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Research Article

From the times of ancient Greece, philosophers, psychol-
ogists, and, increasingly, the general populace have been 
attracted to the seductive proposition that individuals can 
make successful decisions without rational, analytical 
thought or inference, a process that has become known 
as intuition. Despite the widespread acceptance of this 
idea and everyday use of the term intuition to describe 
the feeling of certain sensations, little scientific evidence 
supports the existence of such a phenomenon.

The topic of intuition has become popular in applied 
sciences. For example, in management, intuition is inves-
tigated with survey-based techniques (e.g., Khatri & Ng, 
2000; Sinclair, Ashkanasy, & Chattopadhyay, 2010) or 
interviews (Klein, Calderwood, & Clinton-Cirocco, 1986). 
These techniques tend to target an individual’s percep-
tion or feeling of intuition, rather than the actual exis-
tence of a testable mechanism involving emotionally 
charged, rapid, unconscious processes. Accordingly, 
results of such studies can be inconsistent (for a review, 

see Shirley & Langan-Fox, 1996; Westcott, 1968) and pro-
vide little insight into the mechanisms that might underlie 
the ability to utilize nonconscious emotional information 
for conscious decisions.

Cross-species studies of simple perceptual decisions 
have provided much insight into the neurobiological and 
computational mechanisms responsible for conscious 
decision making (Gold & Shadlen, 2007; Liu & Pleskac, 
2011; Shadlen & Newsome, 2001). Behavioral and neural 
data strongly support simple accumulation models, 
which propose that a decision is made once enough 
noisy evidence has accumulated to reach a particular cri-
terion level (Newsome, 1997; Ratcliff & McKoon, 2008). A 
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Abstract
The long-held popular notion of intuition has garnered much attention both academically and popularly. Although 
most people agree that there is such a phenomenon as intuition, involving emotionally charged, rapid, unconscious 
processes, little compelling evidence supports this notion. Here, we introduce a technique in which subliminal 
emotional information is presented to subjects while they make fully conscious sensory decisions. Our behavioral 
and physiological data, along with evidence-accumulator models, show that nonconscious emotional information 
can boost accuracy and confidence in a concurrent emotion-free decision task, while also speeding up response 
times. Moreover, these effects were contingent on the specific predictive arrangement of the nonconscious emotional 
valence and motion direction in the decisional stimulus. A model that simultaneously accumulates evidence from both 
physiological skin conductance and conscious decisional information provides an accurate description of the data. 
These findings support the notion that nonconscious emotions can bias concurrent nonemotional behavior—a process 
of intuition.
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recent study found that an accumulation model can 
describe how nonconscious sensory information is accu-
mulated to boost decision accuracy (Vlassova, Donkin, & 
Pearson, 2014). It remains unknown, however, whether 
such accumulation and integration could occur for cate-
gorically different nonconscious information, such as 
emotional valence—the core ingredient of intuition.

We devised a novel psychophysical paradigm to inves-
tigate such notions of intuition. In the absence of a con-
cise scientific definition of intuition, we define it as the 
productive influence of nonconscious emotional infor-
mation on an otherwise unrelated decision or judgment. 
Our paradigm involves a random-dot-motion (RDM) task, 
in which subjects are asked to report the global motion 
direction of many moving dots. RDM has been widely 
used to study sensory decision making (Shadlen & New-
some, 1996). We chose to use an RDM task because it 
allows almost full control of the decision variables. Fur-
ther, neural evidence shows that RDM tasks not only acti-
vate motion detectors, but also can be utilized to study 
the gradual accumulation of decisional evidence in post-
sensory brain areas (Gold & Shadlen, 2007).

The moving-dot stimuli were presented concurrently 
with emotional images that were rendered nonconscious 
using continuous flash suppression (CFS). CFS has been 
applied in an extensive number of studies investigating 
nonconscious processing of visual stimuli (e.g., Tsuchiya 
& Koch, 2004) and can achieve long suppression periods 
(more than several seconds).

We conducted four main experiments and two control 
experiments to see if we would find evidence of an 
unconscious, emotionally based, rapid process that might 
correspond with the popular notion of intuition. Using 
behavioral data, physiological measures, and computa-
tional modeling, we tested the hypothesis that noncon-
scious emotional information can boost accuracy in an 
unrelated categorical decision task.

Experiment 1

Method

Subjects. Twenty-four healthy first-year university stu-
dents participated in this experiment in exchange for a 
course credit.1 Informed written consent was obtained 
according to procedures approved by the ethics commit-
tee of the School of Psychology at the University of New 
South Wales.

We excluded from analyses all subjects whose data 
did not show a monotonic or nearly monotonic increase 
in accuracy in the RDM task as a function of motion 
coherence in both of our experimental conditions (i.e., 
intact and phase-scrambled emotional images; see Pro-
cedure). The exclusion of these subjects was based on 

previous studies, which consistently showed that accu-
racy in RDM tasks increased monotonically with motion 
coherence. Further, there is robust evidence that neural 
activity increases monotonically with motion coherence 
(Gold & Shadlen, 2007).

