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INTRODUCTION

Visual search for a target among foil items has proven to be a complex skill 
(Shiffrin & Shneider, 1977; Schneider & Shiffrin, 1977). Behavior in this 
task can be conceptually decomposed into three broad classes of visual sub-
processes: (a) recognition of a target; (b) scanning of the display items; and 
(c) a stopping rule. Factors affecting the stopping rule, which can be catego-
rized as being exogeneous or endogeneous, were examined thoroughly in 
Donkin, Cousineau and Shiffrin (in preparation; see also Moran, Zehetleit-
ner, Mueller & Usher, 2013), whereas factors influencing scanning processes 
and whether they produce (almost) flat slope functions were examined in, 
e.g., Anderson, Heinke & Humphreys, 2010; Egeth, Virzi & Garbart, 1984; 
Krummenacher, Mueller & Heller, 2001; Triesman, 1986; and Zhang & 
Luck, 2009. Scanning performance is worse in situations where targets and 
foils differ on a number of features, and no one feature by itself is indicative 
of target presence. This situation is usually termed conjunction search, and 
typically produces response times increasing with the number of items to 
search through (Wolfe, Cave & Franzel, 1989). For example, a horizontally 
aligned red rectangle is harder to find when the foils in the display are not 
only horizontal green rectangles but also vertical red rectangles.

This leads to point (a) above, target recognition process, which is the 
focus of this chapter. One factor that may affect target recognition is whether 
features are processed independently or not. If they are not, one possibility 
is perceptual unitization of initially unrelated features. As defined by Landy 
and Goldstone: “when elements co-vary together and their co-occurrence 
predicts an important categorization, the elements tend to be unitized” 
(2005, p. 350). In support of unitization in a visual search task, Shiffrin and 
Lightfoot (1997) carried out an extensive study of a difficult conjunction 
search task with extended consistent training. Initially, each three-feature 
stimulus (rectangles with spokes pointing inward) required a comparison 
time suggestive of three sub-comparisons, one for each feature. Training 
presumably caused unitization of the features, so that each stimulus could 
be compared in a single comparison step. Thus, over about thirty sessions 
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the search slopes dropped three-fold, from about 270 ms per comparison 
to about 90 ms per comparison. The slopes remained high and stable there-
after, consistent with serial self-terminating search. Such results suggest 
unitization learning. Other experiments using consistent training involving 
conjunction search (such as letter targets and digit foils, or first-half-of-
alphabet letter targets, and second-half-of-alphabet letter foils) produced 
results compatible with unitization of features (e.g., Shiffrin & Schneider, 
1977; Wolfe, Cave & Franzel, 1989), although in these cases the underlying 
feature composition is not easy to infer (see also Cousineau & Larochelle, 
2004; Lefebvre, Cousineau & Larochelle, 2008).

The varied results have led investigators to propose a variety of search mod-
els incorporating target recognition processes with quite different assump-
tions. A relevant example is the Guided Search Model, various incarnations 
of which have been proposed by Jeremy Wolfe (Wolfe, 1994; 2007; Wolfe,  
Cave & Franzel, 1989; Wolfe & Gancarz, 1996). In this model, the represen-
tation of features remains fixed (i.e., no unitization). However, feature diag-
nosticity is used to determine the order in which items are scanned. A similar 
example is the Sufficient Feature Model (SFM, Cousineau & Larochelle, 
2004) in which feature diagnosticity, learned through exposure to the targets, 
is used to minimize the number of feature comparisons needed to identify a 
target. These models assume that feature detection is the main determinant of 
performance, and as such make certain predictions for response times.

A second alternative to unitization was proposed in the literature on the 
redundant-attribute target detection task. Mordkoff and Yantis (1991) sug-
gested that co-occurring features could develop lateral excitatory connec-
tions (termed crosstalk) so that the presence of one feature would lower the 
threshold to detect another feature whose frequency of co-occurrence with 
the first is high.

