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One of the classic quantitative laws of cognitive psychology is 
that forgetting curves are well described by power functions 
(e.g., Anderson & Schooler, 1991; Wickelgren, 1974; Wixted 
& Ebbesen, 1991). For example, Wixted and Ebbesen (1991) 
and Wixted and Carpenter (2007) showed that diverse mea-
sures of forgetting, including the proportion of correct 
responses in free recall of word lists, recognition judgments of 
faces, and savings in relearning lists of nonsense syllables, 
were well described as power functions of the retention inter-
val. However, these results involved relations between the 
retention interval and a variety of empirical dependent vari-
ables (Wixted & Ebbesen, 1991, p. 414). Each such dependent 
variable is associated with some particular scale of measure-
ment, and the precise quantitative law that describes relations 
among the variables must depend on the scale of measurement 
that is chosen. For example, the precise form of the function 
that relates forgetting to the retention interval will vary 
depending on whether performance is measured by the propor-
tion of correctly recognized items or by d′.

In the present work, we tested participants in a speeded old/
new recognition paradigm involving both short- and long-term 
probes. The key independent variable was the lag between a 
test probe and a corresponding item on the study list. Lag is 
measured by how many items back into the memory set the 

probed item is. The most recently presented study-list item has 
a lag of 1, the next most recent item has a lag of 2, and so forth. 
We applied a modern exemplar-based recognition model 
(Nosofsky, Little, Donkin, & Fific, 2011) to account for  
individual-subject choice probabilities and response times 
(RTs) observed in the task. Application of the formal model 
allows one to estimate a set of parameters that describe the 
strength with which each exemplar from the study list is stored 
in memory. In applying the model, we made a remarkable dis-
covery: Except for a small residual primacy effect, the esti-
mated memory strengths were almost a perfect power function 
of the lag with which the original exemplars were presented on 
the study lists.

Whereas the previous evidence for a power law relied on 
measured relations between a variety of empirical dependent 
variables and the retention interval, the present regularity 
involved a latent psychological variable (memory-strength 
parameters). Thus, the obtained evidence for a power law of 
memory was found at a deeper, theoretical level of analysis. 
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Abstract

A classic law of cognition is that forgetting curves are closely approximated by power functions. This law describes relations 
between different empirical dependent variables and the retention interval, and the precise form of the functional relation 
depends on the scale used to measure each variable. In the research reported here, we conducted a recognition task involving 
both short- and long-term probes. We discovered that formal memory-strength parameters from an exemplar-recognition 
model closely followed a power function of the lag between studied items and a test probe. The model accounted for rich 
sets of response time (RT) data at both individual-subject and individual-lag levels. Because memory strengths were derived 
from model fits to choices and RTs from individual trials, the psychological power law was independent of the scale used 
to summarize the forgetting functions. Alternative models that assumed different functional relations or posited a separate 
fixed-strength working memory store fared considerably worse than the power-law model did in predicting the data.
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Furthermore, because the estimated memory strengths were 
based on model fits to choices and RTs from individual trials, 
the derived power law was independent of the scale used to 
summarize the empirical forgetting functions.

This work makes two other key contributions to the litera-
ture. First, although previous research has demonstrated 
remarkable generality and precision for a power law of forget-
ting, the function has been used to describe limited amounts of 
data. In the examples reported by Wixted and Ebbesen (1991), 
for instance, the individual forgetting functions were com-
posed of four or five data points. By comparison, when we 
combined the exemplar-based recognition model with the 
power law of memory strength, we accounted for enormously 
rich sets of RT-distribution data at both the individual-subject 
and individual-lag levels. Extremely accurate accounts of 
mean correct RTs and error RTs as well as hit rates, false-alarm 
rates, and d′ as a function of lag emerged naturally from the 
formal model as well.

