change with
set size and stimulus spacing simply because the stimulus repre-
sentations reflect the physical elements of the experimental design.
Since Stewart et al.’s data did not contain RT measurements, the
parameters of the ballistic accumulator stage of SAMBA were not
estimated (except for the assimilation parameter, D, which can be
estimated from choice data). As a result, there were seven model
parameters for Stewart et al.’s data and 11 for Lacouture’s (1997)
data. We do not claim that these parameter estimates are optimal.
No formal optimization was performed, and only a relatively
coarse grid of parameter estimates was tried. Better fitting solu-
tions likely exist, but the values displayed in Table 2 provide a
sufficiently good account.
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Data From Lacouture (1997)

Several phenomena observed in Lacouture’s (1997) data have
already been discussed in the earlier section on critical tests
because they featured in our attempts to distinguish absolute from
relative models of absolute identification. These phenomena in-
cluded sequential effects on response accuracy, decision sensitiv-
ity, and mean RT, as well as the effect of response repetition on
accuracy and mean RT. Five more phenomena are discussed in this
section, including the effects of stimulus magnitude on response
accuracy, mean RT and RT distributions, and assimilation and
contrast. For all graphs, we display both data (using symbols) and
model fits (using dashed lines).

Figure 12 shows response accuracy as a function of stimulus
magnitude. This is the standard bow effect plot, and SAMBA
accounts for the bow shape and the asymmetry evident in the data,
except for the largest stimulus. SAMBA posits that asymmetry is
due to unequal placing of the stimulus anchors, with the lower
anchor (L) placed much closer to the smallest stimulus than the
upper anchor (U) is to the largest stimulus. When fitting Lacou-
ture’s (1997) data, we estimated the lower anchor for the selective
attention process at 91 pixels—just one pixel smaller than the
smallest stimulus—and the upper anchor at 520 pixels—100 pixels
larger than the largest stimulus. The asymmetry in the anchor
placements (in both pixel and log units) accounts for the strong
asymmetry in the data: Responses to smaller lines were faster and
more accurate than responses to larger lines. SAMBA is the first
absolute identification model that accounts for asymmetry in
choice and RT, which are often observed in data but have been
almost uniformly ignored. However, SAMBA’s account is still
quite constrained and cannot accommodate one unusual aspect of
the asymmetry in Lacouture’s data—namely, responses to Line 10
are both very accurate and extremely fast relative to other re-
sponses.

Figure 12 shows that SAMBA provides a good account of differ-
ences in mean RT for the different stimulus magnitudes in Lacou-
ture’s (1997) data. Figure 13 extends this analysis in two ways—
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using full RT distributions, rather than just means, and showing both
correct and incorrect responses. Figure 13 uses a similar format to
Figure 5 (for Kent & Lamberts’s, 2005, data). The left panel shows
correct responses (7,324 data points), and the right panel shows data
for errors of 1 response (2,072 data points) and —1 response (3,407
data points). Data for 1 and —1 errors were too noisy to present
separately, so we have averaged them together, after flipping response
magnitudes 1-10 for the —1 errors.

SAMBA accurately predicts RT distributions for the correct
responses apart from overestimating RT for the largest stimulus (as
discussed regarding mean RT). The model captures the shape of
these RT distributions, as illustrated by the relative spacing of the
quantiles, and the variance of the distributions, as illustrated by the
absolute spacing of the quantiles. SAMBA also captures the
changes in shape and variability across the range of stimulus
magnitudes. For the incorrect responses, SAMBA provides a qual-
itatively reasonable account but shows systematic quantitative
errors. For example, SAMBA accurately matches the entire RT
distributions for errors on the smallest and largest stimuli and for
all stimuli for the middle quantiles. However, it predicts too large
a spread in the tails (i.e., 10% and 90 % quantiles) of incorrect RT
distributions for the middle range of stimuli.