In our study, RDM decisions became easier as motion 
coherence increased, so if subjects did not show this sim-
ple relationship between motion coherence and accu-
racy, one could surmise that they could not or did not 
perform the task on the basis of the percentage of coher-
ent motion (decisional evidence). In such cases, the data 
should not be used to investigate decision making, as the 
relationship between the decisional evidence and accu-
racy is inconsistent. Accordingly, we excluded 8 (33%) of 
the original subjects from analyses, for a final sample size 
of 16 (7 males and 9 females).

To ensure that the pattern of data we observed was 
not specific to undergraduate students, we ran a control 
experiment in which we tested 10 subjects (5 males and 
5 females) who all had prior psychophysical experience 
in a lab setting. The data of only 1 of those subjects (10%) 
did not show a monotonic relation between accuracy 
and motion coherence; this subject was excluded from 
analyses.

Visual stimuli. All stimuli were presented on a 20-in. 
Sony Multiscan G520 CRT monitor (resolution = 1,024 × 
768 pixels, refresh rate = 75 Hz). Subjects’ heads were 
stabilized by a chin rest and positioned 57 cm away from 
the monitor. Stimuli were presented using the Psycho-
physics Toolbox, Version 3, for MATLAB (Kleiner, Brain-
ard, & Pelli, 2007) on a Macintosh MacPro running Mac 
OS X.

Each RDM stimulus consisted of 60 white dots, each a 
2- × 2-pixel square moving inside a circular black aper-
ture with diameter of 3.98°. On each trial, the motion 
coherence was pseudorandomly selected from a pool of 
six coherence levels (6%, 11%, 17%, 24%, 32%, and 39%), 
and the motion direction was chosen from an equal num-
ber of left and right motion directions. This range of 
coherences was chosen on the basis of pilot testing, 
which indicated that it would allow us to discriminate 
different levels of behavioral performance in our specific 
setup, while keeping mean accuracy within the range of 
approximately 50% to 75%.

The emotional images, which measured 3.54° × 3.86°, 
were taken from the International Affective Picture Sys-
tem (IAPS; Lang, Bradley, & Cuthbert, 1999). We selected 
nine positive images (e.g., baby, puppy) and nine nega-
tive ones (e.g., gun, snake). In the IAPS norms, the mean 
pleasure ratings for these positive and negative images 
were 7.12 and 3.77, respectively, and the mean arousal 
ratings were 4.82 and 6.13, respectively (Lang et  al., 
1999). Three images of each valence were used in the 
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first block of trials, and a different set of three images of 
each valence was used in each subsequent block; there-
fore, we minimized any effect of image-specific learning. 
On some trials, the emotional images were distorted 
using a spatial phase-scrambling technique that removed 
high-level identification and semantic information with-
out changing low-level image characteristics, such as 
contrast and spatial frequency. The original colors of all 
the emotional images were transformed to sepia, so that 
subjects could easily discriminate these images from the 
CFS stream (discussed in the next paragraph).

As noted earlier, we used CFS to suppress the emo-
tional images from subjects’ awareness. By means of a 
mirror stereoscope, the CFS stream was presented to one 
eye, and the emotional images were presented to the 
other, so that they overlapped at a single spatial location. 
The CFS stream comprised mosaics of shapes in six bright 
colors; sepia was excluded. The shapes were rectangles, 
triangles, and circles, which changed at a frequency of 10 
Hz. The CFS stimuli subtended 4.37° × 4.77° of visual 
angle. Thus, they were slightly bigger than the emotional 
images, so that they covered the whole area of the 
images, including the edges.

Procedure. Subjects were instructed to decide whether 
the global motion direction in each RDM stimulus (pre-
sented binocularly) was to the left or to the right and to 
report their decision by pressing the left or right arrow 
key on the computer keyboard. Concurrently, an emo-
tional image was presented to one eye and rendered 

nonconscious by the CFS stream presented to the other 
eye (see Fig. 1). The binary emotional valence of the 
images (positive or negative) was 100% concordant with 
the direction of the motion in the RDM stimuli across all 
six levels of motion coherence. On each trial, the stimuli 
were presented for 400 ms, and subjects had up to 2,000 
ms to respond. The intertrial interval was 1,000 ms. Sub-
jects completed three blocks of 144 trials. Within each 
block, 72 intact emotional images and 72 phase-scram-
bled images were intermixed; in each of these condi-
tions, the numbers of positive and negative images were 
equal (i.e., 36 positive and 36 negative). The trials were 
presented in a different pseudorandom shuffled order for 
each subject.

Subjects were also asked to indicate when they saw a 
break in the CFS stream. Specifically, they pressed the 
space bar whenever they saw any sepia color within the 
stream. A trial in which suppression was reported broken 
was immediately stopped, and the subject moved on to 
the next trial; the aborted trial was then randomly reintro-
duced among future trials, so that all subjects completed 
an equal number of trials in each condition, and they 
could not shorten the total experimental time signifi-
cantly by reporting a large number of suppression breaks. 
We did not give an explicit incentive to report awareness 
because we were afraid that such an incentive might 
attenuate performance on the RDM task; that is, an incen-
tive might motivate subjects to pay too much attention to 
the CFS stream and not enough attention to the decision 
stimulus.