Second, our research also broached the question of whether 
the assumption of distinct working memory and long-term 
memory stores is needed to account for the present forms of 
data. A long-standing debate is whether working memory in- 
volves a time- or capacity-limited system that is distinct from the 
system that underlies long-term memory (e.g., Atkinson & Shif-
frin, 1968; Baddeley & Hitch, 1974; Cowan, 2001; Oberauer, 
2002). An alternative view is that the same principles and pro-
cesses govern both short- and long-term memory (e.g., G. D. A. 
Brown, Neath, & Chater, 2007; Crowder, 1993; McElree, 2006; 
Nairne, 2002). The present recognition paradigm involved both 
short- and long-term probes. All of the recognition data were 
captured by a model based on the assumption that psychological 
memory strength is a simple and continuous function of lag. 
This brings into question whether distinct working memory and 
long-term memory systems are operating. Nevertheless, we 
compared one such separate-systems model to the power-law 
model proposed here.

Experiment
Following a recent paradigm reported by Öztekin, Davachi, 
and McElree (2010), we presented observers with 12-item 
memory sets consisting of letters or words. Each set was fol-
lowed by a test probe, and observers were required to make 
speeded recognition judgments of whether the probe was old 
or new. To establish a direct correspondence between psycho-
logical and experimenter-defined lag, we provided explicit 
instructions to control rehearsal strategies. Individual subjects 
were tested for extended periods, which allowed us to collect 
detailed RT-distribution and choice-probability data at the 
level of individual subjects and individual lags.

Participants
Four participants, 2 in the letters condition and 2 in the words 
condition, completed ten 1-hr sessions on separate days. 

Participant 4 was the first author. The first 3 participants were 
reimbursed $12 per session (including a bonus for accuracy 
above 75%).

Stimuli
In the letters condition, items were 24 English letters (all let-
ters in the alphabet, excluding A and E). In the words condi-
tion, a list of 1,535 one-syllable, three- to six-letter words was 
generated using the MRC Psycholinguistic Database (http://
www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm).

Procedure
At the start of each trial, a study list was created by randomly 
sampling 12 items from the stimulus set. Items were presented 
in the center of a computer monitor at a visual angle of approx-
imately 3° to 4°. Each trial began with a 500-ms fixation cross. 
Twelve items were then presented for 500 ms each, with a 
100-ms break between items. Participants were given clear 
and repeated instructions regarding rehearsal. They were 
asked to say each item (silently, to themselves) once as it was 
presented and to avoid rehearsing previously presented stimuli 
or developing any special strategies for remembering items.

After the study list, an asterisk appeared for 500 ms to sig-
nal the probe. The probe then appeared and remained on screen 
until a response was made. Participants indicated whether the 
probe was old (“F” key) or new (“J” key). Feedback indicating 
whether their response was correct or incorrect was presented 
for 1,000 ms, followed by a 1,500-ms intertrial interval.

The probe was a member of the study list (a target) on half  
of the trials and a randomly sampled item not on the study list 
(a lure) on the other half of the trials. On target trials, each 
serial position was probed equally often, with the order of all 
trials randomized within a block. Each session comprised five 
blocks of 48 trials. For each participant, 10 sessions yielded 
1,200 trials on which the probe was a lure and 100 trials of 
each serial position when the probe was a target.

Results
Responses faster than 200 ms or slower than 5,000 ms were 
excluded from analysis. For each participant, and separately 
for correct and incorrect responses in each of the 13 trial types 
(12 serial positions and 1 lure), we removed responses slower 
than 3 standard deviations above the mean RT in that condi-
tion. We removed 1.08% of responses in total.

Accuracy (as measured by d′) and mean RT for correct 
responses are plotted as a function of lag for each participant 
in Figure 1. Although participants were more accurate in rec-
ognizing words than letters, the influence of study-probe lag 
was the same in both conditions: At early lags, performance 
declined quickly (i.e., RT slowed and d′ decreased); at later 
lags, performance continued to decline, but at a slower rate. 
There was also a small primacy effect, in which performance 
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for items at the greatest lags (first and second serial positions 
of the study list) saw a slight boost. Öztekin et al. (2010,  
Fig. 2) observed a similar pattern of results, although their data 
were averaged across participants and pairs of adjacent serial 
positions.