These models do not incorporate unitization or other forms of evolution 
in feature composition (see Schyns & Murphy, 1994). Targets are localized 
faster because cues are used (presumably during a pre-attentive phase) in 
a more rational manner (using diagnosticity; e.g., SFM, Guided Search) or 
because feature correlations are capitalized on in order to lower thresholds 
(e.g., crosstalk models).

The purpose of the present study is to establish whether unitization is 
altering feature representation in a visual search task. If so, we want to see 
if the united features are those predictive of classifications, as suggested by 
Landy and Goldstone (2005). We do this by isolating the recognition pro-
cesses from the search task by always using a single-item display. Hence, 
there is no scanning across multiple locations and there is no termination 
rule. Further, we did not impose temporal pressure. The participant’s task 
was to identify the features perceived. Some of the stimuli were the targets 
or foils used in a search task that participants performed on sessions that 
alternated with the present task. The task was made difficult by the presence 
of masks before and after the stimulus was briefly presented.
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Experiment: The Feature Detection Task

The feature detection task was part of a larger experiment. The participants’ 
main task was a visual search. The possible targets (T1 to T4) and the pos-
sible foils (F1 to F4) are shown in Figure 1.1. The visual search task and the 
visual search results were described in Cousineau and Shiffrin (2004).

These abstract objects were created such that no single feature could 
signal the presence of a target. However, a conjunction of features could 
(features 1&2 for targets T1 and T3, or features 3&4 for T2 and T4). Fea-
tures 1 to 4 will be denoted the diagnostic features in what follows (though 
they were not sufficient in isolation to identify a target).

The visual search task alternated with the feature detection task during 
the first 30 sessions, for a total of 15 one-hour sessions of training on both 
tasks (afterwards, the visual search task continued for 44 subsequent hours). 

Figure 1.1  (top) Stimuli used in the search task (Cousineau & Shiffrin, 2004), 
labeled T1 to T4 and F1 to F4 respectively for the four targets and the four foils 
respectively. The stimuli were actually white on a black background. (middle) Com-
position of the stimuli in terms of features, using the numbering scheme shown in the 
legend. (bottom) Examples of two-feature stimuli presented in the four types of trial.
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In what follows, we present only the results of the feature detection task. 
Also, for brevity, we consider only the last five sessions (even sessions 22 
to 30) where performance had reached a plateau, as seen by flat d’ curves.

Methodology
Six participants (four female) began the experiment. Two of them were 
excluded from analyses because they dropped out of the experiment early 
(session 7 and 23; one male). The first author was one of the participants; 
the rest were paid $7 per hour.

On even-numbered sessions, participants completed the feature detection 
task. The computer screen was black, in 640 × 480 resolution, at 60 Hz 
(VGA). A trial started with the presentation of a patch of random dots 
(33% probability of a pixel being white) for 500 ms sustaining 4° of visual 
angle vertically and horizontally. Then a test stimulus (32 × 32 pixels; 3.5° 
of visual angle) was briefly presented, followed by another patch of random 
dots that remained until the participant gave their response. The test stimu-
lus was initially presented for 33.3 ms, but this duration was reduced to 
16.6 ms after session 11 because accuracy was near perfect. The test stimu-
lus was composed of a central circle and one to four features, the features 
being outward-pointing lines evenly spaced at eight possible orientations 
(see Figure 1.1 for examples of such stimuli containing two and four fea-
tures). There exists 162 such items and they were all presented three times 
per session, for a total of 486 trials per session.

The participant was required to answer two questions on each trial. First, 
they were asked “Was the item a target or not?” This response was not 
analyzed; it was asked to encourage the participant to use the same recog-
nition process as in the visual search task. In addition, the response keys 
(“1” for target, “2” for foil, using the numeric keypad) were the same as 
in the visual search task. They were informed that 97.5% of the objects 
were not targets (there are only four targets for 162 stimuli). Second, 
they were asked “What features were presented?” At this moment, par-
ticipants were given a legend on the side of the display labeling the eight 
possible features with numbers 1 to 8 (the legend was constant for all tri-
als and all participants). Participants were instructed to indicate all of the 
features they believed were present in the displayed stimulus. Participants 
could answer in any order, use backspace to make changes, and ended 
their response by pressing the “Return” key. Participants were not placed 
under any time pressure from the experimenter. Figure 1.2 shows a typi-
cal feature detection trial.