Figure 14 shows assimilation and contrast effects in Lacouture’s
(1997) data, along with model fits. For this figure, we use the same
layout as Figure 4 (see also Ward & Lockhead, 1970; Stewart et
al., 2005) and show SAMBA’s predictions using solid lines, rather
than the usual dashes. The plot shows response biases, measured as
average errors. For example, if Stimulus 5 is presented, the error
will be zero if the participant responds correctly with Response 5
but will be 2 if the participant gives Response 7 and —1 if the
participant gives Response 4. The graph shows average errors on
Trial N + X, for X = 1, 2, ..., 8, conditional on the magnitude of
the stimulus presented on Trial N. Filled symbols show average
error when the preceding stimulus was small; open symbols show
the error when the preceding stimulus was large.
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Figure 12. Accuracy and mean response time (RT) as functions of the ordinal stimulus magnitude (x-axis) for
data from Lacouture (1997) and SAMBA model fits. The vertical lines on each data symbol show normal
standard errors based on the standard deviation of each point over participants. sec. = seconds.
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Figure 13. Response time (RT) distributions from Lacouture (1997) for correct responses (left panel) and
for errors of 1 or —1 response category (right panel). The lines numbered 1-5 in each panel show 10%,
30%, 50%, 70%, and 90% quantiles estimated from the data for each of the 10 stimulus magnitudes (x-axis).
Dashed lines show predicted quantiles from SAMBA. Bars to the left of each plot show average standard
errors for each quantile, calculated by bootstrap from the raw data (see, e.g., Ratcliff, Gomez, & McKoon,
2004). Note that standard errors are larger for the longer quantiles and for the incorrect response data. sec.

= seconds.

The characteristic pattern of assimilation at lag = 1 and
contrast at lag > 1 was observed in these data. That is, when a
large stimulus was presented just one trial previously, errors
were positive, and vice versa for small stimuli. When a large
stimulus was presented several trials previously (X = 2-8),
average error was negative, and vice versa for small stimuli.
SAMBA successfully fits the qualitative pattern of assimilation
at short lags and contrast at longer lags. In Lacouture’s (1997)
data, contrast is strongest at lag = 3, while, in many other data

Stimulus Value (Trial N)

Average Response Error (at Trial N+X)
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Figure 14. Average error as a function of preceding stimulus (different
symbols—see legend) and number of trials since that stimulus (x-axis),
from Lacouture (1997). Assimilation occurs to stimuli presented one trial
previously: Errors are positive at x = 1 for large previous stimuli (filled
symbols) and negative for small previous stimuli (open symbols). At longer
lags (x = 2-5), contrast, that is, the opposite pattern, is observed.

sets (including Ward & Lockhead, 1970, and Holland & Lock-
head, 1968), contrast is strongest at lag = 2 and decays mono-
tonically thereafter. To fit the peak at lag = 3 observed in
Lacouture’s data, we chose K = 4, so the redirection of atten-
tion in the selective attention stage lasts for four trials.

Data From Stewart et al.’s (2005) Experiment 1

Stewart et al.’s (2005) Experiment 1 provides a valuable
resource as it allows a direct comparison between the goodness-
of-fit to choices of two competing models. Stewart et al. pro-
vided graphs of many observed data patterns and simulta-
neously provided predictions from their RIM. By fitting
SAMBA to the same data patterns, we can compare the two
models, although we are unable to compare them on aspects of
absolute identification that the RJM does not cover (such as
RT). Comparing goodness of fit is complicated by the varied
nature of the phenomena we examine, including response prob-
abilities, average biases, and sensitivity measures.