Figure 2 shows detailed RT distributions for each of the 
study-probe lags for Participant 3. (The RT distributions for 
the other participants were essentially identical to those of  
Participant 3; see Figs. S1–S3 in the Supplemental Material 
available online.) The cumulative-distribution-function plots 
shown in the figure provide an efficient means of simultane-
ously illustrating accuracy and the form of the correct (hit) and 
incorrect (miss) RT distributions in each lag condition. Each 
plot is made up of quantile estimates from correct and incor-
rect RT distributions. The quantile estimates (diamond sym-
bols) show the RT below which .10, .30, .50, .70, and .90 of 
the responses in that distribution fall. The positions of the 

quantiles on the x-axis reflect the speed at which responses  
are made, so that slower distributions stretch further to the 
right. The heights of the quantiles indicate, separately for  
correct and incorrect trials, the absolute cumulative proportion 
of responses with RTs below the quantile cutoff. Therefore, 
note that the relative heights of the correct and incorrect  
distributions reflect the proportion of correct versus incorrect 
responses at each cumulative RT. The curves reach asymptotes 
at the overall correct and incorrect response proportions at 
each lag.

Figure 2 shows that there was a systematic effect of lag on 
the RT distributions. As lag increases, the median of each dis-
tribution (third diamond within each plot) shifts to the right 
and the distribution becomes more positively skewed (the 
points spread out to the right). This tendency is pronounced at 
the early lags and slows down for the larger ones. Figure 3 
shows the RT distributions (for all participants) for trials on 
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Fig. 1.  Mean response time (RT; left column) on trials answered correctly and accuracy (d′; right column) as a function 
of target-probe lag. For RTs, the graphs also show the results for lures. Results are shown separately for each of the 4 
participants. Circles represent observed data. Predictions from the exemplar-recognition power-law model are shown 
using black lines for targets and Xs for lures. (In computing observed and predicted values of d′, maximum hit rates 
were set at .99.)
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Fig. 2.  Cumulative distribution functions for Participant 3 at each of the 12 lags. For Lags 4 through 12, the upper function 
presents results for trials answered correctly, and the lower function presents results for trials answered incorrectly. For Lags 
1 through 3, there were no incorrect responses. Both observed data and predictions from the exemplar-recognition power-law 
model are shown. For each lag, the observed and predicted proportion of correct responses are shown as p and p, respectively.

which the probe was a lure. The general form of the lure RT 
distributions is the same as for the targets.

Next, we demonstrate that all of these results were captured 
in precise quantitative fashion by a simple version of an exem-
plar-recognition model that assumed that memory strength 
was a power function of lag.

The modeling framework
Because we have presented the exemplar-recognition model in 
previous articles (Nosofsky et al., 2011; Nosofsky & Palmeri, 
1997), here we provide only a capsule summary. According to 

the model, the items from the study list are stored as individual 
exemplars in memory. Presentation of a test probe causes the 
exemplars to be activated and retrieved. The retrieved exem-
plars drive an evidence-accumulation process that leads the 
observer to decide whether the probed item had been presented 
in the study list (“old” item) or had not (“new” item).

Formally, according to the model, presentation of probe i 
leads to overall “activation” (Ai) of the items in the memory 
set, given by

	                       Ai  =  


j mj  ×  sij,	 (1)
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where mj is the memory strength associated with the item at 
lag j, and sij is the similarity of the probe to the item at lag j. 
For the present paradigm, an exceedingly simple model of 
similarity was applied: If the probe matched the item at lag j, 
then sij was set equal to 1; if the probe did not match the item 
at lag j, then sij was set equal to a free parameter s (0 < s < 1). 
In the general version of the model, the individual memory 
strengths mj were freely estimated parameters; past evidence 
from paradigms with small memory-set sizes indicates that the 
magnitude of the memory strengths decreases with increasing 
lag (Nosofsky et al., 2011; see also Kahana & Sekuler, 2002).

On the basis of results from applying the general model 
(see Model Fits), we also applied a special case, in which it 
was assumed that memory strength was a decreasing power 
function of lag j:

	                          mj  =  a  ×  j –b
,	 (2)

where β measures the rate at which memory strength declines 
with lag. (The parameter α is a scaling parameter; without loss 
of generality, its value can be set equal to 1 in the present 
model.) Because of small primacy effects in the data, the 
memory strengths for items in Serial Positions 1 and 2 were 
scaled by free parameters γ1 and γ2.