The four features labeled diagnostic are diagnostic in the search task, not 
in the present feature detection task (in addition, the three naïve participants 
were uninformed of the existence of diagnostic features; post-experimental 
discussions indicated that they never noticed their existence). Any difference 
in processing of these features is therefore a consequence of training in the 
visual search task.
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Results

All the participants found the task difficult when presentation time was 
16.6 ms and were relieved when it was finished. They subjectively reported 
seeing the stimulus well but they had to concentrate before its impression 
vanished. This self-report is reminiscent of Sperling’s (1960) study of iconic 
memory. The results show near perfect performance when the stimulus is 
simple (only one feature) but performance decreases rapidly as the number 
of features increases. The decrease in the probability of a correct feature 
recall is mirrored by an increase in incorrectly reported features (hereafter, 
these results are called hit rates and false alarm [FA] rates, respectively) of 
about half the magnitude.

We now focus on whether diagnostic features are detected differently 
than non-diagnostic features. To that end, trials were first divided accord-
ing to the total number of features presented (N). We further selected out 
four particular types of trials: (i) trials in which the pairs of diagnostic fea-
tures present on targets were seen (i.e., trials displaying the features 1&2 or 
3&4); (ii) trials where items contained one diagnostic feature along with a 
non-diagnostic feature (i.e., 1&5, 1&6, . . . 4&8; this type contains 16 dif-
ferent pairs of features all present on one target); (iii) trials with pairs of 
features that were on the targets but in which none was diagnostic (i.e., the 
features 5&8 and 6&7); and finally (iv) trials showing new configurations 
involving target diagnostic features (trials showing the features 1&3, 1&4, 
2&3 or 2&4), non-existent in the visual search task.

Figure 1.2  Typical trial in the feature detection task.
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Note that this subdivision is not exclusive (there could be a trial with 
features 1&2&4, which would satisfy conditions (i) and (iv) above). It 
was made exclusive by looking for conjunctions of diagnostic features seen 
on targets first (i), and if none were present we looked for type (iv), type 
(ii) and, finally, type (iii). The first condition to apply was tagged to the 
trial. Finally, when only one feature was presented, the trials were grouped 
together. There exists a fifth category (with feature pairs 5&6, 5&7, 6&8 
and 7&8) but only four stimuli out of 162 had these combinations (and they 
all had two features in total), so we did not analyze it any further.

The purpose of these types is to have a progression in likelihood of unit-
ization. Indeed, the features in types (i) being diagnostic should be unit-
ized according to the Landy and Goldstone (2005) definition. The features 
in type (ii) signal the presence of targets but are not unique to targets, so 
according to a strict application of the definition, should not be unitized. 
If on the other hand, a simple appearance of targets is sufficient, then type 
(ii) might lead to unitization. Finally, type (iv) should definitely not lead to 
unitization, as these pairs never occurred during the visual search task.

First Order Accuracies
Hits and false alarms are reported in this section. Hits are computed for 
each feature characterizing the trial type. So if the response given to stimu-
lus 1&2&4 is 1&2&3, for example, this stimulus is part of type (i) trials 
and we recorded two hits. An FA is recorded when participants incorrectly 
respond that a feature characterizing the trial type was present (e.g., if to 
stimulus 1&4, participant responded 1&2&4, the result is one FA in type i). 
Finally, these performances are averaged over all participants for each total 
number of features.

Figure 1.3 (top row) shows the hit rates (left) and the FA rates (right) 
for the final five sessions. In the N = 1 condition, performance is perfect 
(proportion of correct recall, P(hit) is above 0.99). As described earlier, as 
the number of features increases, the probability of correctly reporting them 
reduces markedly and the probability of falsely reporting an absent feature 
increases significantly. The decrease in hit rate is as strong as 10% whereas 
the increase in FA is at worst 4%.