In the absence of an agreed statistical model, we can do no
better than compare how closely the predicted values from each
model (RIM and SAMBA) match the observed values. To do
this, we use root-mean-square error (RMSE). The magnitude of
RMSE is, of course, without statistical meaning. Nevertheless,
the relative size of RMSE for the two models is informative.
The most intractable problem with this approach is model
complexity—it is possible for a false model to more accurately
fit observed data than a true model if the false model is the more
complex of the two. Stewart et al. used eight free parameters to
fit the RJM to the data from their Experiment 1, whereas the fits
of SAMBA have only seven, suggesting that RJIM is more
complex. Although the number of parameters does not give a
complete measure of model complexity, this difference indi-
cates that complexity is unlikely to explain cases where
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Figure 15. The probability of using each response, for narrow and wide conditions and set size N = 6, 8, and
10 (top to bottom, respectively). Central responses were used more frequently than extreme responses. The
dotted lines show the predictions of SAMBA; lines with filled circles are data from Stewart, Brown, and Chater

(2005).

SAMBA provides an equal or better fit than RIM.'" To fore-
shadow our results, we found that both SAMBA and the RIM
provide quite good fits to the data, which do not include RTs.

The stimuli for Stewart et al.’s (2005) Experiment 1 were
equal-loudness tones of different frequencies. In the narrow con-
dition, the tones were separated by 6% (e.g., the lowest tone was
768.7 Hz, the next tone was 6% higher at 814.8 Hz, and so on),
while, in the wide condition, tones were separated by 12%. Set size
was manipulated independently of stimulus spacing, by using
either all N = 10 tones, or just the central N = 8 or N = 6. Both
set size and stimulus spacing were manipulated between subjects.
The data do not include RTs, so several of SAMBA’s parameters
can be omitted. Below, we compare SAMBA'’s predictions with
predictions from Stewart et al.’s RJM. As presented in Stewart et
al., the RIM does not accommodate asymmetry in the data (i.e.,
more accurate responses to very small than very large stimuli, or
vice versa), although SAMBA handles such data naturally, as in
our fits to Lacouture’s (1997) experiment. However, to keep the
flexibility of SAMBA similar to that of the RJM, we constrained
our fits to be symmetric (i.e., we used L = U).

Stewart et al. (2005) also did not model the effects of the wide
and narrow stimulus conditions separately, even though the RIM
has a perceptual noise parameter that might be able to account for
this manipulation. Certainly, SAMBA'’s perceptual noise process
(op) can account for differences between the narrow and wide
conditions, and so, we estimated it in our fits to this data. We could
have ignored the differences in the data from the wide and narrow
spacing conditions and therefore dropped the perceptual noise
parameter from our fits. This would have had the advantage of
allowing SAMBA and RJM’s predictions to be compared more
easily but the disadvantage of forcing a greater disparity in model
complexity: Without the stimulus noise parameter, SAMBA would
use just six parameters compared with RIM’s eight.

We assumed that frequency is represented on a simple logarith-
mic scale and that the magnitude of psychophysical noise was
op = 1.9% of stimulus magnitude. The psychophysical noise was
more influential in the narrow than in the wide condition because

the stimuli were only 6% apart in the narrow condition, so the
1.9% standard deviation more often resulted in confusion between
adjacent stimuli. For parsimony, we also treated the narrow and
wide conditions equally: The lower anchor was always 10% of the
total stimulus range lower than the smallest stimulus, and the upper
anchor was always 10% of the stimulus range above the largest
stimulus. To provide even greater model constraint, we assumed
that this anchor placement was constant across set sizes (N = 6, 8,
and 10) as well as the stimulus spacing conditions. For example, in
physical terms for the narrow stimulus spacing condition with set
size N = 10, the lower anchor was set at L = 773 Hz and the upper
anchor at U = 1,369 Hz. Finally, we also assumed that participants
in Stewart et al.’s (2005) experiment always used the locally
relative judgment mechanism in SAMBA. This assumption fol-
lows from the extraordinarily large accuracy bonus previously
observed for repeat and near-repeat stimuli in these data.

In what follows, we illustrate the effects of set size and stimulus
spacing on response frequency, accuracy, sensitivity (d'), and average
bias (contrast and assimilation). Note that we have already discussed
the effects of stimulus repetition and near repetition on accuracy in the
critical tests section. All of the following different data fits, as well as
the fits to repetition effects already reported, were modeled in
SAMBA using a single set of parameters (shown in Table 2).