Stimulus Percept
Left Eye Right Eye

+++ ++

+

+

+

+

+

+

Stimuli
Displayed
(400 ms)

Response
(≤ 2,000 ms)

Rating 
(≤ 1,000 ms)

Intertrial
Interval
(1,000 ms)

1 = least confidence
4 = most confidence

1 = least confidence
4 = most confidence

1 = least confidence
4 = most confidence

Fig. 1. Illustration of the trial sequence and subjects’ percepts of the displays. Subjects were presented with 
a binocular random-dot-motion (RDM) stimulus, along with an emotional image (or neutral image, in one of 
the control experiments) that was rendered nonconscious by a continuous flash suppression stream. Subjects 
then reported whether the global motion of the RDM stimulus was to the left or right. In Experiments 2 and 
3 only, subjects also indicated their confidence in their decision, using a 4-point rating scale.
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Prior to the main experiment, each subject performed 
a detection task with a set of neutral images depicting 
single objects (i.e., book, hammer, and clock) so that we 
could determine an appropriate contrast level for the 
emotional images that would allow the CFS stream to 
render them unconscious.

Results

We found that decision accuracy was higher when the 
RDM stimuli were accompanied by suppressed intact 
emotional images (M = 59.16%, SD = 9.05) than when 
they were accompanied by otherwise identical sup-
pressed phase-scrambled images (M = 56.53%, SD = 
8.74), F(1, 15) = 11.91, p = .003, ηp

2 = .467 (Fig. 2a). This 
effect was largely driven by the trials with the lower lev-
els of motion coherence. Note that this difference could 
not have been driven by low-level image characteristics, 
such as contrast, color, and spatial frequency, as they 
were not changed by the phase scrambling.

To ensure that our strict criterion for excluding subjects 
had not driven the pattern of our results, we analyzed the 
data after applying a more relaxed exclusion criterion. For 
this analysis, we excluded subjects whose data did not 
show a monotonic increase in accuracy as a function of 
motion coherence across only the 6%, 17%, and 32% lev-
els of coherence (as opposed to all levels of coherence). 
This criterion resulted in inclusion of 21 of the total 24 
subjects. We obtained the same significant effect of image 
condition on accuracy, F(1, 20) = 17.574, p = .001, ηp

2 = 
.468 (see Fig. S1 in the Supplemental Material available 
online), as we did using the stricter criterion. Note that we 
also found an interaction between coherence level and 
image condition, F(5, 16) = 3.077, p = .039, ηp

2 = .490. In 
addition, when we applied no exclusion criterion and 
analyzed the data from all 24 subjects, we obtained the 
same significant main effect of image condition, F(1, 23) = 
16.336, p = .001, ηp

2 = .415 (Fig. S1), with a significant 
interaction between coherence level and image condition, 
F(5, 19) = 3.869, p = .014, ηp

2 = .505.
Finally, the control experiment revealed that the effect 

of the intact emotional images generalized beyond psy-
chophysically naive undergraduates. In our sample of 9 
experienced psychophysical observers, we saw the same 
boost in accuracy in the intact-images condition, F(1, 8) = 
9.37, p = .014, ηp

2 = .510 (see Fig. S4 in the Supplemental 
Material).

Experiment 2

In Experiment 2, we extended the procedure from Exper-
iment 1 to include measures of decision confidence 
and  response time, as confidence and response times 
are  typically thought to be based on the amount of 

accumulated decision evidence (Kiani & Shadlen, 2009). 
Hence, if nonconscious emotional information increased 
confidence and sped up response times, this would con-
stitute evidence that subjects might have combined the 
nonconscious emotional information with conscious 
decisional information.

Method

Twenty-one undergraduate students participated in this 
experiment in exchange for a course credit. Three (16%) 
were excluded from analyses because their data did not 
show a monotonic increase in accuracy in the RDM task 
as a function of motion coherence.

The procedure was similar to that of Experiment 1, 
with the following exceptions. First, response times for 
decisions on the RDM task were recorded. Second, after 
reporting the global motion direction of each RDM stimu-
lus, subjects reported their confidence for their decision, 
using their left hand to press the appropriate key on the 
computer keyboard. Pressing “4” indicated the most con-
fidence, and pressing “1” indicated the least confidence.

In addition, we intermixed catch trials with the experi-
mental trials. In the catch trials (10% of the trials in each 
block), we set the contrast of the CFS stream to be very 
low, so that the sepia images always broke suppression. 
The suppressed images used in the catch trials were 
novel neutral images, not used in any experimental trials. 
We included in analyses only the subjects who reported 
the break in suppression on more than 93% of the catch 
trials across the three blocks. (We permitted an incorrect 
response on one trial per block, to allow for incidental 
human error, such as pressing the wrong button.) This 
filter, which resulted in the exclusion of 2 (10%) addi-
tional subjects, ensured that we could rely on the included 
subjects’ criteria for reporting incidental suppression 
breaks in the actual experimental trials. Thus, the final 
sample size was 16 (6 males and 10 females).