The results are difficult to interpret. For example, the hit rate for the 
type  (ii) trials is generally lower than in the other conditions; however,  
the FA rate is also lower in that condition at N = 4. The type (i) trials per-
formance seems to be worse when there are two features presented. Finally, 
there are very few FAs for type (iii) trials when N was 3 (and there is no 
observation possible at length of 4). This last result is surprising as these 
features (e.g., 5&8) are not diagnostic of targets.

Overall, performance was better for trial types (i) and (iii). This is also 
suggested by d’ obtained from those data and shown in bottom left panel 
of Figure 1.3. According to a strong unitization view, the type (i) trials in-
volving the diagnostic pairs 1&2 or 3&4 should be processed by dedicated 
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Figure 1.3  (top left) Proportion of hits as a function of the total number of features 
presented, and as a function of type of trials (i to iv). (top right) Proportion of FAs, 
using the same format as above. The points at 1, showing only one feature, are not 
part of any configuration and are arbitrarily connected. The stimuli shown in the 
insets are possible examples of two-feature stimuli. (bottom left) d’ computed from 
the upper panels. (bottom right) The stimulus interaction contrasts as a function of 
type of trials (i to iv) computed from all the trials showing two, three or four features. 
Error bars shows 95% confidence intervals.

detectors and therefore (a) have better performance than trials involving 
conjunctions of non-diagnostic features (type iii); (b) there should not be 
any differences in hits for the trials where the diagnostic pairs are absent, 
e.g., types (ii) and (iii); and finally (c), FA should be lower for type (i) than 
for type (ii). As we will see next, similarities between (i) and (iii) are also 
present when performing model fitting.
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A Model of Unitization
To further examine the results, we applied a model of unitization to the data. 
The model assumes a strong version of unitization, one by which unitization 
results in a dedicated process that can detect pairs of features independently 
of the process used to register single features. Let U denote the probability 
that the pair is identified correctly using the unitization-based process and 
let p denote the probability that a single feature is identified without this 
process. We define the following shortcuts:

PrAB = Pr (RA & RB | SA & SB)
PrAb = Pr (RA & MB | SA & SB)
PraB = Pr (MA & RB | SA & SB)
Prab = Pr (MA & MB | SA & SB)

where SA is the presence of feature A; RA is to respond that feature A is pres-
ent; and MA is to miss the presence of A.

From the model, we have the following expected probabilities:

PrAB = U + (1 – U)p2

PrAb = PraB = p(1 – p)(1 – U)
Prab = (1 – p)2(1 – U)

Best-fitting parameters are obtained through log-likelihood (log(£)) maxi-
mization (Cousineau, Brown and Heathcote, 2004). Search was performed 
using simulated annealing (Ingber, 1993). We fitted four different U param-
eters, U1 to U4, one for each of the trial types described earlier. Also, we 
used two different p values, pHigh for diagnostic features (1 to 4) and pLow 
for non-diagnostic features (5 to 8). So we have in total six free parameters 
to accommodate accuracies in 16 different cells (the four types i to iv and 
the four observed proportions of response PrAB to Prab). We allowed U4 to 
be free; according to a strict view of unitization, this parameter should be 
estimated to zero as the features in type (iv) trials are not predicting any 
responses, never being seen in the visual search task, and therefore no unit-
ization should occur.