The first new analysis examines response frequency. Figure 15
shows how often each response was given, separately for the wide
and narrow conditions and for the set sizes N = 6, 8, and 10. There
is little difference in the shape of the response probability curves

""'We calculated RMSE values by reading data from the published
graphs in Stewart et al. (2005) and separately comparing the predictions of
the RJM to the data from the wide and narrow stimulus spacing conditions.
We took the same approach for calculating RMSE values from SAMBA’s
predictions. Slight differences in the RMSE values might arise if a different
approach were used (e.g., if one compared with the average of the wide and
narrow data conditions or if one differentially weighted the different set
sizes).
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Figure 16. Response accuracy as a function of set size and stimulus spacing and set sizes N = 6, 8, and 10 (top

to bottom, respectively). The dotted lines show the predictions of SAMBA; lines with filled circles are data from

Stewart, Brown, and Chater (2005).

between the wide and narrow conditions. SAMBA captures the
changes in response probability with set size and the lack of
change with stimulus spacing. Both SAMBA and RIM (see Stew-
art et al.’s, 2005, Figure 20) fit these data very well, and RIM
performs slightly better, with an RMSE of 0.0062 compared with
0.0079 for SAMBA.

Figure 16 shows response accuracy for wide and narrow con-
ditions separately for set sizes N = 6, 8, and 10. Note that the bow
effect is apparent at every set size and increases in depth with
increasing set size. Performance was also worse for narrow than
widely spaced stimuli. SAMBA accommodates the bow effect, the
changes in accuracy with set size, and even the improved accuracy
for wide over narrow spaced stimuli. The only apparent misfit is to
the central four stimuli from the set size N = 6 data under the wide
spacing condition, where SAMBA underestimates performance.

Wide

Quantitatively, SAMBA fits the data better than the RIM (RMSEs
of .035 and .05, respectively).

Figure 17 shows the accuracy data transformed to response
sensitivity (d'). As for accuracy, SAMBA underpredicted perfor-
mance on the smallest set size, and this effect is greatly exagger-
ated in the d' data because of the nonlinear stretching effect of the
inverse normal transformation for probabilities close to one. In-
deed, the depth of the d’ bow for the data for set size N = 6 (and,
to a lesser extent, N = 8) is remarkably large in Figure 17 and not
well fit by our model. The better account of stimulus spacing
effects and the d' bow result in SAMBA fitting the data somewhat
better than RIM (RMSEs = 0.39 and 0.43, respectively).

The response accuracy data (see Figure 16) describe only cor-
rect responses, while the sensitivity data (see Figure 17) use all
responses but collapse them into a single summary statistic. Figure

Narrow
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Figure 17. Response sensitivity (d') as a function of set size and stimulus spacing and set sizes N = 6, 8, and
10 (top to bottom, respectively). The dotted lines show the predictions of SAMBA; lines with filled circles are
data from Stewart, Brown, and Chater (2005).
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Figure 18. Response matrices for the three different set sizes and the wide—narrow stimulus spacing conditions
from Stewart, Brown, and Chater (2005). Each line represents the probability of a particular response,

conditioned on the various stimuli.

18 shows the probability of all responses to all stimuli—that is, full
confusion matrices—along with SAMBA’s predicted values. As
observed in Figures 15 and 16, the probability of a correct response
(the highest peak for each line in each graph) decreases with
increasing set size and in the narrow compared with the wide
stimulus spacing conditions. SAMBA captures the complete dis-
tribution of error and correct responses, including the effects of
stimulus magnitude and narrow versus wide stimulus spacing.
However, for set size N = 10, the model overpredicts the propor-
tion of *1 responses to Stimuli 2-5, and for set size N = 6, it
underpredicts overall accuracy in the wide spacing condition.
These same effects are apparent in the accuracy graph (see Figure
16). RMSE for the confusion matrices favors RIM very slightly
over SAMBA (0.038 vs. 0.041).