At the end of the main experiment, each subject was 
given a suppression test as a measure of objective aware-
ness. All images used in the main experiment were again 
presented, with the CFS stream but not the moving-dot 
stimuli. Subjects were asked to indicate whether each 
image contained an object (intact image) or an abstract 
pattern (scrambled image). We intentionally simplified 
the suppression test by including only the images and 
CFS stream, without the decision task, to obtain a stricter, 
or more conservative, measure of awareness; if anything, 
applying full attention to the CFS stream should have 
increased the number of suppression breaks. Previous 
work suggests that brain activity induced by suppressed 
stimuli can be altered when they are presented simulta-
neously with an additional cognitively demanding task 
(Bahrami, Lavie, & Rees, 2007).
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We also conducted an experiment to see if the boost 
in decision accuracy remained when emotional content 
did not differentiate the two categories of images. This 
experiment was identical to the main experiment except 
that we used nonemotional images instead of the emo-
tional images. Specifically, we used two categories of 
nonemotional images, animate and inanimate, to stand in 
for the positive and negative images. Twenty first-year 
university students participated in this control experi-
ment in exchange for a course credit. Four (20%) were 
excluded because their accuracy in the RDM task did not 
increase monotonically with the dots’ motion coherence. 
Thus, the final sample consisted of 16 subjects (7 males 
and 9 females).

The neutral images were taken from sources on the 
Internet, rather than the IAPS. Most of the neutral images 
in the IAPS show heterogeneous natural scenes (e.g., 
mountains, landscapes), which are spatially diffuse and 
not centered on a single object, and we wanted to use 
neutral images that depicted a single dominant object, as 
the emotional images did.

One potential concern arising from our use of images 
from different sources is that the characteristics of the 
images might be notably different. Therefore, for each 
image, we determined the Michelson contrast, which 
compares the highest and lowest luminance. The average 
contrast values of the 18 emotional images from the IAPS 
and the 18 neutral images from the Internet were 0.56 (SD 
= 0.07) and 0.54 (SD = 0.10), respectively. These contrast 
values did not differ significantly, t(17) = −1.057, p > .250, 
which indicates that at least the contrast of the images 
taken from the different sources was comparable.

Results

All subjects reported more than 90% of the catch trials 
(intact images: M = 96.88%; scrambled images: M = 
95.31%; Fig. 2d) and performed at chance level in the 
final suppression test that served as our measure of 
objective awareness (M = 49.57%; Fig. 2e). Despite these 
strict tests of subjects’ awareness of the emotional images 
and their criteria for reporting breaks in suppression, we 
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Fig. 2. Results from Experiments 1 and 2. The graphs in (a) and (b) show accuracy on the random-dot-motion (RDM) task in Experiments 1 and 
2, respectively, as a function of motion coherence, separately for trials with intact and phase-scrambled emotional images. The graph in (c) shows 
accuracy on the RDM task in the control experiment for Experiment 2 as a function of motion coherence, separately for trials with intact and scram-
bled neutral images. Error bars represent ±1 SEM. The graph in (d) shows the percentage of catch trials reported by subjects in the intact-images 
and scrambled-images conditions of Experiment 2; the data points show results for individual subjects, and the lines show means across subjects. 
The graph in (e) presents each subject’s mean percentage correct in the suppression test.
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replicated the effect of the intact emotional images on 
accuracy in the RDM task (intact images: M = 63.83%, 
SD = 7.68; scrambled images: M = 59.34%, SD = 9.17), 
F(1, 15) = 14.98, p = .002, ηp

2 = .500 (Fig. 2b). Further, 
accuracy did not differ significantly between RDM trials 
accompanied by negative images and those accompa-
nied by positive images, F(1, 15) = 0.12, p > .250 (see Fig. 
S2 in the Supplemental Material). This suggests that there 
was no valence-specific effect or bias.

We also calculated incidental suppression breaks dur-
ing the experimental trials. Overall, subjects reported 
suppression breaks on fewer than 5% of the trials (see 
Fig. S3 in the Supplemental Material), and there was no 
correlation between the number of reported suppression 
breaks and decision accuracy either in the intact-images 
condition (r = .21, p > .250) or in the scrambled-images 
condition (r = −.27, p > .250). Therefore, we conclude 
that the boost in accuracy associated with the intact emo-
tional images was not generated by conscious perception 
of these stimuli.

The results for the control experiment using nonemo-
tional animate and inanimate images were opposite to 
those observed with the emotional stimuli. Decision 
accuracy was lower in the intact-images condition (M = 
61.08, SD = 8.09) compared with the scrambled-images 
condition (M = 62.85, SD = 8.89), though this difference 
was not significant, F(1, 15) = 3.44, p = .084, ηp

2 = .186 
(Fig. 2c). These results suggest that it was the emotional 
content and not the specific categories of the images that 
caused the boost in accuracy in the main experiment.