According to the exemplar model, the mean rate of evi-
dence accumulation supporting an “old” response is given by

		          pi  =  Ai



(Ai  +  k), 	 (3)

where k is a drift-rate-criterion parameter. The mean rate of 
evidence accumulation supporting a “new” response is simply 
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Fig. 3.  Cumulative distribution functions for the 4 participants on target-absent (lure) trials. The upper 
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answered incorrectly. Both observed data and predictions from the exemplar-recognition power-law model 
are shown. For each lag, the observed and predicted proportion of correct responses are shown as p and  
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Table 1.  Parameter Estimates and Bayesian Information Criterion (BIC) Values for Each Participant for Each  
Version of the Exemplar Model

Participant 1 Participant 2 Participant 3 Participant 4

Parameter  General
Power 

law
Dual 

system General
Power 

law
Dual 

system General
Power 

law
Dual 

system General
Power 

law
Dual 

system

a 0.50 0.49 0.55 0.11 0.11 0.13 0.07 0.07 0.07 0.00 0.02 0.04
Rold 0.77 0.77 0.79 0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.32 0.32
Rnew 0.78 0.78 0.78 0.29 0.29 0.28 0.27 0.28 0.28 0.28 0.30 0.29
µ 0.20 0.20 0.24 0.17 0.17 0.19 0.16 0.14 0.15 0.10 0.08 0.10
s 0.06 0.03 0.003 0.04 0.04 0.02 0.03 0.05 0.04 0.08 0.05 0.03
k 0.05 0.08 0.02 0.09 0.14 0.15 0.13 0.22 0.35 0.06 0.15 0.18
σ 0.19 0.19 0.17 0.17 0.17 0.17 0.11 0.10 0.11 0.11 0.11 0.11
γ1 — 2.51 0.97 — 1.00 0.26 — 1.22 0.56 — 2.12 0.79
γ2 — 1.55 0.57 — 1.00 0.42 — 1.30 0.69 — 1.64 0.71
β — 1.60 — — 1.52 — — 1.11 — — 1.38 —
mwm — — 1.000 — — 1.000 — — 1.000 — — 1.000
mltm — — 0.01 — — 0.06 — — 0.20 — — 0.09
m1 1.000 — — 1.000 — — 1.000 — — 1.000 — —
m2 0.413 — — 0.210 — — 0.230 — — 0.334 — —
m3 0.190 — — 0.142 — — 0.200 — — 0.166 — —
m4 0.143 — — 0.088 — — 0.113 — — 0.111 — —
m5 0.087 — — 0.050 — — 0.103 — — 0.069 — —
m6 0.084 — — 0.043 — — 0.077 — — 0.071 — —
m7 0.044 — — 0.043 — — 0.074 — — 0.046 — —
m8 0.040 — — 0.029 — — 0.056 — — 0.043 — —
m9 0.035 — — 0.026 — — 0.050 — — 0.043 — —
m10 0.033 — — 0.024 — — 0.052 — — 0.044 — —
m11 0.040 — — 0.022 — — 0.053 — — 0.046 — —
m12 0.057 — — 0.013 — — 0.045 — — 0.053 — —
  BIC 3,677 3,611 3,683 −4,039 −4,087 −3,766 −2,902 −2,954 −2,639 −1,810 −1,871 −1,721

Note: The parameters of the models are defined as follows (see the text and the appendix for further details): a = start-point variability;  
Rold = threshold for “old” responses; Rnew = threshold for “new” responses; µ = mean residual time; s = similarity; k = drift-rate criterion; σ = 
drift-rate variability; γi = primacy scaling factor for Serial Position i; β = power-function decay rate; mwm = memory strength for items in working 
memory; mltm = memory strength for items in long-term memory; mj = memory strength for lag j. Without loss of generality, m1 was set to 1 in 
the general version of the model, mwm was set to 1 in the dual-store version of the model, and α was set to 1 in the power-law version of the 
model. The parameters a, Rold, Rnew, and µ are measured in seconds. For each participant, the smallest BIC value is in boldface.

qi  = 1  –  pi. So, for example, if a probe leads to high activation 
of the memory-set items (e.g., because it matches a recently pre-
sented member of the memory set), then there will be a high rate 
of evidence accumulation supporting an “old” response.