N=6

Finally, we turn to the sequential effects of assimilation and
contrast. Figure 19 shows assimilation and contrast effects in
Stewart et al.’s (2005) data, using the format introduced for Fig-
ures 4 and 14. Each graph plots the average error on the current
trial as a function of the size of a preceding stimulus (separate
lines). The x-axis shows the number of trials that have elapsed
since that preceding stimulus was presented (lag). As usual, there
is an assimilation effect at lag = 1, with responses being biased
toward the previous stimulus: if the previous stimulus was large,
average error is positive, and vice versa. At longer lags (2+),
contrast is observed, with responses biased away from the previ-
ously seen stimuli. Most trends in the sequential data are captured
well. SAMBA predicts assimilation at lag = 1 followed by con-
trast at the longer lags. It also predicts larger effects in the narrow
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Figure 19. Assimilation and contrast effects in data from Stewart, Brown, and Chater (2005) separately for the
three set sizes N = 6, 8, and 10 and for wide and narrow stimulus spacing conditions. The lines in each plot show
different magnitudes for preceding stimuli (see legends).
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than in the wide stimulus spacing and larger effects with increasing
set size. SAMBA’s predictions match the data just as well as the
RIM’s (both RMSEs = 0.044).

General Discussion

In interpreting data from absolute identification, a distinction
has been proposed between local and global phenomena. Local
phenomena are those with short temporal duration, particularly
effects of recent stimuli and responses on current decisions. Global
phenomena are relatively stable over time, such as the effects of
stimulus ranges and set sizes. Some theoretical accounts have
focused on local processes (Holland & Lockhead, 1968; Laming,
1968, 1984; Lockhead & King, 1983), while others have focused
on global processes (e.g., Braida et al., 1984; Lacouture & Marley,
1991, 1995, 2004; Marley & Cook, 1984). Several more recent
models have incorporated both local and global processes (e.g.,
Nosofsky, 1997; Nosofsky & Palmeri, 1997; Petrov & Anderson,
2005). Recently, Stewart et al. (2005) took a more extreme posi-
tion against global processing, affirming that absolute identifica-
tion is based only on local processes of a particular type, namely,
relative judgment, with no absolute or global processing whatso-
ever (see also Laming, 1984; Lockhead, 2004).

We have described an extension of global, restricted-capacity
models, developed in various studies by Cook, Karpiuk, Lacouture
and Marley, to include local processes. SAMBA provides a com-
prehensive account of absolute identification because it predicts
not only choices but also the time taken to make them. Also,
SAMBA includes an account of multiple sources of variability
affecting decision processes, including sequential effects, and its
predictions for RT are not restricted to just mean RT bow effects.
Our analyses of data from Kent and Lamberts (2005), Lacouture
(1997), and Lacouture and Marley (2004) show that SAMBA
provides an accurate account of the entire distribution of RTs as a
function of stimulus magnitude. The model also provides an ac-
curate account of asymmetries and sequential effects on RT dis-
tributions and response choices. The choice and RT effects are
predicted by the same set of parameters, providing a more stringent
test than fitting choice or RT data alone.

Although SAMBA provides a close quantitative fit to dozens of
phenomena in absolute identification, there are some places where it
fails to fit the data, underlining the point that SAMBA is sufficiently
constrained in its predictions to be falsifiable. One of the failures,
overprediction of Stewart et al.’s (2005) false-feedback effect, was
relatively small, and SAMBA still performed better than the only
other model tested against this effect. Given that a natural extension of
SAMBA’s learning mechanism (partial correction for feedback) pre-
dicts an appropriately smaller effect, this failure is not troubling. Two
other small failures were associated with underprediction of bow
effects involving the very largest stimulus for some conditions in Luce
etal.’s (1982) and Lacouture’s (1997) data. The cause of such failures
is unclear, although the limitation to one stimulus in each case
suggests some idiosyncratic factor may be in play, with increased
performance perhaps related to external referents that were most
salient for the largest stimuli.