Note that the RDM stimulus was always presented for 
400 ms (regardless of response time). Thus, longer 
response times were not associated with longer stimulus-
presentation times, which otherwise might lead to a 
higher probability of suppression breaks on the trials 
with lower motion coherence, which are more difficult 
and typically have longer response times than trials with 
higher levels of coherence.

Further analysis showed that the higher accuracy for 
decisions paired with intact emotional stimuli, compared 
with those paired with scrambled emotional stimuli, was 
accompanied by faster response times across all coher-
ence levels, F(1, 15) = 30.43, p > .001, ηp

2 = .670 (Fig. 3a). 
In contrast, response times in the intact- and scrambled-
images conditions of the control experiment did not dif-
fer reliably, F(1, 15) = 0.02, p > .250 (Fig. 3b).

The pattern of results for the confidence ratings mir-
rored that for accuracy: Decisions accompanied by intact 
emotional images were given significantly higher confi-
dence ratings (M = 3.04, SD = 0.32) compared with those 
accompanied by phase-scrambled emotional images 
(M = 2.92, SD = 0.41), F(1, 15) = 8.64, p = .010, ηp

2 = 
.366  (Fig. 3c). However, decision confidence in the 

nonemotional control experiment did not differ reliably 
between the intact- and scrambled-images conditions 
(intact images: M = 2.77, SD = 0.32; scrambled images: 
M = 2.75, SD = 0.27, F(1, 15) = 0.63, p > .250 (Fig. 3d).

Next, we considered how a decisional evidence accu-
mulator might adapt to use unconscious emotional infor-
mation to help discriminate the two directions of motion. 
Might the boost in accuracy observed with intact emo-
tional images be immediate, or might it require learning 
(even though our subjects did not receive any trial-by-
trial accuracy feedback)? We fit the data from Experiment 
2 with linear regressions and found that there was a posi-
tive trend for accuracy to increase over time for the lower 
motion coherences, but not for all the motion coherences 
combined (see Figs. S6a and S6b in the Supplemental 
Material). In addition, we compared mean accuracy 
between the first and the last blocks of the main experi-
ment. Accuracy across all levels of coherence did not 
change significantly, t(15) = −1.67, p = .116 (Fig. S6c). 
However, there was learning across blocks for the lower 
coherence levels, t(15) = −2.28, p = .037 (Fig. S6d), but 
not for the higher coherence levels, t(15) = −1.57, p = 
.138 (Fig. S6e).

Experiment 3

In the previous experiments, the contingency between 
emotional valence of the image and motion direction of 
the RDM stimulus was always constant. Therefore, it was 
unclear whether the boosts in decision accuracy and 
confidence were merely due to general arousal from the 
presence of the emotional images, rather than the spe-
cific alignment between an emotion and motion direc-
tion. In Experiment 3, we explicitly tested whether 
subjects had learned the contingency between emotional 
valence and motion direction.

Method

Twenty-one first-year university students participated in 
this experiment in exchange for a course credit. Five 
(24%) were excluded from analyses because their accu-
racy on the RDM task did not increase monotonically 
with motion coherence. Thus, the final sample size was 
16 (5 males and 11 females). The procedure for this 
experiment was identical to that for Experiment 1 except 
that the contingency between emotional valence and 
motion direction was reversed in the last block of trials 
(i.e., the third block). For example, if leftward motion 
was always presented with negative emotional images in 
the first two blocks, leftward motion was then always 
presented with positive emotional images in the third 
block (Fig. 4a).
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Results

Across the first two blocks, we replicated the boost in 
accuracy in the intact-images condition (M = 62.54, SD = 
8.84) compared with the scrambled-images condition 
(M = 59.07, SD = 9.54), F(1, 15) = 13.45, p = .002, ηp

2 = 
.473 (Fig. 4b); however, when the association was flipped 
in the final block, the difference between the two condi-
tions disappeared (intact images: M = 62.85, SD = 12.20; 
scrambled images: M = 62.07, SD = 11.42), F(1, 15) = 
0.19, p > .250 (Fig. 4c).

Experiment 4

Our data thus far suggest that suppressed intact emo-
tional images boost decision accuracy and confidence, 
and speed response times. However, it remained 
unknown if this nonconscious information is somehow 
bound, or mixed, with the consciously available deci-
sional information. To test for a physiological marker of 
the nonconscious influence of emotional information on 

decisions and to probe for an interaction between the 
nonconscious and conscious information, we measured 
the skin conductance response (SCR) on a trial-by-trial 
basis during the task.

Method

Twenty-seven first-year university students participated 
in this experiment in exchange for a course credit. Five 
(19%) were excluded because their accuracy in the RDM 
task did not increase monotonically with motion coher-
ence. This left a final sample of 22 (9 males, 13 females). 
As in the previous experiments, subjects performed the 
RDM task while being exposed to suppressed emotional 
images. However, the number of trials was reduced by 
20%, and we used only six positive and six negative IAPS 
images, to reduce the experiment’s duration. Two images 
of each valence were used in the first block, and a differ-
ent set of two images of each valence was used in each 
subsequent block, to minimize image-specific learning. 
In addition, we recorded the SCR from each subject 
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during this task. SCR is considered to be a bodily marker 
of emotion during an ambiguous decision task (Bechara, 
Damasio, Tranel, & Damasio, 1997).