If the accumulating evidence first reaches an “old” response 
threshold (Rold), then the observer responds “old”; if the evi-
dence first reaches a “new” response threshold (Rnew), then the 
observer responds “new.” The decision time is determined by 
the time that it takes the accumulating evidence to reach either 
threshold. In past applications of the model, the evidence-
accumulation process was modeled as a random walk, in 
which a single counter moved probabilistically on each step 
toward either the “old” or “new” threshold. As explained in 
the appendix, in the present experiment, we applied a slight 
variant in which the evidence-accumulation process was mod-
eled in terms of linear-ballistic accumulation (S. D. Brown & 
Heathcote, 2008).

Finally, as is commonly assumed in numerous RT models, 
the exemplar model included parameters for between-trial 
variability in the start point of the evidence-accumulation pro-
cess (a), between-trial variability in the evidence-accumula-
tion rate (σ), and a mean residual time (µ) for processes not 
associated with decision making (e.g., encoding and response 
execution). Details are provided in the appendix.

Fitting procedure
Models were fit to the choice and RT from each individual trial 
using analytic expressions of likelihood (see S. D. Brown & 
Heathcote, 2008, for details). The general and power-law ver-
sions of the exemplar model share seven parameters (see pre-
vious discussion, the appendix, and Table 1): s, k, Rold, Rnew, a, 
σ, and µ. The general (i.e., free-memory-strength) model esti-
mated 12 further mj parameters, one memory strength for each 
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lag. The special-case power-law model instead estimated the 
decay-rate β and primacy parameters γ1 and γ2.

Model comparisons were made using the Bayesian infor-
mation criterion (BIC), which combines measures of absolute 
fit and a penalty for the number of free parameters to deter-
mine which model provides the most parsimonious explana-
tion of the data. Smaller BIC values indicate the preferred 
model. Details are provided in the appendix.

Model fits
Table 1 reports the BIC values and best-fitting parameter esti-
mates for the general and power-law versions of the exemplar 
model for each participant. In all cases, the BIC yielded by the 
power-law model was superior to the one yielded by the more 
general version. This result indicates that the additional param-
eters utilized by the more general model did not provide 
enough of a benefit in quality of fit to offset its increased 
complexity.

To provide further evidence for the utility of the power-law 
model, we fitted a variety of competing functions (the same 
ones considered previously by Wixted & Ebbesen, 1991) to 
the Lag 1 to Lag 10 memory strengths estimated from the gen-
eral version of the exemplar model. We found the two free 
parameters of each function that minimized the sum of squared 
deviations between the function’s predictions and the esti-
mated memory strengths. The results of this analysis are 
shown in Table 2. Impressively, for all 4 participants, the 
power function provided the best description by far of the esti-
mated memory strengths. Indeed, as shown in Figure 4, when 
one plots the estimated memory-strength parameters from the 
general model against lag, the plots closely follow a power 
function for all participants.

Most important, the version of the exemplar model that 
assumes a lag-based power law provides an outstanding 
account of all of the detailed RT-distribution data. To demon-
strate this point, we plotted its predictions of the full RT  
distributions for correct and incorrect responses in both target-
present and target-absent conditions (Figs. 2 and 3). (Recall 
that Figure 2 shows the target-present results for Participant 3 
only; the results for the other 3 participants are equally impres-
sive.) The agreement between the model and the data was 

excellent, especially given that only 10 parameters were used 
to simultaneously fit each participant’s 26 RT distributions 
(2,400 data points per participant). Because the model cap-
tured the detailed form of the RT distributions for trials 
answered correctly and incorrectly at each lag, it naturally also 
accounted extremely well for the overall accuracy and mean 
RT data (see Fig. 1).