Two larger and more systematic failures concern responses to
repeated stimuli in Stewart et al.’s (2005) Experiment 1 (see Figure
11) and the distribution of RTs for incorrect responses in Lacouture’s
(1997) data (see Figure 13). The latter failure is striking because our
RT distribution fits for correct responses are of almost the same

quality as achieved by the leading accounts of two-choice RT (e.g.,
Ratcliff & Smith, 2004). One explanation for our poorer fit to incor-
rect responses is that two-choice RT models are typically not con-
strained to fit as wide a range of phenomena as were our fits to
Lacouture’s data (e.g., sequential effects). A second explanation con-
cerns our use of quantiles averaged over participants, necessitated by
small sample sizes per participant. Averaging can spread quantiles
when individual differences are present, which might particularly be
a factor for incorrect responses, as participants can vary markedly in
their speed—accuracy tradeoff setting (see, e.g., Brown & Heathcote,
2003). Different settings are associated with systematic changes in the
speed of error responses. In support of this explanation, we note that
our fits to the error RT distributions for the individual participant in
Lacouture and Marley’s (2004) Experiment 2 were quite good.
SAMBA performs well in fitting the accuracy and RT advan-
tages for repeated stimuli in many data sets (e.g., Lacouture, 1997;
Luce et al., 1982). In Stewart et al.’s (2005) data, however,
repetitions have a much larger advantage than SAMBA can pre-
dict. We noted earlier that SAMBA has no special mechanism for
repeated stimuli. Given the difference between Stewart et al.’s
results and others in the literature, this failure may not indicate a
direct falsification. A possible explanation is that the stimuli in
Stewart et al.’s experiment differed in tone frequency, whereas
Lacouture (1997) used line lengths and Luce et al. (1982) used
tone intensity (loudness). It is possible that stimulus repetitions are
more easily detected in frequency than in other continua; this
suggestion is compatible with the existence of critical bands in the
perception of frequency (Green & Swets, 1966). Further experi-
mentation is required to investigate the effects of response repeti-
tions on accuracy in a range of different stimulus modalities.
SAMBA accounts for all standard sequence effects, global effects,
and the effect of misleading feedback without any relative judgment
process. Short-term memory in the decision stage predicts repetition
and assimilation effects, whereas short-term memory in the selective
attention stage predicts contrast effects. A combination of these pro-
cesses, along with restrictions on the available responses, explains the
effects of manipulating the stimulus sequences found by Luce et al.
(1982). Hence, SAMBA demonstrates that none of these effects
necessarily implicates relative judgment. There is just one data pattern
that does implicate relative judgment in SAMBA: the accuracy bonus
sometimes observed for repeat and near-repeat stimuli. Although just
a small part of the data, this effect has proven theoretically important,
and not just for SAMBA. The same analyses proved critical for the
RIJM, prompting Stewart (2007) to modify the RJM to allow the
stimulus two trials back to be used as the basis for relative judgment
on some trials instead of the memory for the stimulus one trial back.
This modification is one step toward an extension where “any previ-
ous stimulus could be used [that would] introduce long-term repre-
sentation of magnitudes into the model” (Stewart, 2007, p. 536).

Future Developments

There are several aspects of SAMBA that warrant further de-
velopment. That development will be aided by the clear and
testable predictions that arise from several of SAMBA’s assump-
tions about the cause and locus of certain phenomena. We do not
provide an exhaustive discussion on these topics here but instead
restrict ourselves to three aspects requiring further development
and to three novel predictions.