SCR was recorded using the ADInstruments PowerLab 
16/30 system, following the standardized published 
guidelines (ADInstruments, 2009). Electrodes were 
placed on the middle phalanges of the index and second 
fingers of the nondominant hand (i.e., the hand not used 
to report the direction of motion). Before each block, the 
signal was stabilized and calibrated.

We computed the mean SCR value on each trial, from 
the onset of the stimuli up to 6,000 ms after the response, 
to capture the entire dynamics of the SCR. Previous work 
using various types of stimuli (e.g., visual, auditory) has 
suggested that SCR values reach peak amplitude between 
4,000 and 6,000 ms following stimulus offset (Bach, Flan-
din, Friston, & Dolan, 2010). We binned the individual 

SCR values in 400-ms windows, separately for each level 
of motion coherence, and removed outlier values (i.e., 
those more than 2.5 SD from the mean), which we 
assumed were due to confounding events (e.g., random 
musculoskeletal response). Finally, we averaged the SCR 
across the entire 6-s window, separately for each coher-
ence level.

Results

Experiment 4 again replicated the previous behavioral 
data. Accuracy was higher in the intact-images condition 
(M = 72.37%, SD = 7.98) than in the scrambled-images 
condition (M = 69.40%, SD = 9.04), F(1, 21) = 25.77, p < 
.001, ηp

2 = .551. In addition, the interaction between 
image condition and motion coherence was significant, 
F(5, 17) = 4.30, p = .010, ηp

2 = .558.
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SCR was significantly higher in the intact-images con-
dition (Mnormalized = 1.11, SD = 0.10) than in the scram-
bled-images condition (Mnormalized = 0.89, SD = 0.01), F(1, 
21) = 12.99, p = .002, ηp

2 = .382 (Fig. 5a). Also, SCR in the 
intact-images condition decreased as motion coherence 
increased, F(5, 17) = 2.56, p = .067, ηp

2 = .429, but SCR in 
the scrambled-images condition did not, F(5, 17) = 0.95, 
p > .250. These results suggest that SCR might reflect uti-
lization of suppressed emotional information during 
decision making. The finding that the SCR, largely driven 
by the nonconscious stimuli, was modulated by con-
sciously perceived motion coherence suggests that the 

nonconscious emotional information likely interacted, or 
mixed, with the conscious decisional information to 
boost performance.

Across all the behavioral and SCR data (not including 
the behavioral data from the control experiments and 
third block of Experiment 3), the largest differences 
between the intact- and scrambled-images conditions 
were observed at the lowest levels of motion coherence 
(i.e., the most difficult decisions), and we found a signifi-
cant interaction between motion coherence and image 
condition. Accordingly, if SCR was indeed a proxy for a 
source of decisional evidence, then the gap between the 
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SCR values for the two image conditions at the lowest 
coherences might predict the mean accuracy gap between 
the conditions. Further analysis showed that the SCR dif-
ference score (intact minus scrambled images), collapsed 
across the three lowest coherence levels predicted the 
analogous difference score for accuracy (r = .53, p = .012; 
Fig. 5b).

Computational models

Method

We fit a linear ballistic accumulator model (LBA; Brown 
& Heathcote, 2008) to subjects’ full set of choices and 
response times (excluding Experiment 1). In an LBA 
model, each potential response is assigned an evidence 
accumulator. The evidence in each accumulator at the 
start of a trial is a random draw from between 0 and A. A 
response is triggered when one of those accumulators 
reaches a threshold amount of evidence, b. For computa-
tional simplicity, evidence for each response is assumed 
to accumulate linearly and without within-trial noise. The 
rate of accumulation and starting point of evidence in 
each accumulator can vary from trial to trial.

We assumed that subjects would have an accumulator 
for the “left” response and an accumulator for the “right” 
response. For simplicity, we assumed that they did not 
have a bias for either response, so that, we could collapse 
across trials with left and right motion and consider accu-
mulators for correct and incorrect responses. Further, we 
assumed that the mean rate of evidence accumulation 
would be a function of both the coherence of the motion 
stimuli and whether the suppressed stimulus was an 
intact or scrambled image.

In particular, we assumed that motion coherence and 
accumulation rate were linearly related, so the average 
rate of evidence accumulation for the correct response 
was calculated as follows: v = αi + βi × coherence, where 
i is 1 when the emotional stimulus was intact and 0 when 
it was scrambled; α1 and α0 represent the accumulation 
rates in the scrambled- and intact-images conditions, 
respectively; and β represents the increase in accumula-
tion rate due to an increase in coherence of 1%.

The model had eight free parameters: the maximum 
starting point, A; the standard deviation of the distribu-
tion of the between-trials accumulation rate, s; the 
response threshold, b; the non-decision-time parameter, 
t0; and the accumulation-rate parameters, α0, α1, β0, and 
β1. The mean accumulation rate for incorrect responses 
was assumed to be 1 minus the rate for correct responses 
(as is standard; see Donkin, Heathcote, & Brown, 2009).