Dual-store model
As another source of comparison, we fitted a representative 
from the class of dual-store models to the RT-distribution data. 
In the dual-store model, we assumed that, as each individual 
item was presented, it entered into a working memory buffer 
of Size 4 (e.g., Cowan, 2001; Oberauer, 2002). Once the buffer 
size was exceeded, one of the items already existing in the buf-
fer was displaced into a separate long-term store. The dis-
placed item was assumed to be chosen at random. On the basis 
of the all-or-none properties deemed to characterize working 
memory in recent work (e.g., Rouder et al., 2008; Zhang & 
Luck, 2009), we assumed that all items present in the working 
memory buffer had equal memory strength mwm. By contrast, 
items displaced into long-term memory had (lower) average 
strength mltm. We also granted the dual-store model the same 
flexibility as the power-law model by estimating separate  
primacy-strength parameters for the items in Serial Positions 1 
and 2. The manner of computing overall activation and evidence 
accumulation for this dual-store model was the same as for the 
other versions of the exemplar model.

Note that the dual-store model is a mixture model. On some 
proportion of trials, the overall activation yielded by a positive 
probe will be high because the probed item resides in the 
working memory buffer. On the remaining proportion of trials, 
the overall activation will be low, because the item has been 
displaced into long-term memory. Items with shorter lags will 
yield a higher proportion of trials with high activations, 
because there is a higher probability that they still exist in the 
working memory buffer.

The fits of the dual-store model are shown along with those 
of the other versions of the exemplar model in Table 1. In all 
cases, the dual-store model provided a substantially worse 
account of the data than did the power-law model. Except for 

Table 2.  Sum of Squared Deviations (SSDs) for Each of the Six Candidate Forgetting Functions (Wixted & Ebbesen, 1991) 
Fit to Estimated Memory-Strength Parameters

Function Participant 1 Participant 2 Participant 3 Participant 4

Power:  m  =  α  ×  t–β 0.0027 0.0044 0.0138 0.0008
Exponential:  m  =  α  ×  e–βt 0.0148 0.0205 0.0508 0.0190
Hyperbolic:  m  =  α/(1  +  β  ×  t) 0.0649 0.1443 0.0955 0.0087
Linear:  m = α  –  β  ×  t 0.3537 0.4542 0.4096 0.4007
Logarithmic:  m  =  α  –  b  ×  log(t) 0.1349 0.2348 0.2087 0.1790
Exponential power:  m  =  α  ×  e–2 × β × √t 0.0037 0.0165 0.0329 0.0079

Note: Smaller SSD values indicate better-fitting functions. The smallest SSD for each participant is in boldface. t = lag; m = memory 
strength.
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Participant 1, it also fared much worse than did the free- 
memory-strength version. In our view, the version of the dual-
store model that we tested is a reasonable representative, but 
we acknowledge that a wide variety of alternative dual-store 
models could be formulated. The precision of fit achieved by 
the power-law model provides a challenging yardstick to 
gauge such alternative formulations.

Discussion
In the experiment reported here, we found strong evidence for 
an exemplar-recognition model that assumed a power-function 
relation between psychological memory strength and lag. The 
model, despite its parametric simplicity, produced a remarkably 
good fit to data from a probe-recognition task, in which lists of 
12 items (made of either letters or words) were presented. The 
model accounted simultaneously for full RT distributions for 
correct and incorrect responses across all serial positions of  
target-present as well as target-absent trials. A wide variety of 
alternative functions failed to capture the relation between esti-
mated memory strength and lag. An alternative dual-store model 

that posited an all-or-none, limited-capacity working memory 
buffer also fared considerably worse than did the power-law 
model.

Because our analysis was aimed at fine-grained RT distri-
butions observed for individual subjects at individual lags, the 
support for the power law is not due to artifacts involving 
averaging across subjects (e.g., Anderson & Tweney, 1997; 
Myung, Kim, & Pitt, 2000; Wixted & Ebbesen, 1997). Fur-
thermore, because the memory-strength parameters were 
required to account for enormously rich sets of data, there is a 
great deal of precision in their estimates. Therefore, the sup-
port for the power law is unlikely to be due to flexibility in 
fitting noisy estimates (Lee, 2004).