Table 1.1 shows the best fit along with the values of the best-fitting 
parameters. The first point to mention is that there is no significant dif-
ference between the two p parameters (all tests are based on individual 
data of the participants, significance is established using a likelihood ratio 
test; Hélie, 2006). Hence, the model does not suggest that the diagnostic 
features are processed with a higher accuracy than non-diagnostic fea-
tures. Second, we note that participant A is different from the three other 
participants. This finding was also found in the visual search task where 
it was established that this participant was almost perfectly following a 
serial self-terminating process to locate targets (Cousineau & Shiffrin, 
2004).
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More importantly, for the remaining three participants, the parameter 
U4 is not significantly different from zero (all significance > .15). This find-
ing is in line with unitization, as the features seen in these trials were not 
predicting target presence or absence in the visual search task. More surpris-
ing, though, is the fact that all U3 parameters are different from zero (all 
significance < .01) whereas all U2 parameters are not different from zero  
(all significance > .70). We tried various starting values to see if the best fit 
could locate a solution away from zero for U2, but with no success.

In sum, using a model-based approach, we again find a dichotomy between 
types (i) and (iii) trials, and types (ii) and (iv) trials. The result was expected 
with regard to type (iv) but (iii) was unexpected given a strict definition of unit-
ization. The results are clearer here (and significant) because all the analyzed 
probabilities are conditional on two features being presented; in the previous 
section, FAs required that one feature be absent but reported as being present.

Second-Order Accuracies
The above results are based on model fitting and so are susceptible to 
local minima. In what follows, we show that the unitization model can be 
reframed into a non-parametric version. As the results will show, we will 
again have a dichotomy between the trial types (i) and (iii) on one side, and 
trial types (ii) and (iv) on the other.

In order to accomplish this, we turn to a second-order contrast. Using 
the same shortcuts as in the previous section, we can consider the following 
aggregates: (a) the sum of PrAB, PrAb, PraB and Prab. It is easy to see that the 
result is 1 (as it covers all possible responses to two features). (b) We can 
consider an interaction contrast (denoted ∇ in the following) with

∇ = PrAB – PrAb – PraB + Prab.

Table 1.1  Best-fit and best-fitting parameters for the 6-parameter model of unitiza-
tion presented in the text applied to accuracies of the last 5 sessions in the detection 
task.

  Participant

  A B C D

log(£) –121.6 –134.8 –596.8 –635.6

PLow 0.98 .98 .90 .89

PHigh 0.99 .98 .90 .89

U1 0.57 .50 .50 .41

U2 .00 .05 .00 .03

U3 0.34 .84 .95 .79

U4 0.70 .07 .19 .00
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This interaction contrast is similar to the ones proposed by Shaw (1978; 
Mulligan & Shaw, 1980) except that her contrasts were “response-based” 
(the response was constant but the stimuli presented were either present or 
absent) whereas the present interaction contrast is “stimulus-based” (the 
stimulus presented is constant but the responses given are either “present” 
or “absent”). The computation of these contrasts is also reminiscent of 
Townsend’s mean interaction contrast and survivor interaction contrast (see 
e.g., Townsend & Nozawa, 1995; Fific, Townsend & Eidels, 2008).

To see the relevance of this contrast in our current analyses, we examine 
the unitization model (assuming a single p for all features) when the contrast 
is computed:

∇ = PrAB – PrAb – PraB + Prab

  = U + (1 – U)p2 – 2p(1 – p)(1 – U) + (1 – p)2(1-U)
  = U + (1 – U)(p2 – 2p + 2p2 + 1 – 2p + p2)
  = U + (1 – U)(1 – 2p)2

  = U + (1 – U)R
  = R + (1 – R)U

in which R = (1 – 2p)2
 is like a reliability parameter: if p is .5 (responding 

randomly), then R is zero; if p is 1, then R is 1 (we exclude the possibility 
that p < .5). For a constant R, this function is linear with U. In particular, as 
the trial type (iv) should have no unitization, U4 should be zero, and when 
U is zero, the above contrast reduces to ∇ = R. Further, given a value of R, 
it is trivial to infer a value of p.

We show in Figure 1.3 (bottom right panel) the interaction contrast com-
puted for three participants (we excluded participant A, who we know is 
processing the display with a different approach). As seen, for two condi-
tions, trial types (ii) and (iv), there is no difference in the interaction con-
trast. As U4 has no reason to show unitization, we get an estimate of R 
from the vertical axis (0.74) from which we deduce that p is .93. This result 
is very consistent with model fits reported in Table 1.1 (average p is .923 
across all three participants).