The simplifying assumptions of the LBA model mean 
that there is a closed-form analytic likelihood expression 
(Brown & Heathcote, 2008). We fit the model to each 

subject’s choices and response times from all trials using 
maximum likelihood estimation. Best-fitting parameters 
were obtained using a combination of differential-evolu-
tion and simplex search algorithms (Price, Storn, & Lamp-
inen, 2006).

We were unable to fit the model to the data from 
Experiment 1 because no response time data were col-
lected. We fit the model to the data from all trials in 
Experiments 2 and 4, and to the data from only the first 
two blocks in Experiment 3 (i.e., before the mapping 
between emotional valence and motion direction was 
reversed).

We fit an additional model to the data from Experi-
ment 4, making use of the SCR data. This model was 
identical to the model described thus far, with one critical 
exception. The mean accumulation rate for correct 
responses in the scrambled-images condition was given 
by v = α0 + β0 × coherence, and the mean accumulation 
rate for correct responses in the intact-images condition 
was calculated by taking the accumulation rate from the 
scrambled-images condition and adding k × ΔSCR, where 
k was a free parameter, and ΔSCR was the individual’s 
mean difference in SCR response between the scrambled- 
and intact-images conditions. Note that the k parameter 
effectively replaced the α1 and β1 parameters in the alter-
native model.

Results

We found that an LBA model accounted for the influence 
of suppressed emotional stimuli on both the accuracy 
and the speed of responses. The diagonal plots in Figure 
5c show estimates for accumulation rates on individual 
trials in the intact-images condition (left) and scrambled-
images condition (right) of Experiments 2 through 4. The 
spread of these line plots indicates the variability in these 
estimated accumulation rates. When the decisions were 
accompanied by suppressed intact emotional images, 
rather than scrambled emotional images, the variability in 
these rates was lower and their distribution was centered 
on an earlier time point. These results suggest that the 
presence of emotional content increased the rate at 
which evidence accumulated.

Figures S7 through S9 in the Supplemental Material 
compare the observed data and model predictions aver-
aged over subjects, given each individual’s best-fitting 
parameters. The graphs show the cumulative probability 
of both correct and incorrect responses as a function of 
response time. The models and the observed data were 
very consistent, with the exception that some incorrect 
responses at the high motion-coherence levels were 
much slower than predicted.

The parameter estimates of the models suggest that 
the nonconscious emotional images led to an overall 
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boost in the rate of evidence accumulation, as reflected 
in differences between α0 and α1—Experiment 2: α0 = 
.48, α1 = .496, t(15) = 1.72, p = .1; Experiment 3: α0 = .450, 
α1 = .476, t(14) = 2.69, p = .02; Experiment 4: α0 =  
.482, α1 = .575, t(21) = 2.98, p = .007; aggregate: α0 =  
.474, α1 = .521, t(53) = 3.18, p = .002. The differences 
between βs, which may reflect the interaction between 
coherence level and the emotionality of the suppressed 
images, were less consistent—Experiment 2: β0 = 0.003, β1 = 
0.003, t(15)  = 1.10, p = .29; Experiment 3: β0 = 0.0047,  
β1 = 0.0045, t(14) = 0.4, p = .70;2 Experiment 4: β0 = 0.008, 
β1 = 0.004, t(21) = 2.89, p = .008; aggregate: β0 = 0.0058, β1 = 
0.0046, t(53) = 2.08, p = .042.

For Experiment 4, we found that the model that used 
the SCR data to account for the difference between deci-
sions accompanied by suppressed intact images and 
those accompanied by suppressed scrambled images 
provided a more parsimonious account of the data than 
the standard model, in which that difference was freely 
estimated. We measured model fit using the Bayesian 
information criterion (BIC) and found that the model 
with seven parameters outperformed the eight-parameter 
model for 20 of the 22 subjects. The probability that the 
SCR model generated the data, as derived from the BIC, 
ranged from .05 to .99, with a median value of .87. In 
other words, the SCR data had sufficient explanatory 
power that free parameters could be removed. Further, 
the aggregate estimated value of k (0.08) approached sig-
nificance, according to a one-tailed test, t(21) = 1.45, 
p = .08.

Discussion

We aimed to test the popular belief in the existence of 
intuition using a model initially developed to account for 
fully conscious analytic decisions. We found that noncon-
scious emotional information can boost decision accu-
racy (Experiments 1–4) and increase confidence 
(Experiment 2), as well as speed response times (Experi-
ment 2). Models of decision making typically link confi-
dence in any given decision directly with the accumulated 
amount of discriminatory information relevant to the 
decision (Kiani & Shadlen, 2009). Accordingly, the 
increase in decision confidence on the trials with intact 
emotional images may reflect the combination of non-
conscious emotional information with conscious deci-
sional evidence (i.e., sensory evidence).