1. The selective attention mechanism. Like its precursors,
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SAMBA is based on the notion of global processing—the
central tenet of the model is that stimuli are judged
relative to a context that changes slowly over time. The
precise nature of this selective attention context requires
further study. For example, more experiments are re-
quired to determine which experimental factors cause
participants to change their anchor positions and how
quickly these changes occur. Other experiments are re-
quired to investigate what factors affect the size, dura-
tion, and peak timing of contrast effects; these results will
illuminate what factors affect the Poisson process. For
example, it is an open question whether the dynamic
aspects of that process operate in units of real time or trial
time. If contrast effects operate on a time (rather than
trial) basis, the peak magnitude for contrast effects could
be manipulated by changing the response-to-stimulus
delay interval (RSI). If the RSI is made very short, the
number of trials before peak contrast is reached will
increase, shifting the location of peak contrast further to
the right (i.e., lag = 3 or lag = 4). We cannot tell from
the published details the precise RSI values used in
previous data sets, so we are currently pursuing new
experiments in which the intertrial interval is manipu-
lated either within or across experiments.

Learning the stimulus representations. The mechanics of
the mapping stage are completely determined by long-
term representations of average stimulus magnitude esti-
mates. For example, if there are three evenly spaced
stimuli, with anchors fixed at the lower and upper mag-
nitudes, the average magnitude estimates are {0, '2, 1}.
Throughout this article, except when addressing mislead-
ing feedback, we have assumed that these values are
unvarying and accurate estimates of the true expected
values. This assumption is clearly too strong, suggesting
the need to develop a model of how the magnitude
estimates are learned and maintained. We developed the
beginnings of this model when addressing the false-
feedback data from Stewart et al.’s (2005) Experiment 2.
For those data, we suggested a mechanism that adjusts
magnitude estimates to align with feedback. This mech-
anism is similar to one of two mechanisms proposed by
Treisman and Williams (1984). In future work, we will
examine the addition of Treisman and Williams’s second
mechanism (an assimilative process) into SAMBA. To-
gether, these two processes provide a testable system for
accommodating the effects of correct feedback, false
feedback, and the absence of feedback (see also Mori &
Ward’s, 1995, discussion of a similar use of Treisman &
Williams’s,1984, mechanisms). Our preliminary investi-
gations have offered the intriguing prospect that the use
of Treisman and Williams’s adjustment (learning) mech-
anisms may eliminate altogether the need for the relative
judgment process in SAMBA. This suggests that those
effects previously considered indicative of local relative
judgment (particularly the accuracy advantage for repeat
and near-repeat stimuli) may be alternatively considered
as evidence of a learning process that maintains and
adjusts long-term referents for magnitude estimates.

The causes of incorrect responses. We assume that the
mapping stage is error free. The decision stage can pro-
duce errors because of the influence of responses on
previous trials on the starting points of the ballistic ac-
cumulators, but our estimated parameters suggest that
this effect is smaller than that of the selective attention
stage. For example, in fits to Lacouture’s (1997) data,
only 23% of incipient choices were changed by the action
of the decision phase (i.e., in 23% of cases, the final
response generated by the decision stage was different
from the response corresponding to the maximum output
of the selective attention and mapping stages). These
assumptions stand in contrast to several prior models,
which have attributed errors more directly to processing
after a magnitude estimate is produced, such as in a
decision mechanism (e.g., Kent & Lamberts, 2005; La-
couture & Marley, 1995, 2004; Nosofsky & Palmeri,
1997; Treisman & Williams, 1984).

Predictions

The current version of SAMBA leads to some novel empirical
predictions, of which we present three.

1.

Unequal stimulus presentation frequency (a test of the
selective attention stage). The contrast mechanism asso-
ciated with the selective attention stage makes the perhaps
surprising prediction that if stimuli within a subinterval of
the range are presented more frequently, then those stimuli
will eventually be identified more accurately at the expense
of the remaining stimuli outside the subinterval. We are
aware of two experiments that tested the above prediction,
one of which found changes in response bias but not in d’
(Chase, Bugnacki, Braida, & Durlach, 1983), whereas the
other found a small but significant effect on d’ (Nosofsky,
1983). We are currently working on sharper experimental
tests of this prediction.