Analogous to findings in other work involving the discov-
ery of laws at a psychological level of analysis (e.g., Shepard, 
1987), the present regularity was uncovered within the frame-
work of a highly successful formal model. It is important to 
acknowledge, therefore, that the discovered regularity involv-
ing the memory strengths is model dependent. However, 
because the model combines well-established principles of 
exemplar-based recognition and evidence accumulation for 
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Fig. 4.  Memory strength in the general model (circles) and the predicted memory strength from the 
best-fitting power function (solid lines) as a function of lag. Results are shown separately for each of the 
4 participants.
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which there is a good deal of consensus, we believe that the 
discovered regularity is intriguing and important.

Natural questions arise regarding the generality of our find-
ings and the conditions under which the power function holds. 
From one perspective, past research already suggests consid-
erable generality for a power law of forgetting, because it has 
been found to hold widely for empirical forgetting functions. 
Wixted (2004) considered a variety of possible reasons for the 
emergence of the empirical power law. He suggested that the 
best explanation was that “the underlying memory traces 
themselves individually exhibit an ever-decreasing rate of 
decay” (p. 875), which is a property consistent with power-law 
forgetting. Our model-based evidence for such power-law 
decreases in psychological memory strength lends support to 
Wixted’s suggestion. Nevertheless, future research needs to 
test more directly for the generality with which the psycho-
logical power law holds. An interesting possibility is that the 
power-function relation might hold generally, but the parame-
ters of the function might be systematically influenced by 
experimental factors, such as the similarity of the items within 
the study lists and the time interval between each item 
presentation.

Finally, the present theoretical message has been to provide 
evidence for a power law of memory strength at a psychologi-
cal level of analysis. The work does not provide any explana-
tion as to why the power law is favored over various 
alternatives. In addition, in its present preliminary form, the 
power law is stated with respect to lag. Future research needs 
to unpack the detailed psychological and neurological mecha-
nisms, such as decay, interference, and consolidation, which 
contribute to the form of the lag-based forgetting functions. 
Such research will lead to the development of more fully spec-
ified models and laws of psychological memory strength.

Appendix: Model Details and Fitting 
Procedure

In past applications of the exemplar model (e.g., Nosofsky  
et al., 2011), the evidence-accumulation rates defined in Equa-
tion 3 were used to drive a discrete random-walk process. In 
the experiment reported here, we applied a continuous linear-
ballistic-accumulation (LBA) process (S. D. Brown & Heath-
cote, 2008). Past work suggests that the LBA approach yields 
predictions that are essentially the same as random-walk and 
diffusion models (Donkin, Brown, Heathcote, & Wagenmak-
ers, 2011). An advantage of the LBA approach relative to the 
random-walk model, however, is that analytic expressions 
have been developed to allow maximum-likelihood fits to RT-
distribution data without requiring simulation. In addition, the 
continuous nature of the LBA model provides for more grace-
ful parameter-search methods.

For the current exemplar-based LBA model, two accumula-
tors were established, one for “old” responses and one for 
“new” responses. On each trial, the evidence-accumulation 

rate on each accumulator was an independent and randomly 
sampled value from normal distributions with means given by 
the values pi and qi computed from Equation 3, and common 
standard deviation σ. The start point of each accumulator is an 
independent and randomly sampled value from uniform distri-
bution [0, a]. As assumed in all LBA applications, evidence 
accumulates at a linear and ballistic rate (i.e., without moment-
to-moment noise) until a response threshold is reached in 
either accumulator. The response whose threshold was reached 
is made, and the time taken for evidence to reach that thresh-
old is the decision time for that trial. The predicted RT is the 
sum of the decision time and nondecision time, µ.

The fits of the models were evaluated using the BIC:

                            BIC  =  −2  ×  lnL  +  P  ×  lnN,	 (A1)

where L is the (maximum) likelihood of the data given the 
model parameters, P is the number of free parameters, and N 
is the total number of data points. Smaller BIC values indicate 
the preferred model. An identical pattern of model-fitting 
results and conclusions was obtained when we used the alter-
native Akaike information criterion as a criterion of fit.
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