Contrary to the assumption that emotional informa-
tion simply increases the gain, or the overall sensitivity, 
of the decision-making mechanism (Etkin, Egner, & 
Kalisch, 2011), our data suggest that the presence of 
emotion alone is not enough to boost decision accuracy 
significantly (Experiment 3). This interpretation is sup-
ported by the finding that decisions accompanied by 

negative images were no more accurate than decisions 
accompanied by positive images, despite the known 
asymmetry in salience between positive and negative 
emotions. The specific and differential concordance 
between emotional valence and motion direction was 
seemingly required for individuals to utilize noncon-
scious emotional information in the otherwise unrelated 
decision task. Therefore, we demonstrated not simply 
emotion-based decision making (e.g., Mikels, Maglio, 
Reed, & Kaplowitz, 2011), but rather a type of decision 
making in which behavior is biased by a specific asso-
ciation and possibly interaction between nonconscious 
emotion and conscious sensory evidence. We further 
tested the interaction between these two categories of 
information using an evidence-accumulator model, 
which is commonly used in two-choice decision tasks 
(Brown & Heathcote, 2008).

We have also shown that SCR can be used as a proxy 
for the additional information provided by nonconscious 
emotional stimuli (Experiment 4). Further, the increase in 
accuracy provided by the intact emotional stimuli was 
proportional to the difference between the SCRs for the 
intact and phase-scrambled emotional images. This result 
supports the claim that the SCR signal taps into the utili-
zation of nonconscious emotional information in a deci-
sion-making task (for a review, see Bechara, Damasio, & 
Damasio, 2000), and boosts confidence in the resulting 
decisions (Persaud, McLeod, & Cowey, 2007), as well as 
response times.

Across all the behavioral and SCR data, the largest dif-
ferences between the intact- and scrambled-images con-
ditions were at the lowest levels of motion coherence. 
The low-motion-coherence trials were more difficult than 
the others because there was less signal (coherent 
motion) among the noise (random motion). With less 
sensory information, decisions were more difficult and 
ambiguous; hence, the extra information from the emo-
tional images had a greater impact. We suggest that non-
conscious emotional information acts as additional 
evidence when the system is otherwise lacking task-
related evidence. When there is plenty of conscious deci-
sional information (e.g., when motion coherence in the 
RDM task is high), the decision threshold is easily reached 
without additional emotional information.

Our computational model indicated that nonconscious 
emotional information mixed with conscious motion 
information, despite their obvious categorical differences, 
thereby increasing the amount of overall evidence and its 
accumulation rate. By calculating decision parameters, 
we were able to estimate the value of the nonconscious 
emotional information in units of motion coherence. 
Across our data, the nonconscious emotional information 
was comparable to approximately a 10% increase in 
motion coherence.
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The ability of emotional information, as opposed to 
nonemotional information, to boost decision outcomes 
might be due to the particular characteristics of emotion. In 
our experiment, we always presented stimuli for 400 ms 
because we were testing the popular belief in intuition as a 
rapid process. The architecture of the human brain allows 
emotional stimuli to be processed rapidly in the absence of 
conscious awareness (Almeida, Pajtas, Mahon, Nakayama, 
& Caramazza, 2013). Via the brainstem’s arousal system, the 
retina can send a direct alarm-like signal to the pulvinar 
and amygdala that bypasses the primary visual cortex (Lid-
dell et al., 2005; Tamietto & de Gelder, 2010; Vuilleumier 
et al., 2002). This pathway is a likely candidate for the trans-
mission of nonconscious emotional information that boosts 
otherwise unrelated decisions.

Although the exact neural architecture responsible for 
the effects we observed is yet to be determined, our data 
show that under the right circumstances, something that 
resembles the general description of intuition does 
indeed exist, can be precisely and reliably measured and 
manipulated using our novel paradigm, and can be mod-
eled using existing decision models. Note that the size of 
the decisional boost from unconscious emotion and the 
related SCR were proportional to the difficulty of the 
decision.

Previous studies have demonstrated that associative 
learning can occur nonconsciously (Almeida et al., 2013; 
Raio, Carmel, Carrasco, & Phelps, 2012). Therefore, it is 
likely that in our study, subjects established “intuition” 
from consistent pairings between the two sources of 
information, one of which was rendered nonconscious. 
The fact that the boost in accuracy improved over time 
without any performance feedback suggests that intu-
ition might indeed be something that can be improved 
with practice.

Our data suggest that the brain is able to combine 
categorically different sources of information (e.g., emo-
tion and direction of motion), even when one source is 
suppressed from awareness, to aid behavior. The capac-
ity limits of this ability remain unknown. For example, 
could three or four different sources of information, such 
as temperature, pain, and taste, be simultaneously com-
bined and then utilized as evidence to aid behavioral 
decisions? This new paradigm opens the door to novel 
investigations of the phenomenon popularly referred to 
as intuition.
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Notes

1. Our target sample sizes for the experiments reported here 
were based on previous studies using RDM tasks (e.g., Vlassova 
et al., 2014; Vlassova & Pearson, 2013).
2. We excluded 1 subject from the statistical test in Experiment 
3 because this subject’s estimated alpha value was 6 times that 
for the remainder of the subjects, and the effect was in the 
opposite direction. For completeness, it is worth noting that the 
test that included this subject’s data was not significant, t(15) = 
0.85, p = .41.
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