For the third time, and using a non-parametric approach, we find two 
clusters of trial types (i and iii vs. ii and iv). We discuss their implications 
with regard to unitization next.

Discussion of the Results

The strict view of unitization put forth by Landy and Goldstone (2005): 
“When elements co-vary together and their co-occurrence predicts an 
important categorization, the elements tend to be unitized” (our emphasis) 
is not entirely supported by the results. The above definition would lead to 
only type (i) trials to benefit from it. But we find that both types (i) and (iii) 
are enhanced.
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Instead of assuming a strict version of unitization, we could assume a 
weaker version in which any co-occurrence of features pairs with a target-
present response improves their processing. But then, the fact that type (ii) 
trials do not benefit from training in visual search is bizarre. It suggests that 
the diagnostic features are not (con)fused with non-diagnostic features. For 
example, with the first target (composed of 1&2&5&8), 1&2 is given a 
special status, as is 5&8, but not 1&5 (1&5 and 5&8 are equally frequent 
on targets and on foils).

The only difference between these two pairs is a frequency difference: 
5&8 is present on two targets (and on two foils) whereas 1&5 is present on 
only one target (and on one foil). So alternatively, the above definition could 
be rephrased as “When elements co-vary together and their co-occurrence 
predicts itself co-occur with an important categorization, the elements tend 
to be unitized”. With this reformulation, the pair 5&8 would be more fre-
quently reinforced than the pair 1&5. The present formulation “flattens” 
internal representations: the category response (“target”) is not on a differ-
ent level than the features. Instead, all of them are given equal status, and 
co-occurrences with category response is not different from other forms of 
co-occurrences. Category response would be a mere “label”, an additional 
“feature”. Further experimentation is needed to examine the ontological 
status of category labels.

Taken together, the results go against a strict view of unitization. 
We note that the U parameters are moderate (0.5 to 0.8) so unitization 
processes may not be fully in place. We don’t know how many sessions 
would be required to further consolidate this route, and maybe the pres-
ent 15 sessions of visual search are not enough. Nevertheless, differential 
treatments of the features are evidenced here and so perhaps we analyzed 
a behavior that might be an intermediate stage, preluding deeper changes 
to occur.

General Discussion

Before turning to a more general discussion of the results, we highlight a few 
points. First, the stimulus-based interaction contrasts turned out to be a nice 
tool to examine the results. It is interpretable and contrasts four measures 
of accuracy into one. By comparison, d’ measures (from signal detection 
theory; Green and Swets, 1966) were less clear, owing to the fact that FAs 
were difficult to analyze. More interestingly, this contrast provided a visual 
tool which is non-parametric, but strongly motivated by a model.

Second, the results show that skills acquired in a visual search task trans-
fer to a different task. However, an open question remains as to whether 
transfer only occurs when face validity is maintained (here, participants 
were asked on every trial of the feature detection task whether the stimulus 
was a target or not; not surprisingly, they are 99.0% correct, but the base 
rate of a non-target is 97.5%).
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With the present methodology, we were able to explore one facet of the 
skill involved in visual search, namely target recognition. We did this in a 
setting in which stopping rule and scanning behavior are absent, consider-
ably simplifying the behavior to describe.

Explaining what is occurring during recognition/classification/decision is 
most central for our inquiry. The notion of unitization pops to mind. How-
ever, as it stands, a strict model of unitization is not supported by the data. 
The fact that co-occurrences seemed to play a role in the result is one indi-
cation that crosstalk could be the mechanism responsible for unitization. 
However, it is not clear why crosstalk would not benefit type (ii) as much 
as type (i) trials. Finally, it is difficult to consider prioritization models here 
as response times cannot be collected in this paradigm. Yet, prioritization 
coupled with limited capacity could possibly accommodate the results and 
thus contribute to the debate.
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