Nonuniform stimulus spacing (a test of the mapping stage).
The mapping stage of SAMBA predicts that stimuli that are
spaced closer together, relative to other stimuli, will be more
poorly identified. This prediction sounds trivial but is not
because it holds even when the closely spaced stimuli are
still well above threshold in comparative judgment tasks.
We have interpreted Lockhead and Hinson’s (1986) data as
supporting this prediction, although other interpretations
have been advanced, for example, the use of appropriately
selected cutpoints on a suitably constructed response vari-
able (Stewart et al., 2005). Data from Lacouture (1997)
illustrate that stimuli that are more widely spaced, relative to
other stimuli, are more accurately identified.

The effect of ITI on assimilation (a test of the decision
stage). Our assumption that assimilation is caused by
passive decay in the ballistic accumulators leads to the
prediction that assimilation effects will be smaller when
the ITI is larger. To our knowledge, relevant absolute
identification experiments have not been performed (but
see DeCarlo, 1992, for related supporting theoretical and
empirical work in magnitude estimation). Many absolute
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identification models would be able to accommodate this
prediction, for example, by simply adjusting parameter
values associated with assimilation. However, SAMBA
is currently the only model of absolute identification that
makes a quantitative prediction for this effect as an a
priori consequence its architecture.

These three predictions follow from the current version of the
SAMBA model, in which we have assumed that the distribution of
selective attention is mostly uncontrolled by the participant. In-
stead, accumulators are incremented randomly, except for the
redirection that results in contrast. With these assumptions,
SAMBA makes starkly different predictions for the effect of
unequal stimulus presentations, in Prediction 1 above, and for
nonuniform stimulus spacing, in Prediction 2. That is, unequal
stimulus presentations can improve discrimination for the more
frequently presented stimuli, whereas nonuniform spacing is likely
to decrease discrimination for the stimuli that have a decreased
relative spacing in the nonuniform case. However, if attention
were under sufficient strategic control, this differential prediction
for the two tasks would be reduced or eliminated. Therefore,
stronger tests of the degree to which selective attention is under
strategic control are required and are being pursued.

Concluding Remarks

In closing, we note that our results have implications beyond
absolute identification. Although strong sequential effects are present
in choice and RT data from other paradigms (e.g., Gilden, 1997, 2001;
Gilden, Thorton, & Mallon, 1995; Kelly, Heathcote, Heath, & Long-
staff, 2001; Laming, 1968; Wagenmakers, Farrell, & Ratcliff, 2004,
2005), these sequential effects are not accommodated by existing
choice RT models (but see Wagenmakers et al., 2004, for some
possible directions). We have suggested a mechanism for assimilation
effects that could be as easily implemented in any number of sequen-
tial sampling models of choice RT (such as those in Ratcliff & Smith,
2004) as it can be in Brown and Heathcote’s (2005) ballistic accu-
mulation model—namely, by making the starting points of accumu-
lation dependent on the response made on the previous trial. This
mechanism moves choice RT models toward an explanation, rather
than an assumption, of variability (i.e., start points are usually as-
sumed to be variable, with no testable explanation of the source of that
variability).

We have also suggested that longer term sequential effects (e.g.,
contrast) can arise as a consequence of changes over trials in the
inputs to the decision stage and have provided a mechanism that
predicts the magnitudes and variability of these inputs, at least in the
context of absolute identification. At present, most choice RT models
(see Smith, 1995; Smith, Ratcliff, & Wolfgang, 2004, for exceptions)
simply assume the appropriate magnitudes and variability of inputs to
fit data, with little motivation for how these inputs arise. The latter
approach, although perhaps viable for two-choice data and a limited
number of stimulus conditions, breaks down as the number of stimuli
and responses increases because of parameter proliferation. The
SAMBA absolute identification model, in contrast, requires no extra
parameters to accommodate an increase in the number of stimuli and
responses. Similar approaches to modeling inputs to decision pro-
cesses in other paradigms would greatly simplify and expand the
power of models of choice RT.
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